首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Eukaryotic cells generate a diversity of actin filament networks in a common cytoplasm to optimally perform functions such as cell motility, cell adhesion, endocytosis and cytokinesis. Each of these networks maintains precise mechanical and dynamic properties by autonomously controlling the composition of its interacting proteins and spatial organization of its actin filaments. In this review, we discuss the chemical and physical mechanisms that target distinct sets of actin-binding proteins to distinct actin filament populations after nucleation, resulting in the assembly of actin filament networks that are optimized for specific functions.  相似文献   

2.
Hemodynamic forces affect endothelial cell morphology and function. In particular, circumferential cyclic stretch of blood vessels, due to pressure changes during the cardiac cycle, is known to affect the endothelial cell shape, mediating the alignment of the cells in the direction perpendicular to stretch. This change in cell shape proceeds a drastic reorganization at the internal level. The cellular scaffolding, mainly composed of actin filaments, reorganize in the direction which later becomes the cell’s long axis. How this external mechanical stimulus is ’sensed’ and transduced into the cell is still unknown. Here, we develop a mathematical model depicting the dynamics of actin filaments, and the influence of the cyclic stretch of the substratum based on the experimental evidence that external stimuli may be transduced inside the cell via transmembrane proteins which are coupled with actin filaments on the cytoplasmic side. Based on this view, we investigate two approaches describing the formulation of the transduction mechanisms involving the coupling between filaments and the membrane proteins. As a result, we find that the mechanical stimulus could cause the experimentally observed reorganization of the entire cytoskeleton simply by altering the dynamics of the filaments connected with the integral membrane proteins, as described in our model. Comparison of our results with previous studies of cytoskeletal dynamics reveals that the cytoskeleton, which, in the absence of the effect of stretch would maintain its isotropic distribution, slowly aligns with the precise direction set by the external stimulus. It is found that even a feeble stimulus, coupled with a strong internal dynamics, is sufficient to align actin filaments perpendicular to the direction of stretch.  相似文献   

3.
Rapid assembly and disassembly (turnover) of actin filaments in cytoplasm drives cell motility and shape remodeling. While many biochemical processes that facilitate filament turnover are understood in isolation, it remains unclear how they work together to promote filament turnover in cells. Here, we studied cellular mechanisms of actin filament turnover by combining quantitative microscopy with mathematical modeling. Using live cell imaging, we found that actin polymer mass decay in Listeria comet tails is very well fit by a simple exponential. By analyzing candidate filament turnover pathways using stochastic modeling, we found that exponential polymer mass decay is consistent with either slow treadmilling, slow Arp2/3-dissociation, or catastrophic bursts of disassembly, but is inconsistent with acceleration of filament turnover by severing. Imaging of single filaments in Xenopus egg extract provided evidence that disassembly by bursting dominates isolated filament turnover in a cytoplasmic context. Taken together, our results point to a pathway where filaments grow transiently from barbed ends, rapidly terminate growth to enter a long-lived stable state, and then undergo a catastrophic burst of disassembly. By keeping filament lengths largely constant over time, such catastrophic filament turnover may enable cellular actin assemblies to maintain their mechanical integrity as they are turning over.  相似文献   

4.
Tseng Y  Wirtz D 《Biophysical journal》2001,81(3):1643-1656
Cell morphology is controlled by the actin cytoskeleton organization and mechanical properties, which are regulated by the available contents in actin and actin regulatory proteins. Using rheometry and the recently developed multiple-particle tracking method, we compare the mechanical properties and microheterogeneity of actin filament networks containing the F-actin cross-linking protein alpha-actinin. The elasticity of F-actin/alpha-actinin networks increases with actin concentration more rapidly for a fixed molar ratio of actin to alpha-actinin than in the absence of alpha-actinin, for networks of fixed alpha-actinin concentration and of fixed actin concentration, but more slowly than theoretically predicted for a homogeneous cross-linked semiflexible polymer network. These rheological measurements are complemented by multiple-particle tracking of fluorescent microspheres imbedded in the networks. The distribution of the mean squared displacements of these microspheres becomes progressively more asymmetric and wider for increasing concentration in alpha-actinin and, to a lesser extent, for increasing actin concentration, which suggests that F-actin networks become progressively heterogeneous for increasing protein content. This may explain the slower-than-predicted rise in elasticity of F-actin/alpha-actinin networks. Together these in vitro results suggest that actin and alpha-actinin provides the cell with an unsuspected range of regulatory pathways to modulate its cytoskeleton's micromechanics and local organization in vivo.  相似文献   

5.
We investigated the relationship of actin filament organization to occludin and tight junction strands in primary cultured rat hepatocytes using an actin depolymerizing agent, mycalolide B. In control cultures, well-developed circumferential actin filaments and occludin immunoreactivity were observed on the most subapical plasma membrane of the cells, and tight junction strands formed well-developed networks in freeze-fracture replicas. In hepatocytes treated with 3 microM mycalolide B for 6 h, circumferential actin filaments and occludin immunoreactivity disappeared from the cell borders. However, there were no marked abnormalities of tight junction strands in freeze fracture replicas. Similar results were obtained from cells cultured in medium with 0.05 mM Ca2+ for 6 h. The close association of occludin with actin and the existence of intact tight junction strands that are virtually free of both occludin and actin suggest a physiological role of occludin, but not the other proteins forming the tight junction strands, in the linkage between actin cytoskeleton and tight junction.  相似文献   

6.
Actin is one of the most conserved and ubiquitous proteins in eukaryotes. Its sequence has been highly conserved for its monomers to self-assemble into filaments that mediate essential cell functions such as trafficking, cell shape and motility. The malaria-causing parasite, Plasmodium, expresses a highly sequence divergent actin that is critical for its rapid motility at different stages within its mammalian and mosquito hosts. Each of Plasmodium actin’s four subdomains have divergent regions compared to canonical vertebrate actins. We previously identified subdomains 2 and 3 as providing critical contributions for parasite actin function as these regions could not be replaced by subdomains of vertebrate actins. Here we probed the contributions of individual divergent amino acid residues in these subdomains on parasite motility and progression. Non-lethal changes in these subdomains did not affect parasite development in the mammalian host but strongly affected progression through the mosquito with striking differences in transmission to and through the insect. Live visualization of actin filaments showed that divergent amino acid residues in subdomains 2 and 4 enhanced localization associated with filaments, while those in subdomain 3 negatively affected actin filaments. This suggests that finely tuned actin dynamics are essential for efficient organ entry in the mosquito vector affecting malaria transmission. This work provides residue level insight on the fundamental requirements of actin in highly motile cells.  相似文献   

7.
Modulation of actin mechanics by caldesmon and tropomyosin   总被引:1,自引:0,他引:1  
The ability of cells to sense and respond to physiological forces relies on the actin cytoskeleton, a dynamic structure that can directly convert forces into biochemical signals. Because of the association of muscle actin-binding proteins (ABPs) may affect F-actin and hence cytoskeleton mechanics, we investigated the effects of several ABPs on the mechanical properties of the actin filaments. The structural interactions between ABPs and helical actin filaments can vary between interstrand interactions that bridge azimuthally adjacent actin monomers between filament strands (i.e. by molecular stapling as proposed for caldesmon) or, intrastrand interactions that reinforce axially adjacent actin monomers along strands (i.e. as in the interaction of tropomyosin with actin). Here, we analyzed thermally driven fluctuations in actin's shape to measure the flexural rigidity of actin filaments with different ABPs bound. We show that the binding of phalloidin increases the persistence length of actin by 1.9-fold. Similarly, the intrastrand reinforcement by smooth and skeletal muscle tropomyosins increases the persistence length 1.5- and 2- fold respectively. We also show that the interstrand crosslinking by the C-terminal actin-binding fragment of caldesmon, H32K, increases persistence length by 1.6-fold. While still remaining bound to actin, phosphorylation of H32K by ERK abolishes the molecular staple (Foster et al. 2004. J Biol Chem 279;53387-53394) and reduces filament rigidity to that of actin with no ABPs bound. Lastly, we show that the effect of binding both smooth muscle tropomyosin and H32K is not additive. The combination of structural and mechanical studies on ABP-actin interactions will help provide information about the biophysical mechanism of force transduction in cells.  相似文献   

8.
Coronins are F-actin-binding proteins that are involved, in concert with Arp2/3, Aip1, and ADF/cofilin, in rearrangements of the actin cytoskeleton. An understanding of coronin function has been hampered by the absence of any structural data on its interaction with actin. Using electron microscopy and three-dimensional reconstruction, we show that coronin-1A binds to three protomers in F-actin simultaneously: it bridges subdomain 1 and subdomain 2 of two adjacent actin subunits along the same long-pitch strand, and it staples subdomain 1 and subdomain 4 of two actin protomers on different strands. Such a mode of binding explains how coronin can stabilize actin filaments in vitro. In addition, we show which residues of F-actin may participate in the interaction with coronin-1A. Human nebulin and Xin, as well as Salmonella invasion protein A, use a similar mechanism to stabilize actin filaments. We suggest that the stapling of subdomain 1 and subdomain 4 of two actin protomers on different strands is a common mechanism for F-actin stabilization utilized by many actin-binding proteins that have no homology.  相似文献   

9.
We review mathematical and computational models of the structure, dynamics, and force generation properties of dendritic actin networks. These models have been motivated by the dendritic nucleation model, which provided a mechanistic picture of how the actin cytoskeleton system powers cell motility. We describe how they aimed to explain the self-organization of the branched network into a bimodal distribution of filament orientations peaked at 35° and ??35° with respect to the direction of membrane protrusion, as well as other patterns. Concave and convex force–velocity relationships were derived, depending on network organization, filament, and membrane elasticity and accounting for actin polymerization at the barbed end as a Brownian ratchet. This review also describes models that considered the kinetics and transport of actin and diffuse regulators and mechanical coupling to a substrate, together with explicit modeling of dendritic networks.  相似文献   

10.
Actin polymerization is the driving force for a large number of cellular processes. Formation of lamellipodia and filopodia at the leading edge of motile cells requires actin polymerization induced mechanical deformation of the plasma membrane. To generate different types of membrane protrusions, the mechanical properties of actin filaments can be constrained by interacting proteins. A striking example of such constraint is the buckling of actin filaments generated in vitro by the cooperative effect of a processive actin nucleating factor (formin) and a molecular motor (myosin II). We developed a physical model based on equations for an elastic rod that accounts for actin filament buckling. Both ends of the rod were maintained in a fixed position in space and we considered three sets of boundary conditions. The model qualitatively and quantitatively reproduces the shape distribution of actin filaments. We found that actin polymerization counterpoises a force in the range 0.4-1.6 pN for moderate end-to-end distance (approximately 1 microm) and could be as large as 10 pN for shorter distances. If the actin rod attachment includes a spring, we discovered that the stiffness must be in the range 0.1-1.2 pN/nm to account for the observed buckling.  相似文献   

11.
12.
Variations in cell migration and morphology are consequences of changes in underlying cytoskeletal organization and dynamics. We investigated how these large-scale cellular events emerge as direct consequences of small-scale cytoskeletal molecular activities. Because the properties of the actin cytoskeleton can be modulated by actin-remodeling proteins, we quantitatively examined how one such family of proteins, enabled/vasodilator-stimulated phosphoprotein (Ena/VASP), affects the migration and morphology of epithelial fish keratocytes. Keratocytes generally migrate persistently while exhibiting a characteristic smooth-edged “canoe” shape, but may also exhibit less regular morphologies and less persistent movement. When we observed that the smooth-edged canoe keratocyte morphology correlated with enrichment of Ena/VASP at the leading edge, we mislocalized and overexpressed Ena/VASP proteins and found that this led to changes in the morphology and movement persistence of cells within a population. Thus, local changes in actin filament dynamics due to Ena/VASP activity directly caused changes in cell morphology, which is coupled to the motile behavior of keratocytes. We also characterized the range of natural cell-to-cell variation within a population by using measurable morphological and behavioral features—cell shape, leading-edge shape, filamentous actin (F-actin) distribution, cell speed, and directional persistence—that we have found to correlate with each other to describe a spectrum of coordinated phenotypes based on Ena/VASP enrichment at the leading edge. This spectrum stretched from smooth-edged, canoe-shaped keratocytes—which had VASP highly enriched at their leading edges and migrated fast with straight trajectories—to more irregular, rounder cells migrating slower with less directional persistence and low levels of VASP at their leading edges. We developed a mathematical model that accounts for these coordinated cell-shape and behavior phenotypes as large-scale consequences of kinetic contributions of VASP to actin filament growth and protection from capping at the leading edge. This work shows that the local effects of actin-remodeling proteins on cytoskeletal dynamics and organization can manifest as global modifications of the shape and behavior of migrating cells and that mathematical modeling can elucidate these large-scale cell behaviors from knowledge of detailed multiscale protein interactions.  相似文献   

13.
Actin filament dynamics at the cell membrane are important for cell-matrix and cell-cell adhesions and the protrusion of the leading edge. Since actin filaments must be connected to the cell membrane to exert forces but must also detach from the membrane to allow it to move and evolve, the balance between actin filament tethering and detachment at adhesion sites and the leading edge is key for cell shape changes and motility. How this fine tuning is performed in cells remains an open question, but possible candidates are the Drosophila enabled/vasodilator-stimulated phosphoprotein (Ena/VASP) family of proteins, which localize to dynamic actin structures in the cell. Here we study VASP-mediated actin-related proteins 2/3 (Arp2/3) complex-dependent actin dynamics using a substrate that mimics the fluid properties of the cell membrane: an oil-water interface. We show evidence that polymerization activators undergo diffusion and convection on the fluid surface, due to continual attachment and detachment to the actin network. These dynamics are enhanced in the presence of VASP, and we observe cycles of catastrophic detachment of the actin network from the surface, resulting in stop-and-go motion. These results point to a role for VASP in the modulation of filament anchoring, with implications for actin dynamics at cell adhesions and at the leading edge of the cell.  相似文献   

14.
Gelsolin is a Ca2+-binding protein of mammalian leukocytes, platelets and other cells which has multiple and closely regulated powerful effects on actin. In the presence of micromolar Ca2+, gelsolin severs actin filaments, causing profound changes in the consistency of actin polymer networks. A variant of gelsolin containing a 25-amino acid extension at the NH2-terminus is present in plasma where it may be involved in the clearance of actin filaments released during tissue damage. Gelsolin has two sites which bind actin cooperatively. These sites have been localized using proteolytic cleavage and monoclonal antibody mapping techniques. The NH2-terminal half of the molecule contains a Ca2+-insensitive actin severing domain while the COOH-terminal half contains a Ca2+-sensitive actin binding domain which does not sever filaments. These data suggest that the NH2-terminal severing domain in intact gelsolin is influenced by the Ca2+-regulated COOH-terminal half of the molecule. The primary structure of gelsolin, deduced from human plasma gelsolin cDNA clones, supports the existence of actin binding domains and suggests that these may have arisen from a gene duplication event, and diverged subsequently to adopt their respective unique functions. The plasma and cytoplasmic forms of gelsolin are encoded by a single gene, and preliminary results indicate that separate mRNAs code for the two forms. Further application of molecular biological techniques will allow exploration into the structural basis for the multifunctionality of gelsolin, as well as the molecular basis for the genesis of the cytoplasmic and secreted forms of gelsolin.  相似文献   

15.
Reorganization of actin filament bundles in living fibroblasts   总被引:20,自引:18,他引:2       下载免费PDF全文
《The Journal of cell biology》1984,99(4):1478-1485
We investigated how actin bundles assemble, disassemble, and reorganize during cell movement. Living chick embryonic fibroblasts were microinjected with actin molecules that had been fluorescently labeled with tetramethylrhodamine. We found that the fluorescent analogue of actin can be used successfully by both existing and newly formed cellular structures. Using time-lapse photography coupled to image- intensified fluorescence microscopy, we were able to detect various patterns of reorganization in motile cells. Assembly of stress fibers occurred near both the leading and the trailing ends of the cell. The initial structure appeared as discrete spots that subsequently extended into stress fibers. The extension occurred unidirectionally. The site of initiation near the leading edge remained stationary relative to the substrate during subsequent cell advancement. However, the orientation of the fiber could change according to the direction of cell movement. In addition, existing stress fibers could merge or fragment. The shortening of stress fibers can occur from either end of the fiber. Shortening from the proximal end (centrifugal shortening) was accompanied by a decrease in fluorescence intensity, as if the bundle were disassembling, and usually led to the total disappearance of the bundle. Shortening from the distal end (centripetal shortening), on the other hand, is usually accompanied by an increase in fluorescence intensity at the distal end of the bundle, as if this end had pulled loose from its attachment and retracted toward the center of the cell. Besides stress fibers, arc-like actin bundles have also been detected in spreading cells. These observations can explain how the organization of actin bundles coordinates with cell movement, and how stress fibers reach a highly regular pattern in static cells.  相似文献   

16.
The exocytotic process in the anterior pituitary secretory cells was studied using quick-freeze deep-etch electron microscopy, fluorescein-isothiocyanate-phalloidin staining, heavy meromyosin decoration, and immuno-electron microscopy. The subcortical actin filaments are distributed unevenly in the peripheral cytoplasm. Few secretory granules are seen beneath the plasma membrane in the region where the peripheral cytoplasm is occupied by numerous subcortical actin filaments. On the contrary, in the region free of the subcortical actin filaments, many secretory granules lie in contact with the plasma membrane. Thus, the subcortical actin filaments may control the approach of the secretory granules to the plasma membrane in these cells. The granule and plasma membranes that lie in close proximity are linked by intervening strands. Unfused portions of both membranes remain linked by these strands during membrane fusion and opening. These strands may be involved in membrane contact, fusion and opening during exocytosis. Annexin II (calpactin I) has been demonstrated immunocytochemically to be localized at the contact sites between the granule and plasma membranes, and is therefore a possible component of the intervening strands. Membrane fusion starts within focal regions of both membranes less than 50 nm in diameter. The plasma membrane shows inward depressions toward the underlying granules immediately before fusion. The disappearance of intramembranous particles from the exocytotic site of the membrane has not been observed.  相似文献   

17.
Drosophila bristle cells are shaped during growth by longitudinal bundles of cross-linked actin filaments attached to the plasma membrane. We used confocal and electron microscopy to examine actin bundle structure and found that during bristle elongation, snarls of uncross-linked actin filaments and small internal bundles also form in the shaft cytoplasm only to disappear within 4 min. Thus, formation and later removal of actin filaments are prominent features of growing bristles. These transient snarls and internal bundles can be stabilized by culturing elongating bristles with jasplakinolide, a membrane-permeant inhibitor of actin filament depolymerization, resulting in enormous numbers of internal bundles and uncross-linked filaments. Examination of bundle disassembly in mutant bristles shows that plasma membrane association and cross-bridging adjacent actin filaments together inhibits depolymerization. Thus, highly cross-bridged and membrane-bound actin filaments turn over slowly and persist, whereas poorly cross-linked filaments turnover more rapidly. We argue that the selection of stable bundles relative to poorly cross-bridged filaments can account for the size, shape, number, and location of the longitudinal actin bundles in bristles. As a result, filament turnover plays an important role in regulating cytoskeleton assembly and consequently cell shape.  相似文献   

18.
Actin is a major structural protein of the eukaryotic cytoskeleton and enables cell motility. Here, we present a model of the actin filament (F-actin) that not only incorporates the global structure of the recently published model by Oda et al. but also conserves internal stereochemistry. A comparison is made using molecular dynamics simulation of the model with other recent F-actin models. A number of structural determents such as the protomer propeller angle, the number of hydrogen bonds, and the structural variation among the protomers are analyzed. The MD comparison is found to reflect the evolution in quality of actin models over the last 6 years. In addition, simulations of the model are carried out in states with both ADP or ATP bound and local hydrogen-bonding differences characterized.  相似文献   

19.
Gelsolin is a calcium binding protein that shortens actin filaments. This effect occurs in the presence but not in the absence of micromolar calcium ion concentrations and is partially reversed following removal of calcium ions. Once two actin molecules have bound to gelsolin in solutions containing Ca2+, one of the actins remains bound following chelation of calcium, so that the reversal of gelsolin's effect cannot be accounted for simply by its dissociation from the ends of the shortened filaments to allow for elongation. In this paper, the interactions with actin of the ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) stable 1:1 gelsolin-actin complexes are compared with those of free gelsolin. The abilities of free or complexed gelsolin to sever actin filaments, nucleate filament assembly, bind to the fast growing (+) filament ends, and lower the filament size distribution in the presence of either Ca2+ or EGTA were examined. The results show that both free gelsolin and gelsolin-actin complexes are highly dependent on Ca2+ concentration when present in a molar ratio to actin less than 1:50. The gelsolin-actin complexes, however, differ from free gelsolin in that they have a higher affinity for (+) filament ends in EGTA and they cannot sever filaments in calcium. The limited reversal of actin-gelsolin binding following removal of calcium and the calcium sensitivity of nucleation by complexes suggest an alternative to reannealing of shortened filaments that involves redistribution of actin monomers and may account for the calcium-sensitive functional reversibility of the solation of actin by gelsolin.  相似文献   

20.
The cell cortex is a thin network of actin, myosin motors, and associated proteins that underlies the plasma membrane in most eukaryotic cells. It enables cells to resist extracellular stresses, perform mechanical work, and change shape. Cortical structural and mechanical properties depend strongly on the relative turnover rates of its constituents, but quantitative data on these rates remain elusive. Using photobleaching experiments, we analyzed the dynamics of three classes of proteins within the cortex of living cells: a scaffold protein (actin), a cross-linker (α-actinin), and a motor (myosin). We found that two filament subpopulations with very different turnover rates composed the actin cortex: one with fast turnover dynamics and polymerization resulting from addition of monomers to free barbed ends, and one with slow turnover dynamics with polymerization resulting from formin-mediated filament growth. Our data suggest that filaments in the second subpopulation are on average longer than those in the first and that cofilin-mediated severing of formin-capped filaments contributes to replenishing the filament subpopulation with free barbed ends. Furthermore, α-actinin and myosin minifilaments turned over significantly faster than F-actin. Surprisingly, only one-fourth of α-actinin dimers were bound to two actin filaments. Taken together, our results provide a quantitative characterization of essential mechanisms under­lying actin cortex homeostasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号