首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mine I  Anota Y  Menzel D  Okuda K 《Protoplasma》2005,226(3-4):199-206
Summary. The configuration and distribution of polyadenylated RNA (poly(A)+ RNA) during cyst formation in the cap rays of Acetabularia peniculus were demonstrated by fluorescence in situ hybridization using oligo(dT) as a probe, and the spatial and functional relationships between poly(A)+ RNA and microtubules or actin filaments were examined by immunofluorescence microscopy and cytoskeletal inhibitor treatment. Poly(A)+ RNA striations were present in the cytoplasm of early cap rays and associated with longitudinal actin bundles. Cytochalasin D destroyed the actin filaments and caused a dispersal of the striations. Poly(A)+ RNA striations occurred in the cytoplasm of the cap rays up to the stage when secondary nuclei migrated into the cap rays, but they disappeared after the secondary nuclei were settled in their positions. At that time, a mass of poly(A)+ RNA was present around each of the secondary nuclei and accumulated rRNA. This mass colocalized with microtubules radiating from the surface of each secondary nucleus and disappeared when the microtubules were depolymerized by butamifos, which did not affect the configuration of actin filaments. These masses of poly(A)+ RNA continued to exist even after the cap ray cytoplasm divided into cyst domains. Thus two distinct forms of poly(A)+ RNA population, striations and masses, appear in turn at consecutive stages of cyst formation and are associated with distinct cytoskeletal elements, actin filaments and microtubules, respectively. Correspondence and reprints: Graduate School of Kuroshio Science, Kochi University, 2-5-1 Akebono-cho, Kochi 780-8520, Japan.  相似文献   

2.
3.
Lai CK  Jeng KS  Machida K  Lai MM 《Journal of virology》2008,82(17):8838-8848
The hepatitis C virus (HCV) RNA replication complex (RC), which is composed of viral nonstructural (NS) proteins and host cellular proteins, replicates the viral RNA genome in association with intracellular membranes. Two viral NS proteins, NS3 and NS5A, are essential elements of the RC. Here, by using immunoprecipitation and fluorescence resonance energy transfer assays, we demonstrated that NS3 and NS5A interact with tubulin and actin. Furthermore, immunofluorescence microscopy and electron microscopy revealed that HCV RCs were aligned along microtubules and actin filaments in both HCV replicon cells and HCV-infected cells. In addition, the movement of RCs was inhibited when microtubules or actin filaments were depolymerized by colchicine and cytochalasin B, respectively. Based on our observations, we propose that microtubules and actin filaments provide the tracks for the movement of HCV RCs to other regions in the cell, and the molecular interactions between RCs and microtubules, or RCs and actin filaments, are mediated by NS3 and NS5A.  相似文献   

4.
Several lines of evidence indicate that sucrose synthase (SuSy) binds both G- and F-actin: (i) presence of SuSy in the Triton X-100-insoluble fraction of microsomal membranes (i.e. crude cytoskeleton fraction); (ii) co-immunoprecipitation of actin with anti-SuSy monoclonal antibodies; (iii) association of SuSy with in situ phalloidin-stabilized F-actin filaments; and (iv) direct binding to F-actin, polymerized in vitro. Aldolase, well known to interact with F-actin, interfered with binding of SuSy, suggesting that a common or overlapping binding site may be involved. We postulate that some of the soluble SuSy in the cytosol may be associated with the actin cytoskeleton in vivo.  相似文献   

5.
Both novel and multiple ultrastructural studies based on different principles show relationships of cytoplasmic lipid bodies and ribonucleic acid (RNA) of potential importance to RNA metabolism in human mast cells. The methods include general ultrastructural morphological observations, imaging of RNA with an EDTA regressive stain, imaging of the incorporation of radio labeled uridine by ultrastructural autoradiography, postembedding immunogold labeling of uridine, ribosomes and small nuclear ribonuclear proteins and ultrastructural in situ hybridization detection of poly(A)-positive messenger RNA. Altogether these studies implicate human mast cell lipid bodies in RNA metabolism and are analogous to earlier similar studies which showed that human mast cell granules also curtain RNA.  相似文献   

6.
Actin filaments (F-actin) are protein polymers that undergo rapid assembly and disassembly and control an enormous variety of cellular processes ranging from force production to regulation of signal transduction. Consequently, imaging of F-actin has become an increasingly important goal for biologists seeking to understand how cells and tissues function. However, most of the available means for imaging F-actin in living cells suffer from one or more biological or experimental shortcomings. Here we describe fluorescent F-actin probes based on the calponin homology domain of utrophin (Utr-CH), which binds F-actin without stabilizing it in vitro. We show that these probes faithfully report the distribution of F-actin in living and fixed cells, distinguish between stable and dynamic F-actin, and have no obvious effects on processes that depend critically on the balance of actin assembly and disassembly.  相似文献   

7.
Localization of actin messenger RNA during early ascidian development   总被引:13,自引:0,他引:13  
The spatial distribution of RNA sequences during early development of the ascidian, Styela plicata, was determined by in situ hybridization with poly(U) and cloned DNA probes. Styela eggs and embryos contain three colored cytoplasmic regions of specific morphogenetic fates, the ectoplasm, endoplasm, and myoplasm. These cytoplasmic regions participate in ooplasmic segregation after fertilization and are distributed to different cell lineages during early embryogenesis. n situ hybridization with poly(U) suggests that poly(A)+RNA is unevenly distributed in eggs and embryos, with about 45% in the ectoplasm, 50% in the endoplasm, and only 5% in the myoplasm. In situ hybridization with a histone DNA probe showed that histone RNA sequences were not localized in eggs or embryos and distributed between the three cytoplasmic regions according to their volumes. In situ hybridization with an actin DNA probe showed actin RNA was localized in the myoplasm and ectoplasm of eggs and embryos with about 45% present in the myoplasm, 40% in the ectoplasm, and only 15% in the endoplasm. These results suggest that a large proportion of the egg actin mRNA is localized in the myoplasm, participates in ooplasmic segregation after fertilization, and is differentially distributed to the mesodermal cell lineages during embryogenesis. Analysis of the translation products of egg mRNA suggests that the localized mRNA codes for a cytoplasmic actin isoform.  相似文献   

8.
The possibility of an association of mRNA with the cytoskeletal framework (CF) of ascidian (Styela plicata) follicle cells was examined in this study. The approach was to extract the follicle cells with Triton X-100 and determine whether mRNA persisted in the insoluble residue by two methods, in situ hybridization with poly(U) and actin DNA probes and the incorporation of radioactive isotopes into RNA. Triton X-100 extraction of follicle cells yielded a filamentous CF containing approximately 70% of the total poly (A) but only 9% of the total lipid, 23% of the total protein, and 28% of the total RNA. In situ hybridization with a poly (U) probe indicated that approximately 70% of the poly (A) was associated with the CF. In situ hybridization with a cloned actin DNA probe indicated that approximately 60% of the actin mRNA was associated with the CF. Autoradiography of detergent- extracted follicle cells, which had been labeled with [3H]uridine or [3H]adenosine, indicated that greater than 90% of the newly synthesized poly (A)+RNA was preserved in the CF. Thus more newly synthesized mRNA than steady-state mRNA may be present in the Triton X-100 insoluble fraction. It is concluded that a significant proportion of the mRNA complement of ascidian follicle cells is associated with the CF.  相似文献   

9.
I. Mine  K. Okuda  D. Menzel 《Protoplasma》2001,216(1-2):56-65
Summary In the juvenile stage, the diploid giant-celled green algae Acetabularia spp. are differentiated into an upright stalk and an irregularly branched rhizoid. Early amputation and grafting experiments as well as biochemical and molecular analyses have shown that mRNA (as poly(A)+ RNA) is continuously supplied from the primary nucleus in the rhizoid and accumulates in the stalk apex. In the present study, localization of poly(A)+ RNA in the juvenile stage of theAcetabularia peniculus was investigated by fluorescent in situ hybridization using oligo(dT) as a probe. The signal was localized in the apical cytoplasm and, in addition, multiple longitudinal striations throughout the stalk and rhizoid cytoplasm. A large portion of the poly(A)+ RNA striations exhibited structural polarity, broadened at one end and gradually thinned toward the other end. Some of the striations in the rhizoid cytoplasm were continuous with a zone of signal in the area of the perinuclear rim. The poly(A)+ RNA striations were associated with thick bands of longitudinal actin bundles which run through the entire length of the stalk. Cytochalasin D caused fragmentation of the actin bundles and irregular distribution of the fluorescent signal. We suggest that the poly(A)+ RNA striations constitute a hitherto unknown form of packaged mRNA that is transported over large distances along the actin cytoskeleton to be stored and expressed in the growing apex.  相似文献   

10.
Cryoatomic force microscopy of filamentous actin   总被引:8,自引:0,他引:8       下载免费PDF全文
Cryoatomic force microscopy (cryo-AFM) was used to image phalloidin-stabilized actin filaments adsorbed to mica. The single filaments are clearly shown to be right-handed helical structures with a periodicity of approximately 38 nm. Even at a moderate concentration ( approximately 10 microg/ml), narrow, branched rafts of actin filaments and larger aggregates have been observed. The resolution achieved is sufficient to resolve actin monomers within the filaments. A closer examination of the images shows that the branched rafts are composed of up to three individual filaments with a highly regular lateral registration with a fixed axial shift of approximately 13 nm. The implications of these higher-order structures are discussed in terms of x-ray fiber diffraction and rheology of actin gels. The cryo-AFM images also indicate that the recently proposed model of left-handed F-actin is likely to be an artifact of preparation and/or low-resolution AFM imaging.  相似文献   

11.
Red blood cell (RBC) shape and deformability are supported by a planar network of short actin filament (F-actin) nodes (∼37 nm length, 15–18 subunits) interconnected by long spectrin strands at the inner surface of the plasma membrane. Spectrin-F-actin network structure underlies quantitative modeling of forces controlling RBC shape, membrane curvature, and deformation, yet the nanoscale organization and dynamics of the F-actin nodes in situ are not well understood. We examined F-actin distribution and dynamics in RBCs using fluorescent-phalloidin labeling of F-actin imaged by multiple microscopy modalities. Total internal reflection fluorescence and Zeiss Airyscan confocal microscopy demonstrate that F-actin is concentrated in multiple brightly stained F-actin foci ∼200–300 nm apart interspersed with dimmer F-actin staining regions. Single molecule stochastic optical reconstruction microscopy imaging of Alexa 647-phalloidin-labeled F-actin and computational analysis also indicates an irregular, nonrandom distribution of F-actin nodes. Treatment of RBCs with latrunculin A and cytochalasin D indicates that F-actin foci distribution depends on actin polymerization, while live cell imaging reveals dynamic local motions of F-actin foci, with lateral movements, appearance and disappearance. Regulation of F-actin node distribution and dynamics via actin assembly/disassembly pathways and/or via local extension and retraction of spectrin strands may provide a new mechanism to control spectrin-F-actin network connectivity, RBC shape, and membrane deformability.  相似文献   

12.
Characterization of membrane-associated actin in boar spermatozoa   总被引:2,自引:0,他引:2  
Biochemical, immunological, and electron microscopic methods have been used to provide semi-quantitative estimates and to localize actin in membranes of boar spermatozoa. Immunoblots, using a monoclonal antibody raised against actin from chicken gizzard, detected the protein in caput and cauda sperm plasma membranes. Immunoassay indicated that approximately 1% of the total plasma membrane protein was actin. Monomeric actin accounted for more than one-half of the membrane actin. Approximately 30-40% of plasma membrane actin was insoluble in Triton X-100, and approximately 10% of the total actin remained insoluble after treatment with guanidine hydrochloride. The presence of F-actin in sperm plasma membranes and in plasma membrane detergent-insoluble proteins was detected by fluorescence microscopy using the specific probe NBD phallacidin. When S1 myosin subfragments attached to colloidal gold were used to localize F-actin by electron microscopy, the label was restricted to the outer acrosomal membrane of intact epididymal and ejaculated sperm. Filaments appeared in short arrays along the anterior region of the membrane. S1/gold labeled detergent-insoluble plasma membrane fractions but did not label the plasma membrane in intact sperm. Filaments were least prominent in intact caput spermatozoa and most prominent in ejaculated spermatozoa. We conclude that most actin associated with sperm membranes is in monomeric form in boar spermatozoa, but that actin filaments or protofilaments are components of the outer acrosomal membrane. These filaments may also associate with the plasma membrane overlying the acrosome.  相似文献   

13.
Induced interferon-beta (IFN-beta) mRNA was localized in human FS-4 fibroblasts by in situ hybridization using biotinylated probes. The hybridization sites were detected by incubation with a nick-translated genomic DNA probe (1.8 kb) via streptavidin-colloidal gold followed by silver contrast enhancement. The positive signals were observed by reflection-contrast light microscopy. IFN-beta mRNA was transiently induced by poly r(I): r(C) in fibroblasts 2-4 h after induction. Induction in the presence of cycloheximide and actinomycin D (superinduction conditions) exhibited an enhanced level of IFN-beta mRNA with a maximum at 4-8 h. The kinetics of the IFN-beta mRNA expression in the cytoplasm as revealed by in situ hybridization proved to be compatible with the results of Northern blotting experiments of total cellular RNA.  相似文献   

14.
Several procedures were used to disassemble rat liver rough microsomes (RM) into ribosomal subunits, mRNA, and ribosome-stripped membrane vesicles in order to examine the nature of the association between the mRNA of bound polysomes and the microsomal membranes. The fate of the mRNA molecules after ribosome release was determined by measuring the amount of pulse-labeled microsomal RNA in each fraction which was retained by oligo-dT cellulose or by measuring the poly A content by hybridization to radioactive poly U. It was found that ribosomal subunits and mRNA were simultaneously released from the microsomal membranes when the ribosomes were detached by: (a) treatment with puromycin in a high salt medium containing Mg++, (b) resuspension in a high salt medium lacking Mg++, and (c) chelation of Mg++ by EDTA or pyrophosphate. Poly A-containing mRNA fragments were extensively released from RM subjected to a mild treatment with pancreatic RNase in a medium of low ionic strength. This indicates that the 3' end of the mRNA is exposed on the outer microsomal surface and is not directly bound to the membranes. Poly A segments of bound mRNA were also accessible to [(3)H] poly U for in situ hybridization in glutaraldehyde-fixed RM. Rats were treated with drugs which inhibit translation after formation of the first peptide bonds or interfere with the initiation of protein synthesis. After these treatments inactive monomeric ribosomes, as well as ribosomes bearing mRNA, remained associated with their binding sites in microsomes prepared in media of low ionic strength. However, because there were no linkages provided by nascent chains, ribosomes, and mRNA, molecules were released from the microsomal membranes without the need of puromycin, by treatment with a high salt buffer containing Mg++. Thus, both in vivo and in vitro observations are consistent with a model in which mRNA does not contribute significantly to the maintenance of the interaction between bound polysomes and endoplasmic reticulum membranes in rat liver hepatocytes.  相似文献   

15.
To obtain insight into the potential role of the cytoskeleton on lipid mixing behavior in plasma membranes, the current study explores the influence of physisorbed actin filaments (F-actin) on lipid–lipid phase separations in planar model membrane systems containing raft-mimicking lipid mixtures of well-defined compositions using a complementary experimental approach of epifluorescence microscopy, fluorescence anisotropy, wide-field single molecule fluorescence microscopy, and interfacial rheometry. In particular, we have explored the impact of F-actin on cholesterol (CHOL)–phospholipid interactions, which are considered important for the formation of CHOL-enriched lipid raft domains. By using epifluorescence microscopy, we show that physisorbed filamentous actin (F-actin) alters the domain size of lipid–lipid phase separations in the presence of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylserine (POPS) and cholesterol (CHOL). In contrast, no actin-induced modification in lipid–lipid phase separations is observed in the absence of POPS or when POPS is replaced by another anionic lipid, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylglycerol (POPG). Wide-field single molecule fluorescence microscopy on binary lipid mixtures indicate that PS and PG lipids show similar electrostatic interactions with physisorbed actin filaments. Complementary fluorescence anisotropy experiments on binary PS lipid-containing lipid mixtures are provided to illustrate the actin-induced segregation of anionic lipids. The similarity of electrostatic interactions between actin and both anionic lipids suggests that the observed differences in actin-mediated perturbations of lipid phase separations are caused by distinct PS lipid–CHOL versus PG lipid–CHOL interactions. We hypothesize that the actin cytoskeleton and some peripheral membrane proteins may alter lipid–lipid phase separations in plasma membranes in a similar way by interacting with PS lipids.  相似文献   

16.
Despite the recognition that actin filaments are important for numerous cellular processes, and decades of investigation, the dynamics of in vitro actin filaments are still not completely understood. Here, we follow the time evolution of the length distribution of labeled actin reporter filaments in an unlabeled F-actin solution via fluorescence microscopy. Whereas treadmilling and diffusive length fluctuations cannot account for the observed dynamics, our results suggest that at low salt conditions, spontaneous fragmentation is crucial.  相似文献   

17.
We have been able to visualize cytoskeletal messenger RNA molecules at high resolution using nonisotopic in situ hybridization followed by whole-mount electron microscopy. Biotinated cDNA probes for actin, tubulin, or vimentin mRNAs were hybridized to Triton-extracted chicken embryo fibroblasts and myoblasts. The cells were then exposed to antibodies against biotin followed by colloidal gold-conjugated antibodies and then critical-point dried. Identification of mRNA was possible using a probe fragmented to small sizes such that hybridization of several probe fragments along the mRNA was detected as a string of colloidal gold particles qualitatively and quantitatively distinguishable from nonspecific background. Extensive analysis showed that when eight gold particles were seen in this iterated array, the signal to noise ratio was greater than 30:1. Furthermore, these gold particles were colinear, often spiral, or circular suggesting detection of a single nucleic acid molecule. Antibodies against actin, vimentin, or tubulin proteins were used after in situ hybridization, allowing simultaneous detection of the protein and its cognate message on the same sample. This revealed that cytoskeletal mRNAs are likely to be extremely close to actin protein (5 nm or less) and unlikely to be within 20 nm of vimentin or tubulin filaments. Actin mRNA was found to be more predominant in lamellipodia of motile cells, confirming previous results. These results indicate that this high resolution in situ hybridization approach is a powerful tool by which to investigate the association of mRNA with the cytoskeleton.  相似文献   

18.
Proteins in the actin depolymerizing factor (ADF)/cofilin family are essential for rapid F-actin turnover, and most depolymerize actin in a pH-dependent manner. Complexes of human and plant ADF with F-actin at different pH were examined using electron microscopy and a novel method of image analysis for helical filaments. Although ADF changes the mean twist of actin, we show that it does this by stabilizing a preexisting F-actin angular conformation. In addition, ADF induces a large ( approximately 12 degrees ) tilt of actin subunits at high pH where filaments are readily disrupted. A second ADF molecule binds to a site on the opposite side of F-actin from that of the previously described ADF binding site, and this second site is only largely occupied at high pH. All of these states display a high degree of cooperativity that appears to be an integral part of F-actin.  相似文献   

19.
Ponticulin is a 17,000-dalton transmembrane glycoprotein that is involved in the binding and nucleation of actin filaments by Dictyostelium discoideum plasma membranes. The major actin-binding protein isolated from these membranes by F-actin affinity chromatography, ponticulin also binds F-actin on blot overlays. The actin-binding activity of ponticulin in vitro is identical to that observed for purified plasma membranes: it resists extraction with 0.1 N NaOH, is sensitive to high salt concentrations, and is destroyed by heat, proteolysis, and thiol reduction and alkylation. A cytoplasmic domain of ponticulin mediates binding to actin because univalent antibody fragments directed against the cytoplasmic surface of this protein inhibit 96% of the actin-membrane binding in sedimentation assays. Antibody specific for ponticulin removes both ponticulin and the ability to reconstitute actin nucleation activity from detergent extracts of solubilized plasma membranes. Levels of plasma membrane ponticulin increase 2- to 3-fold during aggregation streaming, when cells adhere to each other and are highly motile. Although present throughout the plasma membrane, ponticulin is preferentially localized to some actin-rich membrane structures, including sites of cell-cell adhesion and arched regions of the plasma membrane reminiscent of the early stages of pseudopod formation. Ponticulin also is present but not obviously enriched at phagocytic cups of log-phase amebae. These results indicate that ponticulin may function in vivo to attach and nucleate actin filaments at the cytoplasmic surface of the plasma membrane. A 17,000-dalton analogue of ponticulin has been identified in human polymorphonuclear leukocyte plasma membranes by immunoblotting and immunofluorescence microscopy.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
《The Journal of cell biology》1993,120(5):1169-1176
Actin cross-linking proteins are important for formation of isotropic F- actin networks and anisotropic bundles of filaments in the cytoplasm of eucaryotic cells. A 34,000-D protein from the cellular slime mold Dictyostelium discoideum mediates formation of actin bundles in vitro, and is specifically incorporated into filopodia. The actin cross- linking activity of this protein is inhibited by the presence of micromolar calcium. A 27,000-D fragment obtained by digestion with alpha-chymotrypsin lacks the amino-terminal six amino acids and the carboxyl-terminal 7,000 D of the intact polypeptide. The 27,000-D fragment retains F-actin binding activity assessed by cosedimentation assays and by 125I-[F-actin] blot overlay technique, F-actin cross- linking activity as assessed by viscometry, and calcium binding activity. Ultrastructural analyses indicate that the 27,000-D fragment is deficient in the bundling activity characteristic of the intact 34,000-D protein. Actin filaments are aggregated into microdomains but not bundle in the presence of the 27,000-D fragment. A polarized light scattering assay was used to demonstrate that the 34,000-D protein increases the orientational correlation among F-actin filaments. The 27,000-D fragment does not increase the orientation of the actin filaments as assessed by this technique. A terminal segment(s) of the 34,000-D protein, lacking in the 27,000-D fragment, contributes significantly to the ability to cross-link actin filaments into bundles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号