首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Translocation of Sulfate in Soybean (Glycine max L. Merr)   总被引:4,自引:4,他引:0       下载免费PDF全文
Smith IK  Lang AL 《Plant physiology》1988,86(3):798-802
Sulfate translocation in soybean (Glycine max L. Merr) was investigated. More than 90% of the sulfate entering the shoot system was recoverable in one or two developing trifoliate leaves. In young plants, the first trifoliate leaf contained between 10 to 20 times as much sulfate as the primary leaves, even though both types of leaf had similar rates of transpiration and photosynthesis. We conclude that most of the sulfate entering mature leaves is rapidly loaded into the phloem and translocated to sinks elsewhere in the plant. This loading was inhibited by carbonylcyanide m-chlorophenylhydrazone and selenate. At sulfate concentrations below 0.1 millimolar, more than 95% of the sulfate entering primary leaves was exported. At higher concentrations the rate of export increased but so did the amount of sulfate remaining in the leaves. Removal of the first trifoliate leaf increased two-fold the transport of sulfate to the apex, indicating that these are competing sinks for sulfate translocated from the primary leaves. The small amount of sulfate transported into the mesophyll cells of primary leaves is a result of feedback regulation by the intracellular sulfate pool, not a consequence of their metabolic inactivity. For example, treatment of plants with 2 millimolar aminotriazole caused a 700 nanomoles per gram fresh weight increase in the glutathione content of primary leaves, but had no effect on sulfate aquisition.  相似文献   

2.
The intracellular location of enzymes involved in the synthesis of the ureides, allantoin and allantoic acid, was investigated in nodules of Glycine max L. Merr. Cellular organelles were separated on isopycnic sucrose density gradients. Xanthine dehydrogenase activity (270 nanomoles per min per gram fresh weight) was totally soluble, whereas approximately 15% of the total uricase and catalase activities (1 and 2000 micromoles per minute per gram fresh weight, respectively) was in the fraction containing intact peroxisomes. Allantoinase activity (680 nanomoles per minute per gram fresh weight) was associated with the microsomal fraction, which apparently originates from the endoplasmic reticulum.  相似文献   

3.
Between 50 and 65% of the glutathione in barley leaves was present in the chloroplasts depending upon the light regime. However, only 66–76% of the chloroplast glutathione was present in the reduced state (GSH) as opposed to 97–98% of that in the cytoplasm. In shoots treated with the catalase inhibitor aminotriazole and in shoots of the catalase deficient barley mutant RPr 79/4 exposed to air, the glutathione level increased 3-fold in 8 h in the light. The increase was accounted for by a rise in both the chloroplast and cytoplasm level of oxidised glutathione (GSSG), the GSH concentration remained relatively constant in both compartments. Only 2–3% of applied 35SO4 was metabolised to glutathione by wild-type shoots. In aminotriazole-treated plants this value rose to 17.9% and in the mutant RPr 79/4 exposed to air to 32%.  相似文献   

4.
The effect of chlorflurenol (methyl 2-chloro-9-hydroxyfluorene-9-carboxylate) (CF) on chlorophyll (chl) content was studied in intact plants and floating leaf disks. For intact soybean (Glycine max (L.) Merrill) plants grown in the growth chamber, 2.5 μg/ml CF applied 10 to 20 d after planting retarded chl decline in senescing tissues such as cotyledons and unifoliate leaves and increased chl content in recently expanded tissues such as trifoliate leaves. CF did not retard chl decline in the dark unless regulator application was followed by a period of 24 h in the light prior to darkness. In floating leaf disk tests, CF retarded chl decline in dock (Rumex obtusifolius L.) and radish (Raphanus sativus L.) at concentrations of 10?4 M, but was ineffective at lower concentrations. Chl decline was significantly hastened by CF in tobacco (Nicotiana tabacum L.) and soybean, but was unchanged in barley (Hordeum vulgare L.). CF treatment increased tissue weight (g fresh wt/cotyledon; g dry wt/ cm2 for unifoliate and trifoliate leaves), decreased moisture content, and increased leaf thickness, palisade layer thickness, and palisade and spongy mesophyll cell counts. We conclude that plants treated with morphactins show greater green coloration predominantly because of growth effects, and only in small part because of prevention of chl decline in senescing tissues.  相似文献   

5.
Free space iron pools in roots: generation and mobilization   总被引:21,自引:9,他引:12  
A rapid and simple method for the determination of a ferric iron pool in the free space of roots is described. Formation of this pool depended on the source of iron in the nutrient solution. During growth in water culture at pH 5 to 6 with Fe-ethylenediaminetetraacetate, a free space pool of 500 to 1000 nanomoles Fe per gram fresh weight was formed in the roots of bean (Phaseolus vulgaris L. var. Prélude), maize (Zea mays L. var. Capella), and chlorophytum (Chlorophytum comosum [Thunb.] Jacques). No significant pool (less than 100 nanomoles per gram fresh weight) was formed with ferrioxamine. Upon impending Fe deficiency, bean and chlorophytum were able to mobilize this pool. Fe-deficient bean plants mobilized iron from the free space iron pool of another plant in the same vessel.  相似文献   

6.
Effects of isoflavones on plant salt tolerance were investigated in soybean (Glycine max L. Merr. cultivar N23674) and tobacco (Nicotiana tabacum L.). Leaf area, fresh weight, net photosynthetic rate (Pn), and transpiration rate (Tr) of soybean N23674 plants treated with 80 mM NaCl were significantly reduced, while a gene (GmIFS1) encoding for 2-hydroxyisoflavone synthase was highly induced, and isoflavone contents significantly increased in leaves and seeds. To test the impact of isoflavones to salt tolerance, transgenic soybean cotyledon hairy roots expressing GmIFS1 (hrGmIFS1) were produced. Salt stress slightly increased isoflavone content in hairy roots of the transgenic control harboring the empty vector but substantially reduced the maximum root length, root fresh weight, and relative water content (RWC). The isoflavone content in hrGmIFS1 roots, however, was significantly higher, and the above-mentioned root growth parameters decreased much less. The GmIFS1 gene was also transformed into tobacco plants; plant height and leaf fresh weight of transgenic GmIFS1 tobacco plants were much greater than control plants after being treated with 85 mM NaCl. Leaf antioxidant capacity of transgenic tobacco was significantly higher than the control plants. Our results suggest that salt stress-induced GmIFS1 expression increased isoflavone accumulation in soybean and improved salt tolerance in transgenic soybean hairy roots and tobacco plants.  相似文献   

7.
By incubating explants from Actinidia arguta seedlings on a nutrient medium supplemented with 20 to 30 micromolar N6-(Δ2-isopentenyl)adenine (i6Ade) and then measuring zeatin (io6Ade) accumulation in tissues, the distribution of i6Ade hydroxylase activities in whole plants could be determined. Based on analyses with three entire plants, it is estimated that, as an organ system, roots contain approximately 68% of the plant's hydroxylase, while stems and leaves account for about 26% and 6%, respectively, of the total activity. Depending on the part of the root examined, hydroxylase activities ranged from 20 to 148 nanomoles io6Ade accumulated per gram fresh weight per 24 hours of incubation. Stem activities ranged from 17 to 165 nanomoles per gram fresh weight per 24 hours with the lowest activities being found at the tip. Leaf activities were substantially lower (1-10 nanomoles per leaf depending on position) than either root or stem.  相似文献   

8.
β-Cyanoalanine synthase, which catalyzes the reaction between cysteine and HCN to form β-cyanoalanine and H2S, was assayed in leaf tissues from cyanogenic (Sorghum bicolor × Sorghum sudanense [sorghum]) and noncyanogenic (Pisum sativum [pea], Zea mays [maize], and Allium porrum [leek]) plants. The activity in whole leaf extracts ranged from 33 nanomoles per gram fresh weight per minute in leeks, to 1940 nanomoles per gram fresh weight per minute in sorghum. The specific activities of β-cyanoalanine synthase in epidermal protoplasts from maize and sorghum and in epidermal tissues from peas were in each case greater than the corresponding values for mesophyll protoplasts or tissues, or for strands of bundle sheath cells.

The tissue distributions for this enzyme were determined for pea, leek, and sorghum: the mesophyll protoplasts and tissues in these three plants contained 65% to 78% of the enzyme, while epidermal protoplasts and tissues contained 10% to 35% of the total leaf activity. In sorghum, the bundle sheath strands contained 13% of the leaf activity. The presence of β-cyanoalanine synthase in all tissues and species studied suggests a fundamental role for this enzyme in plant metabolism.

  相似文献   

9.
Havir EA 《Plant physiology》1992,99(2):533-537
Seedlings of tobacco (Nicotiana sylvestris) were treated in vivo with 0.03 to 20 millimolar 3-amino-1,2,4-triazole (aminotriazole). There was a rapid loss of catalase (EC 1.11.1.6) activity over the first 5 hours followed by a slower decrease for the next 4 hours to a level that was 15 to 20% of the initial activity, with little or no change for periods up to 3 days. Fifty percent loss of catalase activity occurred at 0.10 to 0.15 millimolar inhibitor (18-hour incubation). The isozymes of tobacco catalase differed in sensitivity to the inhibitor. Enhanced-peroxidatic catalase (EP-CAT) (Havir EA, McHale NA, [1989] Plant Physiol 91: 812-815) decreased 35% under conditions in which the major isozyme decreased 85%. The resistance to aminotriazole inhibition demonstrated in vivo by EP-CAT was also observed in vitro. The times for 50% inhibition at 0.67, 3.33, 5.0, 10.0, and 15 millimolar aminotriazole were 15, 5, 2.6, 2.5, and 1.5 minutes, respectively, for the major isozyme of catalase and 60, 18.5, 5.1, 4, and 3.0 minutes, respectively, for EP-CAT. Increasing H2O2 concentration did not change the sensitivity of EP-CAT to aminotriazole. The major form of catalase contained 4.0 ± 0.4 moles of heme per mole enzyme and EP-CAT 3.4 ± 0.3. Thus, the resistance of EP-CAT to aminotriazole is probably not due to lowered affinity for H2O2 or alteration in heme content but to structural changes that impair inhibitor binding.  相似文献   

10.
Nicotinate has been postulated to interfere with the binding of O2 to ferrous leghemoglobin in soybean (Glycine max) root nodules. For such a function, the levels of nicotinate in nodules must be sufficiently high to bind a significant amount of leghemoglobin. We have measured levels of nicotinate, nicotinamide, and leghemoglobin in soybean nodules from plants 34 to 73 days after planting in a glasshouse. On a per gram nodule fresh weight basis, levels between 10.4 and 21 nanomoles for nicotinate, 19.2 and 37.8 nanomoles for nicotinamide, and 170 to 280 nanomoles for leghemoglobin were measured. Even if all the nicotinate were bound to ferrous leghemoglobin, only 11% or less of the total leghemoglobin would be unavailable for binding O2. Using the measured levels of nicotinate and a pH of 6.8 in the cytosol of presenescent soybean nodules, we estimate that the proportion of ferrous leghemoglobin bound to nicotinate in such nodules would be less than 1%. These levels of nicotinate are too low to interfere with the reaction between ferrous leghemoglobin and O2 in soybean root nodules.  相似文献   

11.
The intracellular steady-state concentrations of hydrogen peroxide or Superoxide anion were increased by inhibiting either catalase, glutathione peroxidase, or Superoxide dismutase activities. Catalase was inhibited with aminotriazole while glutathione peroxidase activity was blocked by eliminating reduced glutathione after addition of either iodoacetamide diethylmaleate or phorone. The concentration of aminotriazole that stimulated chemiluminescence in 50% (60 mM) was very similar to the Ki for catalase activity (70 mM). Cyanide, an inhibitor of both catalase and Superoxide dismutase, stimulated chemiluminescence in 50% at a concentration (0.15 mM) which is much closer from the Ki for Superoxide dismutase (0.25 mM) than from the Ki for catalase (15 μM). The Superoxide dismutase inhibitor diethyldithiocarbamate also increased chemiluminescence six- to ten-fold. Depletion of reduced glutathione stimulated spontaneous chemiluminescence when its concentration decreased below 4.5 μmol · g liver−1. The results shown herein suggest that the changes in the intracellular steady-state concentration occurring after inhibition of any antioxidant enzyme are responsible for the increased spontaneous chemilumi-nescence. Spontaneous chemiluminescence from intact cells may be used as a noninvasive method for monitoring intracellular free radical metabolism.  相似文献   

12.
Two cultivars of soybean (Glycine max [L.] Merr.) were grown in solution with up to 100 millimolar NaCl. Leaf solute potential was −1.1 to −1.2 megapascals in both cultivars without NaCl. At 100 millimolar NaCl leaf solute potential was −3.1 to −3.5 megapascals in Bragg and −1.7 megapascals in Ransom. The decrease in solute potential was essentially proportional to the concentration of NaCl. In both salt susceptible Bragg and salt semitolerant Ransom, leaf proline was no more than 0.4 micromole per gram fresh weight at or below 20 millimolar NaCl. At 40 and 60 millimolar NaCl, Bragg leaf proline levels were near 1.2 and 1.9 micromoles per gram fresh weight, respectively. Proline did not exceed 0.5 micromole per gram fresh weight in Ransom even at 100 millimolar NaCl. Proline accumulated in Bragg only after stress was severe enough to induce injury; therefore proline accumulation is not a sensitive indicator of salt stress in soybean plants.  相似文献   

13.
Purified spinach (Spinacea oleracea L.) and barley (Hordeum vulgare L.) ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activase supported 50 to 100% activation of substrate-bound Rubisco from spinach, barley, wheat (Triticum aestivum L.), soybean (Glycine max L.), pea (Pisum sativum L.), Arabidopsis thaliana, maize (Zea mays L.), and Chlamydomonas reinhardtii but supported only 10 to 35% activation of Rubisco from three Solanaceae species, tobacco (Nicotiana tabacum L.), petunia (Petunia hybrida L.), and tomato (Lycopersicon esculentum L.). Conversely, purified tobacco and petunia Rubisco activase catalyzed 75 to 100% activation of substrate-bound Rubisco from the three Solanacee species but only 10 to 25% activation of substrate-bound Rubisco from the other species. Thus, the interaction between substrate-bound Rubisco and Rubisco activase is species dependent. The species dependence observed is consistent with phylogenetic relationships previously derived from plant morphological characteristics and from nucleotide and amino acid sequence comparisons of the two Rubisco subunits. Species dependence in the Rubisco-Rubisco activase interaction and the absence of major anomalies in the deduced amino acid sequence of tobacco Rubisco activase compared to sequences in non-Solanaceae species suggest that Rubisco and Rubisco activase may have coevolved such that amino acid changes that have arisen by evolutionary divergence in one of these enzymes through spontaneous mutation or selection pressure have led to compensatory changes in the other enzyme.  相似文献   

14.
Rubber particles isolated from guayule (Parthenium argentatum Gray) stem homogenates contain a polyprenyl transferase which catalyzes the polymerization of isopentenyl pyrophosphate into polyisoprene. The polymerization reaction is stimulated with the addition of an allylic pyrophosphate initiator and forms a polymer of polyisoprene with a molecular weight distribution from 103 to 107. The polymerization reaction in crude stem homogenates is not affected by the addition of an initiator probably due to the high activity of isopentenyl pyrophosphate isomerase furnishing saturating levels of dimethylallyl pyrophosphate. Polyisoprene formation in stems of guayule plants exposed to cold winter temperatures increased from 15.4 milligrams per gram dry weight in October to 24.5 milligrams per gram dry weight in January and increased from 16.2 to 38.1 milligrams per gram dry weight in the same period by additionally treating the plants with 5000 ppm of 2-(3,4-dichlorophenoxy)triethylamine. The rate of polymerization of isopentenyl pyrophosphate into polyisoprene in stem homogenates of the cold treated plants increased from 12.1 nanomoles per hour per gram fresh weight in October to 144.3 nanomoles per hour per gram fresh weight in January and increased from 17.7 to 446.8 nanomoles per hour per gram fresh weight in the same period by additionally treating the plants with 5000 ppm of 2-(3,4-dichlorophenoxy)triethylamine. These results show that the increase in polyprenyl transferase activity partially accounts for the increase in polyisoprene synthesis in guayule plants exposed to low temperature and treated with 2-(3,4-dichlorophenoxy)triethylamine.  相似文献   

15.
Betaine aldehyde oxidation by spinach chloroplasts   总被引:23,自引:7,他引:23       下载免费PDF全文
Chenopods synthesize betaine by a two-step oxidation of choline: choline → betaine aldehyde → betaine. Both oxidation reactions are carried out by isolated spinach (Spinacia oleracea L.) chloroplasts in darkness and are promoted by light. The mechanism of betaine aldehyde oxidation was investigated with subcellular fractions from spinach leaf protoplasts. The chloroplast stromal fraction contained a specific pyridine nucleotide-dependent betaine aldehyde dehydrogenase (about 150 to 250 nanomoles per milligram chlorophyll per hour) which migrated as one isozyme on native polyacrylamide gels stained for enzyme activity. The cytosol fraction contained a minor isozyme of betaine aldehyde dehydrogenase. Leaves of pea (Pisum sativum L.), a species that lacks betaine, had no betaine aldehyde dehydrogenase isozymes. The specific activity of betaine aldehyde dehydrogenase rose three-fold in spinach plants grown at 300 millimolar NaCl; both isozymes contributed to the increase. Stimulation of betaine aldehyde oxidation in illuminated spinach chloroplasts was due to a thylakoid activity which was sensitive to catalase; this activity occurred in pea as well as spinach, and so appears to be artifactual. We conclude that in vivo, betaine aldehyde is oxidized in both darkness and light by the dehydrogenase isozymes, although some flux via a light-dependent, H2O2-mediated reaction cannot be ruled out.  相似文献   

16.
Roots of intact 5-day-old maize (Zea mays L.) seedlings were exposed to 3 micromolar Cd during a 7-day period. Cysteine, γ-glutamylcysteine, glutathione (GSH), and Cd-induced acid-soluble thiols (ASTs), including phytochelatins, were quantified in roots and shoots. Adaptation to Cd and its cost to seedling development were evaluated by measuring Cd content, tissue fresh weight, and rate of root elongation. Roots contained 60 to 67% of the Cd in the seedlings between 4 and 7 days of exposure. Exposure to Cd decreased the fresh weight gain in roots from day 4 onward without affecting the shoots. Between days 1.5 and 3.5 of Cd treatment, roots elongated more slowly than controls; however, their growth rate recovered thereafter and exceeded that of controls. Exposure to Cd did not appreciably affect the concentration of cysteine in the seedlings. However, the initial low concentration of γ-glutamylcysteine increased (after a lag of 6 hours in roots and 2 days in shoots), reaching a plateau by day 6 at 28.5 nanomoles per gram of fresh weight in roots and by day 5 at 19.1 nanomoles per gram of fresh weight in shoots. During the first 9 hours of Cd exposure, the concentration of GSH in roots decreased dramatically (at 31.6 nanomoles per gram of fresh weight per hour) and thereafter decreased more slowly than in controls. The depletion of GSH in the roots (366 nanomoles per gram of fresh weight) matched the synthesis of ASTs (349 nanomoles per gram of fresh weight) during the first 48 hours. The concentration of ASTs in roots increased steadily thereafter to reach 662.2 nanomoles per gram of fresh weight by 6 days of Cd exposure. In shoots, Cd had little influence on the concentration of GSH, but ASTs still accumulated to 173.3 nanomoles per gram fresh weight after 5 days. The molar ratio of thiols in ASTs to Cd increased to a maximum of 10.24 in roots after 4 hours and of 4.25 in shoots after 2 days of Cd exposure. After 4 days, the ratio reached a plateau of approximately 2 in roots and between 2 and 3 in shoots, as if a steady state of Cd chelation had been achieved in both organs. The plateau coincided with recovered root elongation or an adaptation to Cd. The reduced fresh weight gain of the roots during this time, however, indicated that the synthesis of Cd-induced thiols was at a cost to root development.  相似文献   

17.
When segments of rye leaves (Secale cereale L.) grown at 90 μmol m?2 s?1 PAR were incubated at a higher photon flux of 400–500 μ mol m?2 s?1 PAR in the presence of 0.2-0.6 M NaCl, a preferential loss of catalase activity was induced. The extent of this decline increased with the concentration of NaCl. In addition, the accumulation of alternative antioxidative components, such as ascorbate, glutathione, glutathione reductase, or peroxidase, was inhibited. The total content of H2O2 was, however, lower in catalase-depleted than in untreated control leaves. The occurrence of strong oxidative stress in NaCl-treated leaves was indicated by marked declines in the ratios of reduced to oxidized ascorbate and glutathione and by the degradation of chlorophyll in light. The specific elimination of catalase activity by the inhibitor aminotriazole was also accompanied by a rapid decline in the ratio of reduced to oxidized glutathione but other symptoms of oxidative stress were much less severe than in the presence of NaCl. However, all symptoms of photooxidative damage seen in NaCl-treated leaves were closely mimicked by treatment with the translation inhibitor, cycloheximlde, in light. The results suggest that NaCl-induced oxidative damage in light was predominantly mediated by the inhibition of protein synthesis. By this inhibition the resynthesis of catalase, which has a high turnover in light, was blocked and the leaves were thus depleted of catalase activity and, in addition, the intensification of alternative antioxidative systems was also prevented.  相似文献   

18.
Excision of spinach (Spinacia oleracea L.) leaves had no effect on photosynthetic rates, but altered normal carbon partitioning to favor increased formation of starch and decreased formation of sucrose. The changes were evident within 2 hours after excision. Concurrently, leaf fructose-2,6-bisphosphate content increased about 5-fold (from 0.1 to 0.5 nanomoles per gram fresh weight). The activities of sucrose-P synthase and cytoplasmic fructose 1,6-bisphosphatase in leaf extracts remained constant during the time period tested. It is postulated that the rise in fructose 2,6-bisphosphate was responsible for the change in carbon partitioning.  相似文献   

19.
20.
Tobacco (Nicotiana tabacum var Samsun) was transformed using the bacterial gor gene coding for the enzyme glutathione reductase. Transgenic plants were selected by their kanamycin resistence and expression of the bacterial gor gene. After separation by isoelectric focusing techniques, leaf extracts from transgenic plants having both native and bacterial glutathione reductase activity gave, in addition to the six bands of the native enzyme, two further closely running isoenzymes. These additional bands originating from the expression of the bacterial gor gene were nonchloroplastic. Leaves from transgenic plants had two- to 10-fold higher glutathione reductase activity than non-transgenic controls. The amount of extractable glutathione reductase activity obtained in transgenic plants was dependent on leaf age and the conditions to which leaves were exposed. Both light and exposure to methylviologen increased leaf glutathione reductase activity. Elevated levels of cytosolic glutathione reductase activity in transgenic plants had no effect on the amount or reduction state of the reduced glutathione/oxidized glutathione pool under optimal conditions or oxidative conditions induced by methylviologen. The glutathione pool was unaltered despite the oxidation-dependent loss of CO2 assimilation and oxidation of enzymes involved in photosynthesis. However, the reduction state of the ascorbate pool was greater in transgenic plants relative to nontransgenic controls following illumination of methylviologen-treated leaf discs. Therefore, we conclude that in the natural state glutathione reductase is present in tobacco at levels above those required for maximal operation of the ascorbate-glutathione pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号