首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recombinant ovine interferon-tau (r-oIFN-tau) production by Pichia pastoris was studied using methanol as the sole carbon source during induction. The cells were grown on glycerol up to a certain cell density before induction of the AOX1 promoter by methanol for expression of the recombinant protein. Cell growth on methanol has been modeled using a substrate-feed equation, which served as the basis for an effective computer control of the process. The r-oIFN-tau concentration in the culture began to decline despite continued cell growth after 50 (+/- 6) h of induction, which was associated with an increase in proteolytic activity of the fermentation broth. A specific growth rate of 0.025 h(-1) was found to be optimal for r-oIFN-tau production. No significant improvement in r-oIFN-tau production was observed when the specific growth rate was stepped up before the critical point when r-oIFN-tau concentration started decreasing during fermentation. However, best results were obtained when the specific growth rate was stepped down from 0.025 to 0.02 h(-1) at 38 h of induction, whereby the active production period was prolonged until 70 h of induction and the broth protease activity was correspondingly reduced. The corresponding maximum protein yield was 391.7 mg x L(-1) after 70 h of fermentation. The proteolytic activity could be reduced by performing fermentations at specific growth rates of 0.025 h(-1) or below. The recombinant protein production can be performed at an optimal yield by directly controlling the methanol feed rate by a computer-controlled model. The production profile of r-oIFN-tau was found to be significantly different from other secreted and intracellular recombinant protein processes, which is an indication that recombinant protein production in Pichia pastoris needs to be optimized as individual processes following established principles.  相似文献   

2.
The methylotrophic yeast Pichia methanolica can be used to express recombinant genes at high levels under the control of the methanol-inducible alcohol oxidase (AUG1) promoter. Methanol concentrations during the induction phase directly affect cellular growth and protein yield. Various methanol concentrations controlled by an on-line monitoring and control system were investigated in mixed glucose/methanol fed-batch cultures of P. methanolica expressing the human transferrin N-lobe protein. The PMAD18 P. methanolica strain utilized is a knock-out for the chromosomal AUG1 gene locus, resulting in a slow methanol utilization phenotype. Maximum growth of 100 g of dry cell weight per liter of culture was observed in cultures grown at 1.0% (v/v) methanol concentration. Maximum recombinant gene expression was observed for cultures controlled at 0.7% (v/v) methanol concentration, resulting in maximum volumetric production of 450 mg of transferrin per liter after 72 h of elapsed fermentation time.  相似文献   

3.
甲醇营养型毕赤酵母表达外源蛋白是在醇氧化酶(alcohol oxidase,AOX)启动子(PAOXI)严格调控下进行的,然而这种启动子在转录水平受到葡萄糖的阻遏。本文研究了毕赤酵母在葡萄糖替代甘油为生长相碳源时表达重组植酸酶蛋白的发酵特征。结果表明:初始葡萄糖浓度为20dL的细胞得率高,为0.39g[DCW]/g。通过基于实时参数(溶氧和呼吸商)调控的葡萄糖补料策略,生长相40h后细胞密度达到100g[DCW]/L,甲醇诱导100h后植酸酶产量达到2200FTUphytase/mL,甲醇得率系数为0.25FTU phytase/gmethnol。因此,在毕赤酵母高表达重组蛋白培养中葡萄糖能够用作生长相基质,并能实现重组蛋白的高效表达。  相似文献   

4.
《Process Biochemistry》1999,34(2):139-145
A novel feeding strategy for enhanced protein production of hepatitis B virus surface antigen (HBsAg) in fed-batch fermentation, recombinant Pichia pastoris, has been developed. A minimal salt medium was used to grow cells in the initial batch fermentation, followed by a glycerol+salts fed-batch phase. At the end of the fed-batch phase a dry cell weight of 130 g l−1 was achieved. In the absence of basal salts, the same amount of glycerol feed resulted in only 90 g l−1 cell dry weight. When a limited amount of casamino acids were also included every 24 h during methanol induction, there was a two-fold increase in expression levels of HBsAg. After 192 h of induction, the expression levels of HBsAg (soluble and insoluble) reached >1 g l−1 using the Mut strain. Thus, the use of basal salts in the glycerol feed, along with the addition of limited amounts of casamino acids with the methanol feed, resulted in an increased expression of total HBsAg.  相似文献   

5.
To improve the growth of recombinant Pichia pastoris with a phenotype of MutS and expression of angiostatin, the effects of glycerol, sorbitol, acetate and lactic acid which were, respectively, added together with methanol in the expression phase, were studied in a 5-l fermentor. Methanol concentration was automatically controlled at 5 g/l by a methanol monitor and control system, while the feeding of the other carbon source was manually adjusted. The angiostatin production level was 108 mg/l when glycerol was added at an initial rate of 2.3 g/h and gradually increased to 9.9 g/h within an induction period of 96 h. The angiostatin concentration was 141 mg/l as sorbitol was used, while only 52 mg/l were obtained on acetate. The highest angiostatin production of 191 mg/l was achieved as lactic acid was used; whose feeding rate was gradually increased from 2.6 to 11.3 g/h. Lactic acid accumulated during the induction phase and reached 6.3 g/l at the end of fermentation. However, the accumulation of lactic acid did not interfere with angiostatin production, indicating that lactic acid to be a non-repressive carbon source. The average productivity and specific productivity of angiostatin obtained on lactic acid and methanol were, respectively, 2.96 and 0.044 mg/(g h), 1.7- and 2.5-fold of those obtained in the fermentation fed with glycerol and methanol.  相似文献   

6.
EK (enterokinase) is a serine proteinase which consistsof a heavy chain and a light chain linked by a disulfidebond. The light chain of EK contains a chymotrypsin-likeserine proteinase domain sufficient for the normal recog-nition and cleavage of EK subst…  相似文献   

7.
A fed-batch process for the high cell density cultivation of E. coli TG1 and the production of the recombinant protein phenylalanine dehydrogenase (PheDH) was developed. A model based on Monod kinetics with overflow metabolism and incorporating acetate utilization kinetics was used to generate simulations that describe cell growth, acetate production and reconsumption, and glucose consumption during fed-batch cultivation. Using these simulations a predetermined feeding profile was elaborated that would maintain carbon-limited growth at a growth rate below the critical growth rate for acetate formation (mu < mu(crit)). Two starvation periods are incorporated into the feed profile in order to induce acetate utilization. Cell concentrations of 53 g dry cell weight (DCW)/L were obtained with a final intracellular product concentration of recombinant protein corresponding to approximately 38% of the total cell protein. The yield of PheDH was 129 U/mL with a specific activity of 1.2 U/mg DCW and a maximum product formation rate of 0.41 U/mg DCW x h. The concentration of aectate was maintained below growth inhibitory levels until 3 h before the end of the fermentation when the concentration reached a maximum of 10.7 g/L due to IPTG induction of the recombinant protein.  相似文献   

8.
Salmosin, a snake venom-derived disintegrin, was successfully expressed in the methylotrophic yeast Pichia pastoris and secreted into the culture supernatant, as a 6 kDa protein. High-cell density fermentation of recombinant P. pastoris was optimized for the mass production of salmosin. In a 5 L jar fermentor, recombinant P. pastoris was fermented in growth medium containing 5% (w/v) glycerol at the controlled pH of 5.0. After culturing for 21 h, glycerol feeding medium was fed at one time into the culture broth. After 7 h (a total of 28 h), induction medium that contained methanol was increasingly added until the culture time totaled 75 h. Finally, these optimized culture conditions produced a high cell density of recombinant P. pastoris (dry cell weight of 113.38 g/L) and led to the mass production of salmosin (a total protein concentration of 369.2 mg/L). The culture supernatant containing salmosin inhibited platelet aggregation, resulting in a platelet aggregation of 9% compared to that of 94% in the control experiment, without culture supernatant. These results demonstrate that recombinant salmosin in culture supernatant from high cell density fed-batch fermentation can serve as a platelet aggregation inhibitor.  相似文献   

9.
The influence of proteolysis over recombinant protein quality has been studied using rhamnulose 1-phosphate aldolase (RhuA) production as case example. Progressive induction by means of continuous isopropyl-β-d-thiogalactopyranoside (IPTG) dosage in Escherichia coli fed-batch cultures led to high specific levels of recombinant protein. However, the specific activity profile did not correlate to the specific protein content when the process was run at 37 °C and there was a decrease of the enzyme activity along the induction phase. Specific activity loss depending on the presence of an energy source was observed at short term, but protein degradation due to the action of energy-independent metalloproteases occurred after a longer time period. The effects of lowering the temperature were analysed on both mechanisms, and a reduction of the specific activity loss was observed when the process temperature was decreased to 28 °C. Lower plasmid copy number and specific production rates probably alleviated the metabolic load on host cell during recombinant protein overexpression, and a high increase of the enzyme activity was achieved in high cell density fed-batch cultures under these conditions.  相似文献   

10.
为进行高密度发酵并实现外源基因的高表达,在表型为MutS的重组毕赤酵母(Pichia pastoris)表达人血管生长抑制素的诱导阶段,采用了甘油甲醇混合补料的培养方式。以溶氧水平作为甘油代谢指针来控制甘油限制性流加既可维持一定菌体生长,又不会发生发酵液中残余甘油及有害代谢产物(乙醇)阻遏蛋白表达。当表达阶段的菌体平均比生长速率控制于0.012h-1,菌体浓度达150 g/L,血管生长抑制素浓度最高达到108 mg/L,血管生长抑制素的平均比生产速率为0.02 mg/(g·h),菌体关于甘油的表观得率为0.69 g/g,菌体关于甲醇的表观得率为0.93g/g,较没有采用甘油限制性流加时都有所提高。  相似文献   

11.
12.
The influence of proteolysis over recombinant protein quality has been studied using rhamnulose 1-phosphate aldolase (RhuA) production as case example. Progressive induction by means of continuous isopropyl-β-d-thiogalactopyranoside (IPTG) dosage in Escherichia coli fed-batch cultures led to high specific levels of recombinant protein. However, the specific activity profile did not correlate to the specific protein content when the process was run at 37 °C and there was a decrease of the enzyme activity along the induction phase. Specific activity loss depending on the presence of an energy source was observed at short term, but protein degradation due to the action of energy-independent metalloproteases occurred after a longer time period. The effects of lowering the temperature were analysed on both mechanisms, and a reduction of the specific activity loss was observed when the process temperature was decreased to 28 °C. Lower plasmid copy number and specific production rates probably alleviated the metabolic load on host cell during recombinant protein overexpression, and a high increase of the enzyme activity was achieved in high cell density fed-batch cultures under these conditions.  相似文献   

13.
A process was developed for production of a candidate vaccine antigen, recombinant C-terminal heavy chain fragment of the botulinum neurotoxin serotype E, rBoNTE(H(c)) in Pichia pastoris. P. pastoris strain GS115 was transformed with the rBoNTE(H(c)) gene inserted into pHILD4 Escherichia coli-P. pastoris shuttle plasmid. The clone was characterized for genetic stability, copy number, and BoNTE(H(c)) sequence. Expression of rBoNTE(H(c)) from the Mut(+) HIS4 clone was confirmed in the shake-flask, prior to developing a fed-batch fermentation process at 5 and 19 L scale. The fermentation process consists of a glycerol growth phase in batch and fed-batch mode using a defined medium followed by a glycerol/methanol transition phase for adaptation to growth on methanol and a methanol induction phase resulting in the production of rBoNTE(H(c)). Specific growth rate, ratio of growth to induction phase, and time of induction were critical for optimal rBoNTE(H(c)) production and minimal proteolytic degradation. A computer-controlled exponential growth model was used for process automation and off-gas analysis was used for process monitoring. The optimized process had an induction time of 9 h on methanol and produced up to 3 mg of rBoNTE(H(c)) per gram wet cell mass as determined by HPLC and Western blot analysis.  相似文献   

14.
Summary Two kinds of fed batch fermentation processes were compared at a 10-liter scale to examine their effect on recombinant human insulin-like growth factor (IGF-1) gene expression inEscherichia coli. The difference between the two processes was the feed medium composition and whether the process used a single or dual feed during the course of the fermentation. In the dual feed system, organic nitrogen was delivered at a higher rate (50 g/h) than in the single feed system (5 g/h). The dual feed process resulted in a significant increase in IGF-1 yield. 30 mg IGF-1/g dry cell weight was synthesized in the dual feed system compared to 3 mg IGF-1/g dry cell weight obtained in the single feed system. The presence of high levels of organic nitrogen during the induction period may enhance IGF-1 synthesis by protecting the IGF-1 from proteolytic degradation. The IGF-1 yield decreased to 17 mg/g dry cell weight when the glucose supply was decreased from 17 g/h to 8 g/h during the induction period; however, an increase in glucose supply from 17 g/h to 50 g/h during the induction period did not enhance the IGF-1 synthesis. Thus, the enhancement of IGF-1 gene expression in the dual feed process was mainly dependent on a high level of organic nitrogen and an appropriate level of glucose in the medium during the induction period.  相似文献   

15.
研究了毕赤酵母Pichia pastoris表达的重组人复合α干扰素(cIFN)时不同诱导甲醇浓度对cIFN分离纯化得率的影响,并分析了原因.在5L罐中采用0.25、0.50和0.75%(W/V)三个甲醇浓度诱导时,在0.75%高甲醇浓度诱导下cIFN表达水平最高,达到2.06 g/L,是0.25%低甲醇浓度诱导的1.24倍,但是低甲醇浓度诱导下cIFN分离纯化得率却高于高甲醇诱导浓度下3.75倍.另外,低甲醇浓度下发酵上清液cIFN抗病毒活性为2.85×108IU/mL,较高甲醇浓度提高了4.48倍.进一步采用SDS-PAGE和Native-PAGE免疫印迹分析不同条件下发酵液中cIFN存在状态,发现在高甲醇浓度下cIFN容易形成大量的聚合体,分别为共价聚合和非共价聚合,而cIFN单体含量较少,但是低甲醇浓度诱导下情况完全相反.最终在0.25%甲醇诱导下分离纯化1L发酵上清液可得0.73 g单体cIFN,是0.75%甲醇诱导下的3.84倍.  相似文献   

16.
发酵条件是影响汉逊酵母表达乙肝表面抗原的重要因素,通过对甲醇诱导浓度、方式及诱导周期的调控,研究了不同发酵条件对汉逊酵母表达乙肝表面抗原的影响。结果表明:控制甲醇流加速率15ml/h、甲醇诱导周期40h有利于发酵过程中乙肝表面抗原产率的提高。在发酵末期,细胞浓度最高达410mg/ml,抗原水平达46mg/l。  相似文献   

17.
An experimental study was undertaken to identify and quantitate the effects of plasmid amplification and recombinant gene expression on Escherichia coli growth kinetics. Identification of these effects was possible because recombinant gene expression and plasmid copy number were controlled by different mechanisms on plasmid pVH106/172. Recombinant gene expression of the lactose operon structural genes was under the control of the lac promoter and was activated by the addition of the chemicals, IPTG and cyclic AMP, to the fermentation medium. Plasmid content was amplified in a separate fermentation by increasing culture temperature since the plasmid replicon was temperature-sensitive. A final fermentation was performed in which both plasmid content and recombinant gene expression were induced simultaneously by adding chemicals and raising the culture temperature. Recombinant growth rates were found to be reduced by the expression of high levels of recombinant lac proteins in the chemical induction experiments and by the amplification of plasmid levels in the temperature induction experiment. High expression of recombinant lac proteins following chemical induction was accompanied by a loss in recombinant cell viability. In the plasmid amplification experiment, the recombinant cells did not lose viability but the recombinant product yields were much lower than those achieved in the chemical induction experiments. Combining temperature and chemical induction increased the recombinant product yield by a factor of 4400 but also lowered cellular growth rates by 70%.  相似文献   

18.
The green fluorescent protein (GFP) was used as a model protein to study the recombinant protein production by the strain Methylobacterium extorquens ATCC 55366. Scale-up from shake flasks to 20 l fed-batch fermentation was achieved using methanol as a sole carbon and energy source and a completely minimal culture medium. Two different expression vectors were used to express GFP. Clone PCM-GFP containing the vector pCM110 with native promoter of the methanol dehydrogenase PmxaF produced approximately 100-fold more GFP than the clone PRK-GFP containing the vector pRK310 with the heterogeneous promoter Plac. Several fed-batch fermentations with and without selective pressure (tetracycline) were run in a 20 l stirred tank fermenter using the two different clones of M. extorquens. The methanol concentration was monitored with an on-line semiconductor gas sensor in the culture broth. It was maintained at a non-toxic level of 1.4 g l(-1) with an adaptative control which regulates the methanol feed rate. The same growth profile was achieved in all fermentations. The maximum growth rate (micro(max)) was 0.18 h(-1) with an overall yield (Y(X/S)) of 0.3 g g(-1) methanol. With this high cell density fermentation process, we obtained high levels (up to 4 g l(-1)) of GFP with the clone PCM-GFP. The maximum specific GFP production (Y(GFP/X)) with this clone was 80 mg g(-1) representing approximately 16% of the total cell protein. Additional feeding of pure oxygen to the fermenter permitted a longer phase of exponential growth but had no effect on the total yields of biomass and GFP. The specific GFP production of clone PCM-GFP remained unaffected in the presence or absence of selective pressure (tetracycline), within the initial 50 h of the fermentation culture. These results suggest that M. extorquens ATCC 55366 could be an interesting candidate for overexpression of recombinant proteins.  相似文献   

19.
This paper describes the establishment of flow cytometric methods for recombinant Pichia pastoris strains, and their application to a lab scale fed batch fermentation. Using a strain which secretes human trypsinogen, the viability and the product which remained associated to the cell were measured with propidium iodide and immunofluorescent staining, respectively. Viability decreases significantly below 70% during the methanol fed batch phase, indicating a stress situation triggered by the fermentation conditions. Cell associated product is accumulated earlier after methanol induction than secreted product. These data demonstrate that flow cytometry is a powerful tool for the analysis and optimization of recombinant protein production processes, and they indicate the need to further improve a widely used fermentation protocol for P. pastoris.  相似文献   

20.
在10L发酵罐中利用重组毕赤酵母诱导表达猪a干扰素(pIFN-a),考察甲醇/山梨醇共混诱导策略对pIFN-a表达水平提高和能量(NADH)再生效率的影响。结果表明:在诱导稳定期,甲醇/山梨醇共混诱导可弱化细胞的甲醇代谢,有利于缓解毒副中间产物(过氧化氢、甲醛等)的生成积累;以0.785g/(L·h)的速率缓慢共混流加山梨醇时,pIFN-a抗病毒活性最大,最高活性可达1.8×107IU/mL,与30℃常温甲醇单独诱导(最高活性1.0X10。IU/mL)和20℃低温甲醇单独诱导(最高活性1.4×lO6IU/mL)相比,活性均大幅提高,且胞外pIFN-a的降解减缓;发酵体系的抗高甲醇浓度冲击能力有效提高,发酵生产的稳定性增强;能量利用效率大幅提高,NADH的再生利用效率提高了29%-84%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号