首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A complete enumeration and classification of two-locus disease models   总被引:7,自引:0,他引:7  
Li W  Reich J 《Human heredity》2000,50(6):334-349
There are 512 two-locus, two-allele, two-phenotype, fully penetrant disease models. Using the permutation between two alleles, between two loci, and between being affected and unaffected, one model can be considered to be equivalent to another model under the corresponding permutation. These permutations greatly reduce the number of two-locus models in the analysis of complex diseases. This paper determines the number of nonredundant two-locus models (which can be 102, 100, 96, 51, 50, or 58, depending on which permutations are used, and depending on whether zero-locus and single-locus models are excluded). Whenever possible, these nonredundant two-locus models are classified by their property. Besides the familiar features of multiplicative models (logical AND), heterogeneity models (logical OR), and threshold models, new classifications are added or expanded: modifying-effect models, logical XOR models, interference and negative interference models (neither dominant nor recessive), conditionally dominant/recessive models, missing lethal genotype models, and highly symmetric models. The following aspects of two-locus models are studied: the marginal penetrance tables at both loci, the expected joint identity-by-descent (IBD) probabilities, and the correlation between marginal IBD probabilities at the two loci. These studies are useful for linkage analyses using single-locus models while the underlying disease model is two-locus, and for correlation analyses using the linkage signals at different locations obtained by a single-locus model.  相似文献   

2.
On the genetics of prelingual deafness.   总被引:7,自引:6,他引:1       下载免费PDF全文
In view of the many discordant findings in previous studies regarding the genetics of prelingual deafness, family data (133 nuclear families and 25 pedigrees) were gathered from India. Analysis of these data has revealed that the defect is primarily genetic, which is in agreement with earlier findings. Segregation analysis was performed to compare various autosomal diallelic one-locus and multilocus models. Our analysis revealed that the most parsimonious model for prelingual deafness is that it is controlled by recessive genes at a pair of unlinked diallelic autosomal loci. Individuals are affected if and only if they are recessive homozygous at both loci. The likelihood of the present data under this two-locus multiple recessive homozygosis model is at least 10(8) times higher than that of the one-locus models that were examined in previous studies. This model is also the best-fitting model among other plausible two-locus models.  相似文献   

3.

Background

The study of epistasis is of great importance in statistical genetics in fields such as linkage and association analysis and QTL mapping. In an effort to classify the types of epistasis in the case of two biallelic loci Li and Reich listed and described all models in the simplest case of 0/1 penetrance values. However, they left open the problem of finding a classification of two-locus models with continuous penetrance values.

Results

We provide a complete classification of biallelic two-locus models. In addition to solving the classification problem for dichotomous trait disease models, our results apply to any instance where real numbers are assigned to genotypes, and provide a complete framework for studying epistasis in QTL data. Our approach is geometric and we show that there are 387 distinct types of two-locus models, which can be reduced to 69 when symmetry between loci and alleles is accounted for. The model types are defined by 86 circuits, which are linear combinations of genotype values, each of which measures a fundamental unit of interaction.

Conclusion

The circuits provide information on epistasis beyond that contained in the additive × additive, additive × dominance, and dominance × dominance interaction terms. We discuss the connection between our classification and standard epistatic models and demonstrate its utility by analyzing a previously published dataset.  相似文献   

4.
Yang Y  Ott J 《Human heredity》2002,53(4):227-236
In genome-wide screens of genetic marker loci, non-mendelian inheritance of a marker is taken to indicate its vicinity to a disease locus. Heritable complex traits are thought to be under the influence of multiple possibly interacting susceptibility loci yet the most frequently used methods of linkage and association analysis focus on one susceptibility locus at a time. Here we introduce log-linear models for the joint analysis of multiple marker loci and interaction effects between them. Our approach focuses on affected sib pair data and identical by descent (IBD) allele sharing values observed on them. For each heterozygous parent, the IBD values at linked markers represent a sequence of dependent binary variables. We develop log-linear models for the joint distribution of these IBD values. An independence log-linear model is proposed to model the marginal means and the neighboring interaction model is advocated to account for associations between adjacent markers. Under the assumption of conditional independence, likelihood methods are applied to simulated data containing one or two susceptibility loci. It is shown that the neighboring interaction log-linear model is more efficient than the independence model, and incorporating interaction in the two-locus analysis provides increased power and accuracy for mapping of the trait loci.  相似文献   

5.
Tao Wang 《BMC genetics》2011,12(1):1-21

Background

In genetic association study of quantitative traits using F models, how to code the marker genotypes and interpret the model parameters appropriately is important for constructing hypothesis tests and making statistical inferences. Currently, the coding of marker genotypes in building F models has mainly focused on the biallelic case. A thorough work on the coding of marker genotypes and interpretation of model parameters for F models is needed especially for genetic markers with multiple alleles.

Results

In this study, we will formulate F genetic models under various regression model frameworks and introduce three genotype coding schemes for genetic markers with multiple alleles. Starting from an allele-based modeling strategy, we first describe a regression framework to model the expected genotypic values at given markers. Then, as extension from the biallelic case, we introduce three coding schemes for constructing fully parameterized one-locus F models and discuss the relationships between the model parameters and the expected genotypic values. Next, under a simplified modeling framework for the expected genotypic values, we consider several reduced one-locus F models from the three coding schemes on the estimability and interpretation of their model parameters. Finally, we explore some extensions of the one-locus F models to two loci. Several fully parameterized as well as reduced two-locus F models are addressed.

Conclusions

The genotype coding schemes provide different ways to construct F models for association testing of multi-allele genetic markers with quantitative traits. Which coding scheme should be applied depends on how convenient it can provide the statistical inferences on the parameters of our research interests. Based on these F models, the standard regression model fitting tools can be used to estimate and test for various genetic effects through statistical contrasts with the adjustment for environmental factors.  相似文献   

6.
In general, common diseases do not follow a Mendelian inheritance pattern. To identify disease mechanisms and etiology, their genetic dissection may be assisted by evaluation of linkage in mouse models of human disease. Statistical modeling of multiple-locus linkage data from the nonobese diabetic (NOD) mouse model of type 1 diabetes has previously provided evidence for epistasis between alleles of several Idd (insulin-dependent diabetes) loci. The construction of NOD congenic strains containing selected segments of the diabetes-resistant strain genome allows analysis of the joint effects of alleles of different loci in isolation, without the complication of other segregating Idd loci. In this article, we analyze data from congenic strains carrying two chromosome intervals (a double congenic strain) for two pairs of loci: Idd3 and Idd10 and Idd3 and Idd5. The joint action of both pairs is consistent with models of additivity on either the log odds of the penetrance, or the liability scale, rather than with the previously proposed multiplicative model of epistasis. For Idd3 and Idd5 we would also not reject a model of additivity on the penetrance scale, which might indicate a disease model mediated by more than one pathway leading to beta-cell destruction and development of diabetes. However, there has been confusion between different definitions of interaction or epistasis as used in the biological, statistical, epidemiological, and quantitative and human genetics fields. The degree to which statistical analyses can elucidate underlying biologic mechanisms may be limited and may require prior knowledge of the underlying etiology.  相似文献   

7.
Historically, most methods for detecting linkage disequilibrium were designed for use with diallelic marker loci, for which the analysis is straightforward. With the advent of polymorphic markers with many alleles, the normal approach to their analysis has been either to extend the methodology for two-allele systems (leading to an increase in df and to a corresponding loss of power) or to select the allele believed to be associated and then collapse the other alleles, reducing, in a biased way, the locus to a diallelic system. I propose a likelihood-based approach to testing for linkage disequilibrium, an approach that becomes more conservative as the number of alleles increases, and as the number of markers considered jointly increases in a multipoint test for linkage disequilibrium, while maintaining high power. Properties of this method for detecting associations and fine mapping the location of disease traits are investigated. It is found to be, in general, more powerful than conventional methods, and it provides a tractable framework for the fine mapping of new disease loci. Application to the cystic fibrosis data of Kerem et al, is included to illustrate the method.  相似文献   

8.
Pavlidis P  Metzler D  Stephan W 《Genetics》2012,192(1):225-239
We study the trajectory of an allele that affects a polygenic trait selected toward a phenotypic optimum. Furthermore, conditioning on this trajectory we analyze the effect of the selected mutation on linked neutral variation. We examine the well-characterized two-locus two-allele model but we also provide results for diallelic models with up to eight loci. First, when the optimum phenotype is that of the double heterozygote in a two-locus model, and there is no dominance or epistasis of effects on the trait, the trajectories of selected mutations rarely reach fixation; instead, a polymorphic equilibrium at both loci is approached. Whether a polymorphic equilibrium is reached (rather than fixation at both loci) depends on the intensity of selection and the relative distances to the optimum of the homozygotes at each locus. Furthermore, if both loci have similar effects on the trait, fixation of an allele at a given locus is less likely when it starts at low frequency and the other locus is polymorphic (with alleles at intermediate frequencies). Weaker selection increases the probability of fixation of the studied allele, as the polymorphic equilibrium is less stable in this case. When we do not require the double heterozygote to be at the optimum we find that the polymorphic equilibrium is more difficult to reach, and fixation becomes more likely. Second, increasing the number of loci decreases the probability of fixation, because adaptation to the optimum is possible by various combinations of alleles. Summaries of the genealogy (height, total length, and imbalance) and of sequence polymorphism (number of polymorphisms, frequency spectrum, and haplotype structure) next to a selected locus depend on the frequency that the selected mutation approaches at equilibrium. We conclude that multilocus response to selection may in some cases prevent selective sweeps from being completed, as described in previous studies, but that conditions causing this to happen strongly depend on the genetic architecture of the trait, and that fixation of selected mutations is likely in many instances.  相似文献   

9.
Simulated pedigrees of schizophrenia generally show a clear peak in their likelihood surface corresponding to analysis by the genetic models, which served as the basis for the simulation. The likelihood surface obtained with real data permits determination of the allelic frequency and the selection of an optimal one-locus, two-locus, and four-locus model. These three models have certain features in common, notably, a relatively high frequency of the allele predisposing to schizophrenia (about 20%) and a relatively low index of genetic determination (23%--34%). However, direct likelihood comparisons do not permit distinctions between the one-locus, two-locus, and four-locus models. The most likely interpretation of this finding is that the etiology of schizophrenia is heterogeneous or even nongenetic. However, a simple model with a single completely recessive locus and incomplete penetrance in the homozygote also produces a flat likelihood surface closely resembling that obtained with the real data. With reservation, this single-locus model may be put forward as a potentially useful working hypothesis.  相似文献   

10.
11.
N Yi  S Xu 《Genetics》1999,153(2):1029-1040
Mapping quantitative trait loci (QTL) for complex binary traits is more challenging than for normally distributed traits due to the nonlinear relationship between the observed phenotype and unobservable genetic effects, especially when the mapping population contains multiple outbred families. Because the number of alleles of a QTL depends on the number of founders in an outbred population, it is more appropriate to treat the effect of each allele as a random variable so that a single variance rather than individual allelic effects is estimated and tested. Such a method is called the random model approach. In this study, we develop the random model approach of QTL mapping for binary traits in outbred populations. An EM-algorithm with a Fisher-scoring algorithm embedded in each E-step is adopted here to estimate the genetic variances. A simple Monte Carlo integration technique is used here to calculate the likelihood-ratio test statistic. For the first time we show that QTL of complex binary traits in an outbred population can be scanned along a chromosome for their positions, estimated for their explained variances, and tested for their statistical significance. Application of the method is illustrated using a set of simulated data.  相似文献   

12.
Complex traits are often governed by more than one trait locus. The first step towards an adequate model for such diseases is a linkage analysis with two trait loci. Such an analysis can be expected to have higher power to detect linkage than a standard single-trait-locus linkage analysis. However, it is crucial to accurately specify the parameters of the two-locus model. Here, we recapitulate the general two-locus model with and without genomic imprinting. We relate heterogeneity, multiplicative, and additive two-locus models to biological or pathophysiological mechanisms, and give the corresponding averaged ("best-fitting") single-trait-locus models for each of the two loci. Furthermore, we derive the two-locus penetrances from the averaged single-locus models, under the assumption of one of the three model classes mentioned above. Using these formulae, if the best-fitting single-locus models are available, investigators may perform a two-trait-locus linkage analysis under a realistic model. This procedure will maximize the power to detect linkage for traits which are governed by two or more loci, and lead to more accurate estimates of the disease-locus positions.  相似文献   

13.
We study how correlations in the random fitness assignment may affect the structure of fitness landscapes, in three classes of fitness models. The first is a phenotype space in which individuals are characterized by a large number n of continuously varying traits. In a simple model of random fitness assignment, viable phenotypes are likely to form a giant connected cluster percolating throughout the phenotype space provided the viability probability is larger than 1/2(n). The second model explicitly describes genotype-to-phenotype and phenotype-to-fitness maps, allows for neutrality at both phenotype and fitness levels, and results in a fitness landscape with tunable correlation length. Here, phenotypic neutrality and correlation between fitnesses can reduce the percolation threshold, and correlations at the point of phase transition between local and global are most conducive to the formation of the giant cluster. In the third class of models, particular combinations of alleles or values of phenotypic characters are "incompatible" in the sense that the resulting genotypes or phenotypes have zero fitness. This setting can be viewed as a generalization of the canonical Bateson-Dobzhansky-Muller model of speciation and is related to K-SAT problems, prominent in computer science. We analyze the conditions for the existence of viable genotypes, their number, as well as the structure and the number of connected clusters of viable genotypes. We show that analysis based on expected values can easily lead to wrong conclusions, especially when fitness correlations are strong. We focus on pairwise incompatibilities between diallelic loci, but we also address multiple alleles, complex incompatibilities, and continuous phenotype spaces. In the case of diallelic loci, the number of clusters is stochastically bounded and each cluster contains a very large sub-cube. Finally, we demonstrate that the discrete NK model shares some signature properties of models with high correlations.  相似文献   

14.
As more genetic loci are genotyped simultaneously and as the interest in effects of combinations of loci increases, the need for more powerful analysis methods is increased. In the present paper we present a method aimed at increasing the power of likelihood ratio tests for case-control studies investigating possible two-locus effects. The method is based on the notion that the expected effect pattern of one locus, as well as the expected pattern of a penetrance matrix representing the effect of two loci, is a monotone one. By using an algorithm for making the estimated penetrance matrix monotone, the alternative hypothesis is restricted to monotone penetrance matrices only. The evaluation of the likelihood ratio tests for several underlying monotone models shows that the power is substantially increased by using a monotone alternative as compared to when an unrestricted alternative is used.  相似文献   

15.
Most noninfectious disease is caused by low-penetrance alleles interacting with other genes and environmental factors. Consider the simple setting where a diallelic autosomal candidate gene and a binary exposure together affect disease susceptibility. Suppose that one has genotyped affected probands and their parents and has determined each proband's exposure status. One proposed method for assessment of etiologic interaction of genotype and exposure, an extension of the transmission/disequilibrium test, tests for differences in transmission of the variant allele from heterozygous parents to exposed versus unexposed probands. We show that this test is not generally valid. An alternative approach compares the conditional genotype distribution of unexposed cases, given parental genotypes, versus that of exposed cases. This approach provides maximum-likelihood estimators for genetic relative-risk parameters and genotype-exposure-interaction parameters, as well as a likelihood-ratio test (LRT) of the no-interaction null hypothesis. We show how to apply this approach, using log-linear models. When a genotype-exposure association arises solely through incomplete mixing of subpopulations that differ in both exposure prevalence and allele frequency, the LRT remains valid. The LRT becomes invalid, however, if offspring genotypes do not follow Mendelian proportions in each parental mating type-for example, because of genotypic differences in survival-or if a genotype-exposure association reflects an influence of genotype on propensity for exposure-for example, through behavioral mechanisms. Because the needed assumptions likely hold in many situations, the likelihood-based approach should be broadly applicable for diseases in which probands commonly have living parents.  相似文献   

16.
R Bürger  A Gimelfarb 《Genetics》1999,152(2):807-820
Stabilizing selection for an intermediate optimum is generally considered to deplete genetic variation in quantitative traits. However, conflicting results from various types of models have been obtained. While classical analyses assuming a large number of independent additive loci with individually small effects indicated that no genetic variation is preserved under stabilizing selection, several analyses of two-locus models showed the contrary. We perform a complete analysis of a generalization of Wright's two-locus quadratic-optimum model and investigate numerically the ability of quadratic stabilizing selection to maintain genetic variation in additive quantitative traits controlled by up to five loci. A statistical approach is employed by choosing randomly 4000 parameter sets (allelic effects, recombination rates, and strength of selection) for a given number of loci. For each parameter set we iterate the recursion equations that describe the dynamics of gamete frequencies starting from 20 randomly chosen initial conditions until an equilibrium is reached, record the quantities of interest, and calculate their corresponding mean values. As the number of loci increases from two to five, the fraction of the genome expected to be polymorphic declines surprisingly rapidly, and the loci that are polymorphic increasingly are those with small effects on the trait. As a result, the genetic variance expected to be maintained under stabilizing selection decreases very rapidly with increased number of loci. The equilibrium structure expected under stabilizing selection on an additive trait differs markedly from that expected under selection with no constraints on genotypic fitness values. The expected genetic variance, the expected polymorphic fraction of the genome, as well as other quantities of interest, are only weakly dependent on the selection intensity and the level of recombination.  相似文献   

17.
We describe a multilocus model that incorporates pleiotropic stabilizing selection on a large number of characters. We find many different stable equilibria with different levels of polymorphism and additive genetic variability. The results lend support to Wright's concept of a complex adaptive surface with many peaks of different heights. The model assumes that alleles contribute additively to the characters. We analyze the multilocus model by first considering a two-locus model. The two-locus model depends critically on having loci of different effect and on having the optimum phenotype not be that of a completely heterozygous individual. The effects of different loci need to differ only by less than a factor of two. For the multilocus, multicharacter model, we assume that completely heterozygous individuals do not have the optimum phenotype. By restricting attention to a two-allele model, we also assume that there are no alleles that can affect all characters in all possible combinations of directions.  相似文献   

18.
The mechanisms of displacements of quantitative trait dominance in spring wheat are discussed in terms of the theory of the ecological genetic organization of quantitative traits. A conventional interpretation of displacements of genotype points on Hayman’s graphs in terms of classical diallelic crosses does not require that limiting environmental factors be monitored during the ontogenetic development of quantitative traits or that changes in the set of trait-determining genes upon a change of the limiting factor be considered. Analysis of the experimental data of the DIAS program in terms of the new theory of the ecological genetic organization of quantitative traits revealed two mechanisms that determine displacements of genotype points along the regression line on Hayman’s graphs. One is a metric scale effect, which arises as a result of a correlation of mean values and variances of a trait in rows of the parents and F1 hybrids in the diallelic matrix. The other is an environment-depending change arising in the set and number of genes that underlie a multicomponent trait and determine their final value in a multiplicative manner.  相似文献   

19.
Mills W  Moore T 《Genetics》2004,168(4):2317-2327
Genomic imprinting causes parental origin-dependent differential expression of a small number of genes in mammalian and angiosperm plant embryos, resulting in non-Mendelian inheritance of phenotypic traits. The "conflict" theory of the evolution of imprinting proposes that reduced genetic relatedness of paternally, relative to maternally, derived alleles in offspring of polygamous females supports parental sex-specific selection at gene loci that influence maternal investment. While the theory's physiological predictions are well supported by observation, the requirement of polyandry in the evolution of imprinting from an ancestral Mendelian state has not been comprehensively analyzed. Here, we use diallelic models to examine the influence of various degrees of polyandry on the evolution of both Mendelian and imprinted autosomal gene loci that influence trade-offs between maternal fecundity and offspring viability. We show that, given a plausible assumption on the physiological relationship between maternal fecundity and offspring viability, low levels of polyandry are sufficient to reinforce exclusively the fixation of "greedy" paternally imprinted alleles that increase offspring viability at the expense of maternal fecundity and "thrifty" maternally imprinted alleles of opposite effect. We also show that, for all levels of polyandry, Mendelian alleles at genetic loci that influence the trade-off between maternal fecundity and offspring viability reach an evolutionary stable state, whereas pairs of reciprocally imprinted alleles do not.  相似文献   

20.
Unraveling the genetic background of economic traits is a major goal in modern animal genetics and breeding. Both candidate gene analysis and QTL mapping have previously been used for identifying genes and chromosome regions related to studied traits. However, most of these studies may be limited in their ability to fully consider how multiple genetic factors may influence a particular phenotype of interest. If possible, taking advantage of the combined effect of multiple genetic factors is expected to be more powerful than analyzing single sites, as the joint action of multiple loci within a gene or across multiple genes acting in the same gene set will likely have a greater influence on phenotypic variation. Thus, we proposed a pipeline of gene set analysis that utilized information from multiple loci to improve statistical power. We assessed the performance of this approach by both simulated and a real IGF1-FoxO pathway data set. The results showed that our new method can identify the association between genetic variation and phenotypic variation with higher statistical power and unravel the mechanisms of complex traits in a point of gene set. Additionally, the proposed pipeline is flexible to be extended to model complex genetic structures that include the interactions between different gene sets and between gene sets and environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号