首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Small sub-unit (SSU) rRNA-targeted oligonucleotide probes were used to monitor the persistence of a genetically engineered bacterium inoculated in model rumens. Eight dual flow continuous culture fermenters were operated with either standard artificial saliva buffer or buffer with chondroitin sulfate (0.5 g/l) added. After 168 h of operation, fermenters were inoculated with Bacteroides thetaiotaomicron BTX (BTX), at approximately 1% of total bacteria. B. thetaiotaomicron was quantified using a species-specific probe and shown to persist in fermenters 144 h after inoculation (relative abundance 0.48% and 1.42% of total SSU rRNA with standard and chondroitin sulfate buffers, respectively). No B. thetaiotaomicron SSU rRNA was detected in fermenter samples prior to inoculation with strain BTX. Relative abundances of Bacteria, Eucarya and Archaea were not affected by either inoculation or buffer type. Fiber digestion, in particular the hemicellulose fraction, increased after strain BTX addition. Chondroitin sulfate addition to the buffer increased bacterial nitrogen flow in fermenters, but did not alter fiber digestion. Neither inoculum nor buffer type altered total short chain fatty acid (VFA) concentrations but proportions of individual VFA differed. In model rumens, B. thetaiotaomicron BTX increased fiber digestion when added to mixed ruminal microbes, independent of chondroitin sulfate addition; but further study is needed to determine effects on other fiber-digesting bacteria.  相似文献   

2.
Agarose disc gel electrophoresis has been adapted to achieve the separation of the major sulfated glycosaminoglycans produced by cells in culture. By use of buffers containing barium ion, mixtures of chondroitin sulfate, dermatan sulfate, and heparan sulfate are well resolved into discrete bands. The technique can be used preparatively as well as analytically to separate quantities of glycosaminoglycans up to a milligram in a 6-mm diameter gel.  相似文献   

3.
Glycosaminoglycans of the embryonic chicken vitreous were characterized and then were used as markers to establish which tissues synthesize the vitreous humor during development. The glycosaminoglycans are predominantly chondroitin sulfates by several criteria. They are resistant to streptomyces hyaluronidase, an enzyme which degrades only hyaluronate, and are digested by testicular hyaluronidase and chondroitinase AC, enzymes which degrade hyaluronate plus chondroitin 4- and 6-sulfates. On electrophoresis on cellulose acetate in 0.15 M phosphate buffer, pH 6.7, the vitreous glycosaminoglycans migrate slightly slower than authentic chondroitin sulfate, but, in 0.1 N HCl, they migrate very close to chondroitin sulfate standards. Finally, the disaccharides produced by digestion of these radioactively labeled glycosaminoglycans with chondroitinases AC and ABC were identified as Δdi-4S and Δdi-6S, as expected for chondroitin 4- and 6-sulfate. By using incorporation of radioactive precursors into chondroitin sulfates in vitro, we than determined which tissues synthesize the vitreous humor in the developing eye. Late in development, on Day 12–13, the isolated vitreous is very active in chondroitin sulfate synthesis, while the neural retina, the lens, and the pecten are less active and produce a high proportion of enzyme-resistant GAG. The eye tissues isolated from embryos labeled in ovo retain similar amounts and types of glycosaminoglycans, indicating that cells within the vitreous synthesize the vitreous humor glycosaminoglycans at this time. Earlier in development, from Days 6 to 8, the isolated vitreous incorporates very low levels of radioactivity into GAG, but the neural retina incorporates high levels of radioactivity into chondroitin sulfate. When the embryos are labeled in ovo and the same tissues are isolated following incorporation, the vitreous retains more radioactive chondroitin sulfate than does the neural retina. Thus, the vitreous humour glycosaminoglycan is initially synthesized by the neural retina and is secreted into the vitreous space.  相似文献   

4.
Various combinations of fluorescent dyes, polyacrylamide gels, and electrophoresis buffers were tested by fluorophore-assisted carbohydrate electrophoresis (FACE) for the purpose of analyzing sulfated and nonsulfated glycosaminoglycan (GAG) oligosaccharides in which disaccharides and low-molecular weight oligosaccharides were included. A nonionic fluorescent dye was found to be suitable for analyzing sulfated disaccharides derived from sulfated GAGs (e.g., chondroitin sulfate, dermatan sulfate) because sulfated disaccharides themselves had enough anionic potential for electrophoresis. The migration rates of chondroitin sulfate (CS) disaccharides in polyacrylamide gels were affected by the number of sulfate residues and the conformation of each disaccharide. When an anionic fluorescent dye, 8-aminonaphthalene-1,3,6-trisulfonic acid disodium salt (ANTS), was coupled with sulfated GAG oligosaccharides, nearly all of the conjugates migrated at the electrophoretic front due to the added anionic potential. Nonsulfated hyaluronan (HA) oligosaccharides (2-16 saccharides) were subjected to electrophoresis by coupling with a nonionic fluorescent dye, 2-aminoacridone (AMAC), but did not migrate in the order of their molecular size. Especially di-, tetra-, hexa-, and octasaccharides of HA migrated in the reverse order of their molecular size. HA/CS oligosaccharides were able to migrate in the order of their chain lengths by coupling with an anionic fluorescent dye in a nonborate condition.  相似文献   

5.
Cultured human fetal lung fibroblasts produce some chondroitin sulfate proteoglycans that are extracted as an aggregate in chaotropic buffers containing 4 M guanidinium chloride. The aggregated proteoglycans are excluded from Sepharose CL4B and 2B, but become included, eluting with a Kav value of 0.53 from Sepharose CL4B, when Triton X-100 is included in the buffer. Conversely, some of the detergent-extractable chondroitin sulfate proteoglycans can be incorporated into liposomes, suggesting the existence of a hydrophobic membrane-intercalated chondroitin sulfate proteoglycan fraction. Purified preparations of hydrophobic chondroitin sulfate proteoglycans contain two major core protein forms of 90 and 52 kD. A monoclonal antibody (F58-7D8) obtained from the fusion of myeloma cells with spleen cells of BALB/c mice that were immunized with hydrophobic proteoglycans recognized the 90- but not the 52-kD core protein. The epitope that is recognized by the antibody is exposed at the surface of cultured human lung fibroblasts and at the surface of several stromal cells in vivo, but also at the surface of Kupffer cells and of epidermal cells. The core proteins of these small membrane-associated chondroitin sulfate proteoglycans are probably distinct from those previously identified in human fibroblasts by biochemical, immunological, and molecular biological approaches.  相似文献   

6.
High-voltage capillary zone electrophoresis (CZE) has been used for the first time in the analysis of non-, mono-, di-, and trisulfated disaccharides derived from chondroitin sulfate, dermatan sulfate, and hyaluronic acid. These glycosaminoglycans are first depolymerized using polysaccharide lyases. The resulting unsaturated disaccharide products can be detected by their ultraviolet absorbance at 232 nm. Different retention times were obtained for each unsaturated disaccharide analyzed by CZE. The application of a constant voltage across a 70-cm fused silica capillary using a single, simple buffer system resolved an eight-component mixture within 40 min. Quantitation of disaccharides derived from chondroitin sulfate using chondroitin ABC lyase (EC 4.2.2.4) and mixtures of unsaturated disaccharide standards was possible requiring only picogram quantities of sample. The disaccharides examined had a net charge of from -1 to -4 and were resolved primarily on the basis of net charge and secondarily on the basis of charge distribution. Two unsulfated disaccharides both containing the same unsaturated uronic acid residue were analyzed. One was from chondroitin having an N-acetylgalactosyl residue and one from hyaluronate having an N-acetylglycosyl residue. Despite the fact that they differed only by the chirality at one center, these disaccharides were resolved by CZE. CZE is a fast and simple method that represents a powerful new tool for analysis and separation of acidic disaccharide components of glycosaminoglycans.  相似文献   

7.
A major hurdle in characterizing bacterial membrane proteins by Western blotting is the ineffectiveness of transferring these proteins from sodium dodecyl sulfate -- polyacrylamide gel electrophoresis (SDS-PAGE) gel onto nitrocellulose membrane, using standard Western blot buffers and electrophoretic conditions. In this study, we compared a number of modified Western blotting buffers and arrived at a composition designated as the SDS-PAGE-Urea Lysis buffer. The use of this buffer and specific conditions allowed the reproducible transfer of highly hydrophobic bacterial membrane proteins with 2-12 transmembrane-spanning segments as well as soluble proteins onto nitrocellulose membranes. This method should be broadly applicable for immunochemical studies of other membrane proteins.  相似文献   

8.
The separation of sulfated glycosaminoglycans in mixtures by agarose-gel electrophoresis and the recovery of single polysaccharide bands has been applied to the characterization of polysaccharides extracted from tissues without previous purification of single species. Sulfated glycosaminoglycans, heparin with its two components, slow-moving and fast-moving, heparan sulfate, dermatan sulfate, and chondroitin sulfate, were separated to microgram level by conventional agarose-gel electrophoresis. After their separation, they were fixed in the agarose-gel matrix by precipitation in a cetyltrimethylammonium bromide solution, making them visible on a dark background. After recovery of gel containing the fixed bands, high temperatures (90 degrees C for 15 min) were necessary to dissolve the gel matrix, and a solution of NaCl (3 M) was used to release sulfated polysaccharides from the complex with cetyltrimethylammonium. After precipitation of glycosaminoglycans in the presence of ethanol, the recovery of slow-moving heparin, fast-moving heparin, heparan sulfate, dermatan sulfate, and chondroitin sulfate was from 1 to 10 microg, with a percentage greater than 45% and a purity above 90%. Sulfated glycosaminoglycans in mixtures recovered from gel matrix as single species were evaluated for purity and characterized for unsaturated disaccharides after treatment with bacterial lyases (heparinases for heparin and heparan sulfate samples, and chondroitinases for dermatan sulfate and chondroitin sulfate) and molecular mass. Bovine lung and heart Glycosaminoglycans were extracted and separated into single species by agarose-gel electrophoresis and recovered from gel matrix after treatment in cetyltrimethylammonium solution. Unsaturated disaccharides pattern, the sulfate to carboxyl ratio, and the molecular mass of each single polysaccharide species were determined.  相似文献   

9.
A chondroitin sulfate - dermatan sulfate proteoglycan was isolated from bovine aorta intima by extraction of the tissue by 4 M guanidine hydrochloride. The proteoglycan was purified by CsCl isopycnic centrifugation followed by gel filtration and ion-exchange chromatography. The proteoglycan had 21.9% protein, 22.1% uronate, 21.4% hexosamine and 10.8% sulfate. Glycosaminoglycan chains obtained from the proteoglycan by β-elimination were resolved by gel filtration into two fractions, one containing chondroitin 6-sulfate with an approximate molecular weight of 49 000 and the other containing chondroitin 4-sulfate and dermatan sulfate in a proportion of 2:1 with an approximate molecular weight of 37 000. Digestion of the proteoglycan by chondroitinase ABC or AC yielded a protein core with similar composition and behavior in gel filtration and SDS-polyacrylamide gel electrophoresis. An approximate molecular weight of 180 000 was estimated for the core protein. Dermatan sulfate chains with an approximate molecular weight of 10 000 were observed only in the digest of chondroitinase AC. Limited trypsin hydrolysis of the proteoglycan yielded three peptide fragments containing chondroitin 6-sulfate, chondroitin 4-sulfate and dermatan sulfate in varied proportions. A tentative structure for the proteoglycan was suggested.  相似文献   

10.
Chondroitin sulfate is a biomedical glycosaminoglycan (GAG) mostly used as a dietary supplement. We undertook analysis on some formulations of chondroitin sulfates available for oral administration. The analysis was based on agarose-gel electrophoresis, strong anion-exchange chromatography, digestibility with specific GAG lyases, uronic acid content, NMR spectroscopy, and size-exclusion chromatography. Keratan sulfate was detected in batches from shark cartilage, averaging ~16% of the total GAG. Keratan sulfate is an inert material, and hazardous effects due to its presence in these formulations are unlikely to occur. However, its unexpected high percentage compromises the desired amounts of the real ingredient specified on the label claims, and forewarns the pharmacopeias to update their monographs. The techniques they recommended, especially cellulose acetate electrophoresis, are inefficient in detecting keratan sulfate in chondroitin sulfate formulations. In addition, this finding also alerts the manufacturers for improved isolation procedures as well as the supervisory agencies for better audits. Analysis based on strong anion-exchange chromatography is shown to be more reliable than the methods presently suggested by standard pharmacopeias.  相似文献   

11.
A chondroitin sulfate-dermatan sulfate proteoglycan was isolated from bovine aorta intima by extraction of the tissue by 4 M guanidine hydrochloride. The proteoglycan was purified by CsCl isopycnic centrifugation followed by gel filtration and ion-exchange chromatography. The proteoglycan had 21.9% protein, 22.1% uronate, 21.4% hexosamine and 10.8% sulfate. Glycosaminoglycan chains obtained from the proteoglycan by beta-elimination were resolved by gel filtration into two fractions, one containing chondroitin 6-sulfate with an approximate molecular weight of 49 000 and the other containing chondroitin 4-sulfate and dermatan sulfate in a proportion of 2:1 with an approximate molecular weight of 37 000. Digestion of the proteoglycan by chondroitinase ABC or AC yielded a protein core with similar composition and behavior in gel filtration and SDS-polyacrylamide gel electrophoresis. An approximate molecular weight of 180 000 was estimated for the core protein. Dermatan sulfate chains with an approximate molecular weight of 10 000 were observed only in the digest of chondroitinase AC. Limited trypsin hydrolysis of the proteoglycan yielded three peptide fragments containing chondroitin 6-sulfate, chondroitin 4-sulfate and dermatan sulfate in varied proportions. A tentative structure for the proteoglycan was suggested.  相似文献   

12.
Uterine slices obtained from estrogen-treated rabbits were incubated in vitro with N-acetyl-D-[1-3H]glucosamine together with D-[U-14C]glucose. The isotope-labelled acidic complex saccharides were then isolated by pronase digestion, Dowex 1 column chromatography and preparative electrophoresis on cellulose acetate membrane, in succession. In this way, individual acidic complex saccharides (hyaluronic acid, heparan sulfate, chondroitin sulfate A, chondroitin sulfate C, dermatan sulfate, sulfated glycopeptide, and sialoglycopeptide) were separated into 2-5 subfractions. The specific radioactivity of hexosamine in the subfractions indicated that the metabolic rate of the uterine complex saccharides as follows: hyaluronic acid greater than sulfated glycopeptide greater than heparan sulfate greater than chondroitin sulfate C greater than dermatan sulfate. In addition, metabolic heterogeneity of heparan sulfate, chondroitin sulfate A, chondroitin sulfate C, and dermatan sulfate was suggested.  相似文献   

13.
We developed a method to extract differentially chondroitin sulfate proteoglycans (CSPGs) that are diffusely present in the central nervous system (CNS) matrix and CSPGs that are present in the condensed matrix of perineuronal nets (PNNs). Adult rat brain was sequentially extracted with Tris-buffered saline (TBS), TBS-containing detergent, 1 m NaCl, and 6 m urea. Extracting tissue sections with these buffers showed that the diffuse and membrane-bound CSPGs were extracted in the first three buffers, but PNN-associated CSPGs remained and were only removed by 6 m urea. Most of the CSPGs were extracted to some degree with all the buffers, with neurocan, brevican, aggrecan, and versican particularly associated with the stable urea-extractable PNNs. The CSPGs in stable complexes only extractable in urea buffer are found from postnatal day 7-14 coinciding with PNN formation. Disaccharide composition analysis indicated a different glycosaminoglycan (GAG) composition for PGs strongly associated with extracellular matrix (ECM). For CS/dermatan sulfate (DS)-GAG the content of nonsulfated, 6-O-sulfated, 2,6-O-disulfated, and 4,6-O-disulfated disaccharides were higher and for heparan sulfate (HS)-GAG, the content of 6-O-sulfated, 2-N-, 6-O-disulfated, 2-O-, 2-N-disulfated, and 2-O-, 2-N-, 6-O-trisulfated disaccharides were higher in urea extract compared with other buffer extracts. Digestions with chondroitinase ABC and hyaluronidase indicated that aggrecan, versican, neurocan, brevican, and phosphacan are retained in PNNs through binding to hyaluronan (HA). A comparison of the brain and spinal cord ECM with respect to CSPGs indicated that the PNNs in both parts of the CNS have the same composition.  相似文献   

14.
采用酶解和离子交换色谱的方法,从兔、鸡、猪和羊肝组织中提取和纯化得到了糖胺聚糖(GAGs).通过比较透明质酸(HA)、硫酸软骨素A(CS-A)、硫酸软骨素C(CS-C)、硫酸皮肤素(DS)、肝素(HP)、硫酸乙酰肝素(HS)等标准品在醋酸钡、醋酸锌、吡啶-甲酸等几种不同缓冲体系下的醋酸纤维素薄膜电泳行为,结合灰度积分建立了适合于微量GAGs定性和定量分析的电泳方法.将从不同动物肝脏组织中提取的GAGs运用该方法进行分析,发现 不同动物肝脏组织中,GAG含量和组成均有较大差异:羊肝中GAGs含量最高(0.52 mg/g 组织干粉),种类也最丰富,含有HA、HS、DS和CS,其中HA所占比例最高;鸡肝中GAGs含量最少(0.18 mg/g组织干粉),主要含有HA和DS;兔肝GAGs种类与猪肝相似,均含有HA、HS和DS,但HS是猪肝GAGs的主要成分,DS是兔肝GAGs的主要成分.  相似文献   

15.
A culture system was developed to analyze the relationship between proteoglycans and growth factors during corneal injury. Specifically, the effects of transforming growth factor beta-1 (TGF-beta1) and fetal calf serum on proteoglycan synthesis in corneal fibroblasts were examined. Glycosaminoglycan synthesis and sulfation were determined using selective polysaccharidases. Proteoglycan core proteins were analyzed using gel electrophoresis and Western blotting. Cells cultured in 10% dialyzed fetal calf serum exhibited decreased synthesis of more highly sulfated chondroitin sulfate and heparan sulfate compared with cells cultured in 1% dialyzed fetal calf serum. The amount and sulfation of the glycosaminoglycans was not significantly influenced by TGF-beta1. The major proteoglycan species secreted into the media were decorin and perlecan. Decorin was glycanated with chondroitin sulfate. Perlecan was linked to either chondroitin sulfate, heparan sulfate, or both chondroitin sulfate and heparan sulfate. Decorin synthesis was reduced by either TGF-beta1 or serum. At early time points, both TGF-beta1 and serum induced substantial increases in perlecan bearing chondroitin sulfate and/or heparan sulfate chains. In contrast, after extended periods in culture, the amount of perlecan bearing heparan sulfate chains was unaffected by TGF-beta1 and decreased by serum. The levels of perlecan bearing chondroitin sulfate chains were elevated with TGF-beta1 treatment and were decreased with serum. Because both decorin and perlecan bind growth factors and are proposed to modulate their activity, changes in the expression of either of these proteoglycans could substantially affect the cellular response to injury.  相似文献   

16.
Observations were made on the behavior of chondrocytes grown under various conditions in vitro. The chondrocytes in 10-day embryonic chick vertebrae were grown as cultures of intact vertebrae, as pellets of chondrocytes liberated from their matrix, and as monodispersed cells plated out on plasma clots. Cartilage matrix was stained metachromatically with toluidine blue. Radioautographs were made of incorporated H3-thymidine, H3-proline, and S35-sulfate to determine the extent of DNA synthesis, collagen synthesis, and chondroitin sulfate synthesis, respectively. Chondrocytes in intact vertebrae or in pellets are rounded and actively synthesizing chondroitin sulfate and collagen. There is little DNA synthesis by cells in either vertebrae or pellets. Chondrocytes grown as monodisperse cells rapidly cease synthesizing cytologically detectable chondroitin sulfate and are induced to synthesize DNA and divide. There is a change in the shape of these chondrocytes from a rounded to a more stellate condition which accompanies the shift in metabolic activity. Conversely, when the cells attain a certain cell density, they reacquire a rounded shape, cease dividing, and again synthesize chondroitin sulfate. Clusters of chondrocytes synthesize more chondroitin sulfate than isolated chondrocytes. It is concluded that most chondrocytes synthesizing chondroitin sulfate do not concurrently synthesize DNA. Interaction between associated chondrocytes is important in inducing and maintaining chondroitin sulfate synthesis in genetically determined chondrocytes. Failure of interaction between chondrocytes leads to DNA synthesis and cell multiplication.  相似文献   

17.
N-Acetylgalactosamine 4-sulfate 6-O-sulfotransferase (GalNAc4S-6ST), which transfers sulfate from 3'-phosphoadenosine 5'-phosphosulfate (PAPS) to position 6 of N-acetylgalactosamine 4-sulfate in chondroitin sulfate and dermatan sulfate, was purified 19,600-fold to apparent homogeneity from the squid cartilage. SDS-polyacrylamide gel electrophoresis of the purified enzyme showed a broad protein band with a molecular mass of 63 kDa. The protein band coeluted with GalNAc4S-6ST activity from Toyopearl HW-55 around the position of 66 kDa, indicating that the active form of GalNAc4S-6ST may be a monomer. The purified enzyme transferred sulfate from PAPS to chondroitin sulfate A, chondroitin sulfate C, and dermatan sulfate. The transfer of sulfate to chondroitin sulfate A and dermatan sulfate occurred mainly at position 6 of the internal N-acetylgalactosamine 4-sulfate residues. Chondroitin sulfate E, keratan sulfate, heparan sulfate, and completely desulfated N-resulfated heparin were not efficient acceptors of the sulfotransferase. When a trisaccharide or a pentasaccharide having sulfate groups at position 4 of N-acetylgalactosamine was used as acceptor, efficient sulfation of position 6 at the nonreducing terminal N-acetylgalactosamine 4-sulfate residue was observed.  相似文献   

18.
Capillary zone electrophoresis (CZE) was used to separate eight commercial disaccharide standards of the structure delta UA2X(1----4)-D-GlcNY6X (where delta UA is 4-deoxy-alpha-L-threo-hex-4-enopyranosyluronic acid, GlcN is 2-deoxy-2-aminoglucopyranose, S is sulfate, Ac is acetate, X may be S, and Y is S or Ac). These eight disaccharides had been prepared from heparin, heparan sulfate, and derivatized heparins. A similar CZE method was recently reported for the analysis of eight chondroitin and dermatan sulfate disaccharides (A. Al-Hakim and R.J. Linhardt, Anal. Biochem. 195, 68-73, 1991). Two of the standard heparin/heparan sulfate disaccharides, having an identical charge of -2, delta UA2S(1----4)-D-GlcNAc and delta UA(1----4)-D-GlcNS, were not fully resolved using standard sodium borate/boric acid buffer. This buffer had proven effective in separating chondroitin/dermatan sulfate disaccharides of identical charge. Resolution of these two heparin/heparan sulfate disaccharides could be improved by extending the capillary length, preparing the buffer in 2H2O, or eliminating boric acid. Baseline resolution was achieved in sodium dodecyl sulfate in the absence of buffer. The structure and purity of each of the eight new commercial heparin/heparan sulfate disaccharide standards were confirmed using fast-atom-bombardment mass spectrometry and high-field 1H-NMR spectroscopy. Heparin and heparan sulfate were then depolymerized using heparinase (EC 4.2.2.7), heparin lyase II (EC 4.2.2.-), heparinitase (EC 4.2.2.8), and a combination of all three enzymes. CZE analysis of the products formed provided a disaccharide composition of each glycosaminoglycan. As little as 50 fmol of disaccharide could be detected by ultraviolet absorbance.  相似文献   

19.
Activity gel assays require a long incubation time (several hours) on renaturation of enzymatic activity after sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). To reduce the incubation time, we used a novel renaturation buffer containing cyclic oligosaccharide β-cyclodextrin (β-CD) which is capable of capturing SDS. Yeast α-glucosidase, used as a model protein, was run on SDS-PAGE, and then the gel matrix was incubated in a variety of renaturation buffers. Compared with conventional renaturation buffers containing Triton X-100 or isopropanol, our novel renaturation buffer containing β-CD can restore enzymatic activity within 10 min. Therefore, this new format represents a good alternative with reduced incubation time for activity gel assays.  相似文献   

20.
Chondroitin sulfate lyase (EC 4.2.2.4) was present constitutively at low levels (0.06 to 0.08 U/mg of protein) in cells of Bacteroides thetaiotaomicron which were growing on glucose or other monosaccharides. When these uninduced bacteria were incubated with chondroitin sulfate A (5 mg/ml), chondroitin sulfate lyase specific activity increased more than 10-fold within 90 min. Synthesis of ribonucleic acid and of protein was required for induction, and induction was sensitive to oxygen. The disaccharides which resulted from chondroitinase action did not act as inducers, nor did tetrasaccharides or hexasaccharides obtained by digestion of chondroitin sulfate with bovine testicular hyaluronidase. None of these substances was taken up by uninduced cells; they may not have been able to penetrate the outer membrane. The smallest oligomer capable of acting as an inducer was the outer membrane. The smallest oligomer capable of acting as an inducer was the octassacharide. Oligomers larger than the octassacharide induced chondroitin lyase activity nearly as well as intact chondroitin sulfate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号