首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The immunosuppressants cyclosporin A (CsA) and FK506 inhibit the protein phosphatase calcineurin and block T-cell activation and transplant rejection. Calcineurin is conserved in microorganisms and plays a general role in stress survival. CsA and FK506 are toxic to several fungi, but the common human fungal pathogen Candida albicans is resistant. However, combination of either CsA or FK506 with the antifungal drug fluconazole that perturbs synthesis of the membrane lipid ergosterol results in potent, synergistic fungicidal activity. Here we show that the C.albicans FK506 binding protein FKBP12 homolog is required for FK506 synergistic action with fluconazole. A mutation in the calcineurin B regulatory subunit that confers dominant FK506 resistance (CNB1-1/CNB1) abolished FK506-fluconazole synergism. Candida albicans mutants lacking calcineurin B (cnb1/cnb1) were found to be viable and markedly hypersensitive to fluconazole or membrane perturbation with SDS. FK506 was synergistic with fluconazole against azole-resistant C.albicans mutants, against other Candida species, or when combined with different azoles. We propose that calcineurin is part of a membrane stress survival pathway that could be targeted for therapy.  相似文献   

2.
Role of calcium in pancreatic islet cell death by IFN-gamma/TNF-alpha   总被引:8,自引:0,他引:8  
We studied the intracellular events associated with pancreatic beta cell apoptosis by IFN-gamma/TNF-alpha synergism. IFN-gamma/TNF-alpha treatment of MIN6N8 insulinoma cells increased the amplitude of high voltage-activated Ca(2+) currents, while treatment with IFN-gamma or TNF-alpha alone did not. Cytosolic Ca(2+) concentration ([Ca(2+)](c)) was also increased by IFN-gamma/TNF-alpha treatment. Blockade of L-type Ca(2+) channel by nifedipine abrogated death of insulinoma cells by IFN-gamma/TNF-alpha. Diazoxide that attenuates voltage-activated Ca(2+) currents inhibited MIN6N8 cell death by IFN-gamma/TNF-alpha, while glibenclamide that accentuates voltage-activated Ca(2+) currents augmented insulinoma cell death. A protein kinase C inhibitor attenuated MIN6N8 cell death and the increase in [Ca(2+)](c) by IFN-gamma/TNF-alpha. Following the increase in [Ca(2+)](c), calpain was activated, and calpain inhibitors decreased insulinoma cell death by IFN-gamma/TNF-alpha. As a downstream of calpain, calcineurin was activated and the inhibition of calcineurin activation by FK506 diminished insulinoma cell death by IFN-gamma/TNF-alpha. BAD phosphorylation was decreased by IFN-gamma/TNF-alpha because of the increased calcineurin activity, which was reversed by FK506. IFN-gamma/TNF-alpha induced cytochrome c translocation from mitochondria to cytoplasm and activation of caspase-9. Effector caspases such as caspase-3 or -7 were also activated by IFN-gamma/TNF-alpha treatment. These results indicate that IFN-gamma/TNF-alpha synergism induces pancreatic beta cell apoptosis by Ca(2+) channel activation followed by downstream intracellular events such as mitochondrial events and caspase activation and also suggest the therapeutic potential of Ca(2+) modulation in type 1 diabetes.  相似文献   

3.
The purpose of this study was to examine, using glycogen synthase kinase (GSK) inhibitors, whether GSK-3 is involved in cyclosporine A (CsA)- and FK506-induced apoptosis in PC12 cells. CsA and FK506 increased apoptotic cell death with morphological changes characterized by cell shrinkage and nuclear condensation or fragmentation. Nerve growth factor (NGF) completely blocked cell death. Caspase-3 activation was accompanied by CsA- and FK506-induced cell death and inhibited by NGF. GSK-3 inhibitors such as alsterpaullone and SB216763 prevented CsA- and FK506-induced apoptosis. These results suggest that CsA and FK506 induce caspase-dependent apoptosis and that GSK-3 activation is involved in CsA- and FK506-induced apoptosis in PC12 cells.  相似文献   

4.
The immunosuppressive effects of cyclosporin A (CsA) and FK506 are mediated through binding to immunophilins. Here we show that FK506–FKBP complex suppresses the activation of JNK and p38 pathways at a level upstream of mitogen-activated protein kinase (MAPK) kinase kinase (MAPKK-K) besides the calcineurin–NFAT pathway. A238L, a viral gene product that binds to immunophilin, also blocks activation of both pathways. In contrast, direct inhibitors of calcineurin, Cabin 1 and FR901725, suppress the activation of NFAT but not the JNK or p38 pathway. We further demonstrate that co-expression of a constitutively active NFAT and a constitutively active MEKK1 renders the interleukin-2 promoter in Jurkat T lymphocytes resistant to CsA and FK506, whereas Jurkat cells expressing a constitutively active NFAT alone are still sensitive to CsA or FK506. Therefore, CsA and FK506 exert their immunosuppressive effects through targeting both the calcineurin-dependent NFAT pathway and calcineurin-independent activation pathway for JNK and p38.  相似文献   

5.
Mice expressing an error-prone mitochondrial DNA polymerase rapidly accumulate random mutations in mitochondrial DNA. Expression of the transgene in the heart leads to dilated cardiomyopathy accompanied by a wave of apoptosis in cardiomyocytes, and a vigorous and persistent protective response, including upregulation of the anti-apoptotic protein, Bcl-2. To investigate the role of the mitochondrial permeability transition pore in the development of disease, we treated mice with cyclosporin A (CsA), an inhibitor of pore opening. Drug treatment prevented cardiac dilatation, transgene-specific apoptosis, and upregulation of Bcl-2. It also rescued hearts from the profound decrease in connexin 43, which characterizes the dilatated heart. Treatment with FK506, which like CsA inhibits cytoplasmic calcineurin but not the mitochondrial pore, did not affect disease development, suggesting that the relevant target of CsA was the mitochondrial pore. These data implicate breakdowns in the mitochondrial permeability barrier in pathogenesis of elevated frequencies of mtDNA mutations.  相似文献   

6.
Calcineurin inhibitors such as cyclosporin A (CsA) and FK506 have been used in solid organ and hematopoietic stem cell transplantations to suppress immune function. However, these immunosuppresants are associated with severe endothelial dysfunction. We investigated whether CsA and FK506 induce endothelial dysfunction using a three-dimensional culture blood vessel model, in which human umbilical vein endothelial cells form and maintain capillary-like tube and lumen structures. We found that FK506, but not CsA, induced breakdown of the tube structures and endothelial cell death. FK506 inhibited calcineurin activity, but FK506-induced tube breakdown and cell death was not suppressed by RNA interference targeting calcineurin Aα. FK506 also induced caspase activation, but caspase inhibition by zVAD(OMe)-fmk failed to suppress FK506-induced tube breakdown and cell death. FK506 induced attenuation of Akt and extracellular-regulated kinase 1/2 (ERK1/2). Furthermore, Akt inhibition by LY294002 or ERK1/2 inhibition by PD98059 induced tube breakdown and cell death. Present results suggest that FK506 induces endothelial dysfunction through attenuation of Akt and ERK1/2 independently of calcineurin inhibition and the caspase pathway.  相似文献   

7.
Regulation of tumor necrosis factor cytotoxicity by calcineurin   总被引:1,自引:0,他引:1  
Cyclosporin (CsA) inhibits mitochondrial death signaling and opposes tumor necrosis factor (TNF)-induced apoptosis in vitro. However, CsA is also a potent inhibitor of calcineurin, a phosphatase that may participate in cell death. Therefore, we tested the hypothesis that calcineurin regulates TNF cytotoxicity in rat hepatoma cells (FTO2B). TNF-treated FTO2B cells appeared apoptotic by DNA fragmentation, nuclear condensation, annexin V binding, and caspase activation. We studied two calcineurin inhibitors, CsA and FK506, and found that each potently inhibited TNF cytotoxicity. Western blot demonstrated calcineurin in FTO2B homogenates. In a model of mitochondrial permeability transition (MPT), we found that CsA prevented MPT and cytochrome c release, while FK506 inhibited neither. In summary, we present evidence that calcineurin participates in an apoptotic death pathway activated by TNF. CsA may oppose programmed cell death by inhibiting calcineurin activity and/or inhibiting mitochondrial signaling.  相似文献   

8.
《FEBS letters》1994,350(2-3):304-308
Immunosuppressive drugs such as cyclosporin A (CsA) and FK506 are known to have pleiotropic effects on cells. Here we demonstrate that treatment of HeLa cells with low concentrations of CsA (but not of FK506) induces the synthesis of a stress protein, GRP78, located inside the endoplasmic reticulum. High concentrations of CsA lead to a general decrease in protein synthesis. When cells are stressed (heat-shocked) during the CsA treatment, the synthesis of heat shock proteins is reinforced. FK506 has no detectable effects at any concentration. The mechanism of induction of GRP78 by CsA remains presently unknown. Whatever the mechanism involved, GRP78 overexpression might be responsible for some of the physiological effects of CsA.  相似文献   

9.
Chronic inflammation is a risk factor for the development of colon cancer, providing genotoxic insults, growth and pro-angiogenic factors that can promote tumorigenesis and tumor growth. Immunomodulatory agents can interfere with the inflammation that feeds cancer, but their impact on the transformed cell is poorly understood. The calcium/calcineurin signaling pathway, through activation of NFAT, is essential for effective immune responses, and its inhibitors cyclosporin A (CsA) and FK506 are used in the clinics to suppress immunity. Moreover, the kinases GSK3β and mTOR, modulated by PI-3K/Akt, can inhibit NFAT activity, suggesting a cross-talk between the calcium and growth factor signaling pathways. Both NFAT and mTOR activity have been associated with tumorigenesis. We therefore investigated the impact of calcineurin and PI-3K/mTOR inhibition in growth of human colon carcinoma cells. We show that despite the efficient inhibition of NFAT1 activity, FK506 promotes tumor growth, whereas CsA inhibits it due to a delay in cell cycle progression and induction of necroptosis. We found NFκB activation and mTORC1 activity not to be altered by CsA or FK506. Similarly, changes to mitochondrial homeostasis were equivalent upon treatment with these drugs. We further show that, in our model, NFAT1 activation is not modulated by PI3K/mTOR. We conclude that CsA slows cell cycle progression and induces necroptosis of human carcinoma cell lines in a TGFβ-, NFAT-, NFκB- and PI3K/mTOR-independent fashion. Nevertheless, our data suggest that CsA, in addition to its anti-inflammatory capacity, may target transformed colon and esophagus carcinoma cells without affecting non-transformed cells, promoting beneficial tumoristatic effects.  相似文献   

10.
We analyzed the effect of FK 506 on the production of nitric oxide by macrophages. Isolated rat peritoneal macrophages were cultured for 24 h with or without lipopolysaccharide (LPS) (5 microg/ml) and in the absence or presence of FK 506 (0.1 and 1 microg/ml). The concentration of NO2- in culture supernatants was taken as a measure of nitric oxide production. FK 506 (0.1 and 1 microg/ml) reduced the LPS-induced increase of NO2- levels by 68% and 81%, respectively. The impact of cyclosporin A (CsA) was studied in order to compare their effects. CsA (0.1 and 1 microg/ml) decreased the levels of nitrites by 39% and 69%, respectively. The results obtained suggest that both immunosuppressive drugs exhibit a dose-dependent inhibitory effect on nitric oxide production and that FK 506 is a more potent agent than CsA in this respect.  相似文献   

11.
Chronic inflammation is a risk factor for the development of colon cancer, providing genotoxic insults, growth and pro-angiogenic factors that can promote tumorigenesis and tumor growth. Immunomodulatory agents can interfere with the inflammation that feeds cancer, but their impact on the transformed cell is poorly understood. The calcium/calcineurin signaling pathway, through activation of NFAT, is essential for effective immune responses, and its inhibitors cyclosporin A (CsA) and FK506 are used in the clinics to suppress immunity. Moreover, the kinases GSK3β and mTOR, modulated by PI-3K/Akt, can inhibit NFAT activity, suggesting a cross-talk between the calcium and growth factor signaling pathways. Both NFAT and mTOR activity have been associated with tumorigenesis. We therefore investigated the impact of calcineurin and PI-3K/mTOR inhibition in growth of human colon carcinoma cells. We show that despite the efficient inhibition of NFAT1 activity, FK506 promotes tumor growth, whereas CsA inhibits it due to a delay in cell cycle progression and induction of necroptosis. We found NFκB activation and mTORC1 activity not to be altered by CsA or FK506. Similarly, changes to mitochondrial homeostasis were equivalent upon treatment with these drugs. We further show that, in our model, NFAT1 activation is not modulated by PI3K/mTOR. We conclude that CsA slows cell cycle progression and induces necroptosis of human carcinoma cell lines in a TGFβ-, NFAT-, NFκB- and PI3K/mTOR-independent fashion. Nevertheless, our data suggest that CsA, in addition to its anti-inflammatory capacity, may target transformed colon and esophagus carcinoma cells without affecting non-transformed cells, promoting beneficial tumoristatic effects.  相似文献   

12.
Calcineurin is a calcium-activated serine/threonine phosphatase critical to a number of developmental processes in the cardiovascular, nervous and immune systems. In the T-cell lineage, calcineurin activation is important for pre-T-cell receptor (TCR) signaling, TCR-mediated positive selection of thymocytes into mature T cells, and many aspects of the immune response. The critical role of calcineurin in the immune response is underscored by the fact that calcineurin inhibitors, such as cyclosporin A (CsA) and FK506, are powerful immunosuppressants in wide clinical use. We observed sustained calcineurin activation in human B- and T-cell lymphomas and in all mouse models of lymphoid malignancies analyzed. In intracellular NOTCH1 (ICN1)- and TEL-JAK2-induced T-cell lymphoblastic leukemia, two mouse models relevant to human malignancies, in vivo inhibition of calcineurin activity by CsA or FK506 induced apoptosis of leukemic cells and rapid tumor clearance, and substantially prolonged mouse survival. In contrast, ectopic expression of a constitutively activated mutant of calcineurin favored leukemia progression. Moreover, CsA treatment induced apoptosis in human lymphoma and leukemia cell lines. Thus, calcineurin activation is critical for the maintenance of the leukemic phenotype in vivo, identifying this pathway as a relevant therapeutic target in lymphoid malignancies.  相似文献   

13.
Cyclosporin A (CsA) and FK506 are potent natural product immunosuppressants that induce their biological effects by forming an initial complex with cytosolic proteins termed immunophilins. These drug immunophilin complexes then bind to and inhibit the serine/threonine protein phosphatase calcineurin (CN). Two classes of immunophilin have been identified with cyclophilins (CyP's) being proteins specifically binding CsA and FKBPs specifically binding FK506. Solution and crystal structures of various CsA-CyP and FK506-FKBP complexes have been determined and show no apparent structural similarity between the two classes of drug protein complexes. These findings raise the question as to how, given their structural differences, these two complexes can both inhibit CN. While the crystal structure of the FK506-FKBP12-CN complex has been reported, no structure for a CsA-CyP CN complex has been determined. Here are reported studies that use various modelling strategies to construct a model for the interaction of the cyclosporin A- cyclophilin A complex with calcineurin. The first stage of constructing this model consisted of using conformational comparison of CsA and FK506, GRID and GROUP analysis and restrained molecular dynamics to dock CsA into the FK506 binding site of the FK506-FKBP12-CN structure. An initial model for the CsA-CyPA-CN complex was then constructed by superimposing the structure of the CsA-CyPA complex onto the docked CsA molecule. This model was then optimised with molecular dynamics simulations run on sterically clashing regions. The validity of the model for the CsA-CyPA-CN complex was then examined with respect to the effect of chemical modifications to CsA and amino acid substitutions within CyPA on the ability of the drug-immunophilin complex to inhibit calcineurin.  相似文献   

14.
15.
Respiratory syncytial virus (RSV) infection induced programmed cell death or apoptosis in the cultured lung epithelial cell line, A549. The apoptotic cells underwent multiple changes, including fragmentation and degradation of genomic DNA, consistent with the activation of the DNA fragmentation factor or caspase-activated DNase (DFF or CAD). The infection led to activation of FasL; however, a transdominant mutant of FAS-downstream death domain protein, FADD, did not inhibit apoptosis. Similarly, modest activation of cytoplasmic apoptotic caspases, caspase-3 and -8, were observed; however, only a specific inhibitor of caspases-3 inhibited apoptosis, while an inhibitor of caspase-8 had little effect. No activation of caspase-9 and -10, indicators of the mitochondrial apoptotic pathway, was observed. In contrast, RSV infection strongly activated caspase-12, an endoplasmic reticulum (ER) stress response caspase. Activation of the ER stress response was further evidenced by upregulation of ER chaperones BiP and calnexin. Antisense-mediated inhibition of caspase-12 inhibited apoptosis. Inhibitors of NF-kappa B had no effect on apoptosis. Thus, RSV-induced apoptosis appears to occur through an ER stress response that activates caspase-12, and is uncoupled from NF-kappa B activation.  相似文献   

16.
The linker for activation of T cells (LAT) is essential for T cell activation. Cyclosporin A (CsA) and FK506, inhibitors of T cell proliferation, have been very useful for preventing autoimmune and inflammatory disease and graft rejection. However, both compounds are associated with side effects. We show that TCR ligation in the presence of FK506 or CsA induced rapid modifications in LAT that modulate the electrophoretic mobility of the molecule in SDS-PAGE. Calcineurin, a target for CsA and FK506, dephosphorylated LAT in vitro and restored its electrophoretic mobility. Stimulating T cells with the protein kinase C (PKC) activator PMA induced a shift in the mobility of LAT, whereas inhibitors of PKC blocked the effect of PMA. Thus, manipulating calcineurin or PKC activation alters the electrophoretic mobility of LAT. These results shed light on the molecular actions of CsA and FK506 in T cells and implicate LAT in mediating the drugs' actions.  相似文献   

17.
18.
We investigated the mechanism of toxicity of peroxovanadium complex bpV (phen) in RINm5F cells. Treatment with bpV (phen) provoked cell death, predominantly by apoptosis. This compound induced strong and sustained JNK and p38 MAPK activation. However, ERK phosphorylation was not affected. The level of expression of MAPK phosphatase MKP-1 was suppressed after bpV (phen) treatment. In addition, this compound did not stimulate proteolytic processing of procaspase-3, suggesting that caspase-3 is not activated during the course of bpV (phen)-induced apoptosis. A correlative inhibition of JNK activation by immunosuppressive drug FK 506 induced ERK activation and MKP-1 expression, and suppressed RINm5F cell death. A specific p38 inhibitor SB 203580 also stimulated ERK activation and cell survival. Furthermore, simultaneous pretreatment with both FK 506 and SB 203580 almost completely abolished cell death. Thus, our results suggest that stress kinases and MKP-1 have a role in bpV (phen)-induced apoptosis of RINm5F cells.  相似文献   

19.
The effect of FK506 and cyclosporin A (CsA) on the production of interleukin 6 (IL-6) in adherent monocytes was studied at a single-cell level by the avidinbiotin- peroxidase complex methods. The percentage of IL-6-producing monocytes increased when stimulated with lipopolysaccharide (LPS) at concentrations between 10 ng/ml and 10 mug/ml, in a dose dependent manner. Both FK506 and CsA enhanced the percentage of IL-6- producing monocytes stimulated with 100 pg/ml-1 mug/ml of LPS up to values near those obtained with 10 mug/ml of LPS. The enhancement by FK506 and CsA was not seen when monocytes were stimulated with a high concentration of LPS (10 mug/ml). When monocytes were stimulated with a low concentration of LPS (10 ng/ml), FK506 and CsA enhanced IL-6 production in a dose dependent manner, at a drug concentration of 0.12 nM-1.2 muM (0.1-1 000 ng/ml) for FK506 and 0.83 nM-8.3 muM (1-10 000 ng/ml) for CsA. The optimal effect of FK506 was achieved at a concentration 7-fold lower than that of CsA. In contrast, production of turnout necrosis factor-alpha (TNFalpha and interleukin 1beta (IL-1beta) was slightly suppressed by FK506 and CsA at the concentrations tested. Moreover, pretreatment of monocytes with FK506 and CsA had a significant enhancing effect on LPS-induced IL-6 production, while treatment with FK506 or CsA after LPS stimulation had no effects on IL-6 production, suggesting that the enhancing effect of each drug is exerted before LPS stimulation or at an early stage of the post-receptor pathway after LPS stimulation. These experiments demonstrate that FK506 and CsA can selectively enhance IL-6 production in monocytes under certain conditions in vitro and, possibly, also in vivo.  相似文献   

20.
Poly(ADP-ribose) polymerase-1 (PARP-1) is activated in response to DNA injury in eukaryotic cells and has been implicated in cell dysfunction in reperfusion injury. In this study we investigated the role of PARP-1 on apoptosis in early myocardial reperfusion injury. Mice genetically deficient of PARP-1 (PARP-1-/-) and wild-type littermates were subjected to myocardial ischemia and reperfusion. Myocardial injury was assessed by measuring the serum levels of creatine phosphokinase and oligonucleosomal DNA fragments in the infarcted area. Expression of the anti-apoptotic protein, Bcl-2, and the pro-apoptotic protein, Bax, was analyzed by Western blot. Activation of caspases, important executioners of apoptosis, and activation of the nuclear factor kappa B (NF-kappa B) pathway were evaluated. Gene expression profiles for apoptotic regulators between PARP-1-/- and wild-type mice also were compared. Myocardial damage in PARP-1-/- mice was reduced significantly, as indicated by lower serum creatine phosphokinase levels and reduction of apoptosis, as compared with wild-type mice. Western blot analyses showed increased expression of Bcl-2, which was associated with reduction of caspase-1 and caspase-3 activation. This cardioprotection was associated with significant reduction of the activation of I kappa B kinase complex and NF-kappa B DNA binding. Microarray analysis demonstrated that the expression of 29 known genes of apoptotic regulators was significantly altered in PARP-1-/- mice compared with wild-type mice, whereas 6 known genes were similarly expressed in both genotypes. The data indicate that during reperfusion absence of PARP-1 leads to reduction of myocardial apoptosis, which is associated with reduced NF-kappa B activation and altered gene expression profiles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号