首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The kinetics of p-aminobenzoic acid oxidation catalyzed by horseradish peroxidase Compounds I and II was investigated intensively as a function of pH at 25 degrees in aqueous solutions of ionic strength 0.11. All of the rate data were collected from single turnover experiments involving reactions of a single enzyme compound. In reactions of both compounds, deviations from first order behavior with respect to the enzyme were observed at high pH values which were explained in terms of a free radical interaction of product with the enzyme. The effect could be eliminated with sufficient excess of substrate. Kinetic behavior which deviated from first order in substrate, observed at low pH, was explained by a mechanism involving an enzyme-substrate complex which reacted with an additional molecule of substrate but at a slower rate. The pH dependence of the second order rate constants for the reaction of p-aminobenzoic acid with free Compounds I and II is similar to results obtained for the comparable reactions of ferrocyanide, suggesting similar proton-transfer mechanisms for both reducing substrates. The reduction of Compound II by p-aminobenzoic acid appeared to be influenced by two ionizable groups on the enzyme which affect the electronic environment of the heme. The lack of influence of substrate ionizable groups on the rate of the Compound II reaction indicated that potential differences in reactivities of NH2C6H4COO- and NH2C6H4COOH were levelled by the diffusion-controlled limit in the acid region of pH. The reduction of Compound I by p-aminobenzoic acid was not diffusion-controlled and the rate-pH profile could be explained in terms of three acid ionizations, two on the substrate and one on Compound I.  相似文献   

2.
Myeloperoxidase is the most abundant protein in neutrophils and catalyzes the production of hypochlorous acid. This potent oxidant plays a central role in microbial killing and inflammatory tissue damage. 4-Aminobenzoic acid hydrazide (ABAH) is a mechanism-based inhibitor of myeloperoxidase that is oxidized to radical intermediates that cause enzyme inactivation. We have investigated the mechanism by which benzoic acid hydrazides (BAH) are oxidized by myeloperoxidase, and we have determined the features that enable them to inactivate the enzyme. BAHs readily reduced compound I of myeloperoxidase. The rate constants for these reactions ranged from 1 to 3 x 10(6) M-1 s-1 (15 degrees C, pH 7.0) and were relatively insensitive to the substituents on the aromatic ring. Rate constants for reduction of compound II varied between 6.5 x 10(5) M-1 s-1 for ABAH and 1.3 x 10(3) M-1 s-1 for 4-nitrobenzoic acid hydrazide (15 degrees C, pH 7.0). Reduction of both compound I and compound II by BAHs adhered to the Hammett rule, and there were significant correlations with Brown-Okamoto substituent constants. This indicates that the rates of these reactions were simply determined by the ease of oxidation of the substrates and that the incipient free radical carried a positive charge. ABAH was oxidized by myeloperoxidase without added hydrogen peroxide because it underwent auto-oxidation. Although BAHs generally reacted rapidly with compound II, they should be poor peroxidase substrates because the free radicals formed during peroxidation converted myeloperoxidase to compound III. We found that the reduction of ferric myeloperoxidase by BAH radicals was strongly influenced by Hansch's hydrophobicity constants. BAHs containing more hydrophilic substituents were more effective at converting the enzyme to compound III. This implies that BAH radicals must hydrogen bond to residues in the distal heme pocket before they can reduce the ferric enzyme. Inactivation of myeloperoxidase by BAHs was related to how readily they were oxidized, but there was no correlation with their rate constants for reduction of compounds I or II. We propose that BAHs destroy the heme prosthetic groups of the enzyme by reducing a ferrous myeloperoxidase-hydrogen peroxide complex.  相似文献   

3.
Ascorbic acid is known to stimulate leukocyte functions. In a recent publication it was suggested that the role of ascorbic acid is to reduce compound II of myeloperoxidase back to the native enzyme (Bolscher, B. G. J. M., Zoutberg, G. R., Cuperus, R. A., and Wever, R. (1984) Biochim. Biophys. Acta 784, 189-191). In this paper we report rapid spectral scan and transient state kinetic results on the reaction of three myeloperoxidase compounds II, namely, human neutrophil myeloperoxidase, canine myeloperoxidase, and bovine spleen heme protein with ascorbate. We show by rapid scan spectra that compound II does not pass through any other intermediate when ascorbic acid reduces it back to native form. We also show that the reactions of all three compounds II involve a simple binding interaction before enzyme reduction with an apparent dissociation constant of 6.3 +/- 0.9 x 10(-4) to 2.0 +/- 0.3 x 10(-3)M and a first-order rate constant for reduction of 12.6 +/- 0.6 to 18.8 +/- 1.3 s-1. The optimum pH is 4.5, and at this pH the activation energy for the reaction is 13.2 kJ mol-1. Results of this work lend further evidence that the spleen green heme protein is very similar if not identical to leukocyte myeloperoxidase based on a comparison of spectral scans, pH-rate profiles, and kinetic parameters. We demonstrate that chloride cannot reduce compound II whereas iodide reduces compound II to native enzyme at a rate comparable to that of ascorbate. This explains why ascorbate accelerates chlorination but inhibits iodination. Formation of compound II is a dead end for the generation of hypochlorous acid; ascorbate regenerates more native enzyme to enhance the chlorination reaction namely: myeloperoxidase + peroxide----compound I followed by compound I + chloride----HOCl. On the other hand, ascorbate is a competitor with iodide for both compounds I and II and so inhibits iodination.  相似文献   

4.
The kinetics of the oxidation of ferrocyanide by lactoperoxidase compound II has been studied over the pH range 5.2-9.9 at 25 degrees C and an ionic strength of 0.11 M. For all pH values, exponential decay curves are obtained for the reaction of compound II in the presence of ferrocyanide which yielded pseudo-first-order rate constants kobs. The spontaneous decay of compound II in the absence of ferrocyanide occurs at an appreciable rate which was measured independently and used in the data analysis. At all pH values two striking effects were observed when the rate of the decay reaction in the presence of ferrocyanide, kobs, was plotted against ferrocyanide concentration: a saturation effect and positive intercepts which are attributable to the spontaneous decay. The plots of kobs versus ferrocyanide concentration were analyzed in terms of the following parameters: a first-order rate constant k3,obs, a Michaelis constant Km,obs and a spontaneous-decay rate constant k4. The parameters k3,obs and Km,obs describe the reaction of compound II with ferrocyanide, independently of the spontaneous decay. The parameter k4 has only a small pH dependence, whereas plots of the logs of k3,obs and Km,obs versus pH have slopes of -1 at high pH. The major part of the pH dependence can be explained by the influence of a single heme-linked acid group in the LPO-compound-II-ferrocyanide complex.  相似文献   

5.
Several 2,3-unsaturated carboxylic acids, such as trans-cinnamic acid and its derivatives, were found to be halogenated by chloroperoxidase of Caldariomyces fumago in the presence of hydrogen peroxide and either Cl- or Br-. Cinnamic acid, 4-hydroxycinnamic acid, 4-methoxycinnamic acid, and 3,4-dimethoxycinnamic acid were suitable substrates of chloroperoxidase, and were converted to 2-halo-3-hydroxycarboxylic acid, 2,3-dihydroxycarboxylic acid, decarboxylated halohydrin, or decarboxylated halocompound. However, 4-nitrocinnamic acid and 4-chlorocinnamic acid having electron-attracting groups did not serve as a substrate of the enzyme. The enzyme also did not act on acrylic acid, acrylamide, crotonic acid, fumaric acid, etc. From these data, the enzymatic reactions of chloroperoxidase, concerning the substrate specificity, stereoselectivity, and the reaction mechanism, are discussed on the basis of current knowledge regarding the reaction mechanism of the enzyme. Also they are compared with the chemical reactions of molecular halogen and hypohalous acid.  相似文献   

6.
《Bioorganic chemistry》1987,15(1):59-70
Barbituric acid and some of its derivatives are presented as new substrates for the chloroperoxidase from Caldariomyces fumago. These compounds are rapidly converted to the 5-chloro or 5,5-dichloro derivatives, in very high yield. The reaction path is discussed and the kinetics of the reactions are investigated. It is shown that neither the concentration nor the structure of the organic substrate has any influence on the rate of halogenation. The enzymatic chlorination of 1-methyl-5-phenylbarbituric acid does not proceed in a stereoselective manner. The results are compared with the present theories concerning the enzymatic reaction mechanism, and the current research on this topic is evaluated. The available data do not as yet permit a definitive choice of reaction mechanism.  相似文献   

7.
The chemistry of flavins and flavoproteins. Aerobic photochemistry   总被引:1,自引:0,他引:1       下载免费PDF全文
1. When a mixture of FMN and a reducing substrate (e.g. unprotonated amine) is illuminated oxygen is consumed. 2. The rate of oxygen uptake increases as oxygen concentration falls with some substrates (type I reaction), but with other substrates (typically aromatic compounds) the rate falls as the oxygen concentration falls (type II reaction). 3. The kinetics of type I reactions with EDTA, dl-alpha-phenylglycine and diethanolamine are all consistent with a mechanism in which the rate-determining step, hydrogen abstraction by the FMN triplet, is followed by rapid reoxidation of reduced FMN by oxygen. The reaction is faster at low oxygen concentrations because oxygen quenches the triplet. 4. The sensitivity of reaction rates to substituents in dl-alpha-phenylglycine can be described by a Hammett rho value of -0.6. 5. Individual rate constants for quenching and reaction of the FMN triplet with substrate were calculated (2.4x10(8) and 2.1x10(7)m(-1)s(-1) respectively for EDTA) on the assumption that oxygen quenches the triplet in a diffusion-controlled reaction. 6. The pH-dependences of oxygen uptake rates with six natural amino acids as substrates were measured. 7. Photoinactivations of l-glutamate dehydrogenase and d-amino acid oxidase by FMN were demonstrated.  相似文献   

8.
The chloroperoxidase catalyzed oxidation of methyl phenyl sulfide to (R)-methyl phenyl sulfoxide was investigated, both in batch and membrane reactors, using as oxidant H2O2, or O2 in the presence of either dihydroxyfumaric acid or ascorbic acid. The effects of pH and nature and concentration of the oxidants on the selectivity, stability, and productivity of the enzyme were evaluated. The highest selectivity was displayed by ascorbic acid/O2, even though the activity of chloroperoxidase with this system was lower than that obtained with the others. When the reaction was carried out in a membrane reactor, it was possible to reuse the enzyme for several conversion cycles. The results obtained with ascorbic acid/O2 and dihydroxyfumaric acid/O2 as oxidants do not seem to be compatible with either a mechanism involving hydroxyl radicals as the active species or with the hypothesis that oxidation occurs through the initial formation of H2O2. Copyright 1999 John Wiley & Sons, Inc.  相似文献   

9.
U Pérez  H B Dunford 《Biochemistry》1990,29(11):2757-2763
Transient-state reactions of horseradish peroxidase compounds I and II with 1-methoxy-4-(methylthio)benzene (a para-substituted thioanisole) were studied over the pH range from 3.4 to 10.5. The pH-jump technique was applied to the compound II reactions at pH values below 8.6. The reactions of both compound I and compound II with the para-substituted thioanisole consisted predominantly of an initial burst. The burst was followed by a steady-state phase that became more obvious at lower concentrations of the thioanisoles. The burst phase for both compounds I and II can be explained in terms of two independent transient-state reactions with 1-methoxy-4-(methylthio)benzene as follows: (i) a single reaction of compound I (or compound II) with the substrate and (ii) the formation of a complex between compound I or II and the substrate followed by reaction of the productive complex with another molecule of sulfide. The overall rate of reaction path ii is faster than that of path i. The preference for path i or ii is highly dependent upon the concentration of sulfide with step ii favored at higher sulfide concentrations. The experimental results obtained on the overall reaction under both pseudo-first-order and single-turnover conditions indicate that compound II reacts competitively with both the organic sulfide substrate and the sulfur cation radical produced from compound I oxidation of sulfide.  相似文献   

10.
Lignin and Mn peroxidase-catalyzed oxidation of phenolic lignin oligomers   总被引:2,自引:0,他引:2  
Banci L  Ciofi-Baffoni S  Tien M 《Biochemistry》1999,38(10):3205-3210
The oxidation of phenolic oligomers by lignin and manganese peroxidases was studied by transient-state kinetic methods. The reactivity of peroxidase intermediates compound I and compound II was studied with the phenol guaiacol along with a beta-O-4 phenolic dimer, trimer, and tetramer. Compound I of both peroxidases is much more reactive than compound II. The rate constants for these substrates with Mn peroxidase compound I range from 1.0 x 10(5) M-1 s-1 for guaiacol to 1.1 x 10(3) M-1 s-1 for the tetramer. Reactivity is much higher with lignin peroxidase compound I with rate constants ranging from 1.2 x 10(6) M-1s-1 for guaiacol to 3.6 x 10(5) M-1 s-1 for the tetramer. Rate constants with compound II are much lower with Mn peroxidase exhibiting very little reactivity. The rate constants dramatically decreased with both peroxidases as the size of the substrate increased. The extent of the decrease was much more dramatic with Mn peroxidase, leading us to conclude that, despite its ability to oxidize phenols, Mn2+ is the only physiologically significant substrate. The rate decrease associated with increasing substrate size was more gradual with lignin peroxidase. These data indicate that whereas Mn peroxidase cannot efficiently directly oxidize the lignin polymer, lignin peroxidase is well suited for direct oxidation of polymeric lignin.  相似文献   

11.
1. The kinetics of formation of horseradish peroxidase Compound I were studied by using peroxobenzoic acid and ten substituted peroxobenzoic acids as substrates. Kinetic data for the formation of Compound I with H2O2 and for the reaction of deuteroferrihaem with H2O2 and peroxobenzoic acids, to form a peroxidatically active intermediate, are included for comparison. 2. The observed second-order rate constants for the formation of Compound I with peroxobenzoic acids decrease with increasing pH, in the range pH 5-10, in contrast with pH-independence of the reaction with H2O2. The results imply that the formation of Compound I involves a reaction between the enzyme and un-ionized hydroperoxide molecules. 3. The maximal rate constants for Compound I formation with unhindered peroxobenzoic acids exceed that for H2O2. Peroxobenzoic acids with bulky ortho substituents show marked adverse steric effects. The pattern of substituent effects does not agree with expectations for an electrophilic oxidation of the enzyme by peroxoacid molecules in aqueous solution, but is in agreement with that expected for a reaction involving nucleophilic attack by peroxo anions. 4. Possible reaction mechanisms are considered by which the apparent conflict between the pH-effect and substituent-effect data may be resolved. A model in which it is postulated that a negatively charged 'electrostatic gate' controls access of substrate to the active site and may also activate substrate within the active site, provides the most satisfactory explanation for both the present results and data from the literature.  相似文献   

12.
Njus D  Wigle M  Kelley PM  Kipp BH  Schlegel HB 《Biochemistry》2001,40(39):11905-11911
The 1 equiv reaction between ascorbic acid and cytochrome b(561) is a good model for redox reactions between metalloproteins (electron carriers) and specific organic substrates (hydrogen-atom carriers). Diethyl pyrocarbonate inhibits the reaction of cytochrome b(561) with ascorbate by modifying a histidine residue in the ascorbate-binding site. Ferri/ferrocyanide can mediate reduction of DEPC-treated cytochrome b(561) by ascorbic acid, indicating that DEPC-inhibited cytochrome b(561) cannot accept electrons from a hydrogen-atom donor like ascorbate but can still accept electrons from an electron donor like ferrocyanide. Ascorbic acid reduces cytochrome b(561) with a K(m) of 1.0 +/- 0.2 mM and a V(max) of 4.1 +/- 0.8 s(-1) at pH 7.0. V(max)/K(m) decreases at low pH but is approximately constant at pH >7. The rate constant for oxidation of cytochrome b(561) by semidehydroascorbate decreases at high pH but is approximately constant at pH <7. This suggests that the active site must be unprotonated to react with ascorbate and protonated to react with semidehydroascorbate. Molecular modeling calculations show that hydrogen bonding between the 2-hydroxyl of ascorbate and imidazole stabilizes the ascorbate radical relative to the monoanion. These results are consistent with the following mechanism for ascorbate oxidation. (1) The ascorbate monoanion binds to an unprotonated site (histidine) on cytochrome b(561). (2) This complex donates an electron to reduce the heme. (3) The semidehydroascorbate anion dissociates from the cytochrome, leaving a proton associated with the binding site. (4) The binding site is deprotonated to complete the cycle. In this mechanism, an essential role of the cytochrome is to bind the ascorbate monoanion, which does not react by outer-sphere electron transfer in solution, and complex it in such a way that the complex acts as an electron donor. Thermodynamic considerations show that no steps in this process involve large changes in free energy, so the mechanism is reversible and capable of fulfilling the cytochrome's function of equilibrating ascorbate and semidehydroascorbate.  相似文献   

13.
The reduction of prostaglandin H synthase compound II by ascorbic acid in the presence of diethyldithiocarbamate was studied in 0.1 M phosphate buffer (pH 8.0) at 4.0 +/- 0.5 degrees C, by rapid scan spectrometry and transient state kinetics. A saturation effect and nonzero intercept were observed in the plot of pseudo-first-order rate constant versus ascorbic acid concentration. The saturation behavior suggests formation of a complex between prostaglandin H synthase compound II and ascorbic acid, whereas the nonzero intercept is attributable to the reaction of compound II of prostaglandin H synthase with diethyldithiocarbamate present in the system as a stabilizing agent. A rate equation has been derived which includes all pathways for the conversion of prostaglandin H synthase compound II back to native enzyme. Kinetic parameters for the reduction of compound II by ascorbic acid were obtained. They are the second-order rate constant of (1.4 +/- 0.5) X 10(5) M-1, S-1, for the formation of the compound II-ascorbic acid complex, the first-order rate constant of (14 +/- 4) S-1 for the oxidation-reduction reaction of the complex and its dissociation, and a parameter, Km of 92 +/- 10 microM analogous to the Michaelis-Menten constant. Thus we demonstrate that a quantitative kinetic study on the prostaglandin H synthase reactions can be performed in the presence of diethyldithiocarbamate.  相似文献   

14.
R Makino  R Chiang  L P Hager 《Biochemistry》1976,15(21):4748-4754
The oxidation-reduction potential of chloroperoxidase, an enzyme which catalyzes peroxidative chlorination, bromination, and iodination reactions, has been investigated. In addition to catalyzing biological halogenation reactions, chloroperoxidase is unusual in that the carbon monoxide complex of ferrous chloroperoxidase shows the typical long wavelength Soret absorption associated with P-450 hemoproteins. The pH dependence of the chloroperoxidase oxidation-reduction potential shows a discontinuity around pH 4.7. Similarly, measurements of the affinity of ferrous chloroperoxidase for carbon monoxide monitored both by spectroscopic and potentiometric titration exhibit a discontinuity in the pH 4.7 region. Oxidation-reduction potential measurements on chloroperoxidase in a CO atmosphere also show a discontinuous pH profile. These results suggest that ferrous chloroperoxidase undergoes reversible modification at low pH and that these changes are reflected in the oxidation-reduction potential. The oxidation-reduction potential of chloroperoxidase at pH 6.9 is - 140 mV, close to that measured for cytochrome P-450cam in the presence of substrate. The oxidation-reduction potential of chloroperoxidase at pH 2.7, the pH optimum for enzymatic chlorination, is +150 mV. The oxidation-reduction potentials of the halide complexes of chloroperoxidase (chloride, bromide, and iodide) are essentially identical with the potential measurements on the native enzyme. These observations suggest that, although halide anions bind to the enzyme, they probably do not bind as an axial ligand to the heme ferric iron.  相似文献   

15.
Aubert SD  Li Y  Raushel FM 《Biochemistry》2004,43(19):5707-5715
Phosphotriesterase (PTE) from Pseudomonas diminuta is a zinc metalloenzyme that hydrolyzes a variety of organophosphorus compounds. The kinetic parameters of Zn/Zn PTE, Cd/Cd PTE, and a mixed-metal Zn/Cd hybrid PTE were obtained with a variety of substrates to determine the role of each metal ion in binding and catalysis. pH-rate profiles for the hydrolysis of diethyl p-nitrophenyl phosphate (I) and diethyl p-chlorophenyl phosphate (II) demonstrated that the ionization of a single group in the pH range of 5-10 was critical for substrate turnover. The pK(a) values determined from the kinetic assays were dependent on the identity of the metal ion that occupied the alpha site within the binuclear metal center. These results suggest that the hydrolytic nucleophile is activated as a hydroxide via the ionization of a water molecule attached to the alpha-metal ion. The kinetic constants for the hydrolysis of II and diethyl p-chlorophenyl thiophosphate (IV) were determined for the metal substituted forms of PTE. The kinetic constants for IV were greater than those for II. The inverse thio effect is consistent with the polarization of the phosphoryl oxygen/sulfur bond via a direct ligation to the metal center. The rate enhancement is greater when Cd(2+) occupies the beta-metal-ion position. A series of alanine and asparagine mutations were used to characterize the catalytic roles of Asp233, His254, and Asp301. Mutations to either Asp233 or His254 resulted in an enhanced rate of hydrolysis for the sluggish substrate, diethyl p-chlorophenyl phosphate, and a decrease in the kinetic constants for paraoxon (I). These results are consistent with the existence of a proton relay from Asp301 to His254 to Asp233 that is used to ferry protons away from the active site with substrates that do not require activation of the leaving group phenol. A mechanism for the hydrolysis of organophosphates by the bacterial PTE has been proposed.  相似文献   

16.
The catalytic cycle of horseradish peroxidase (HRP; donor:hydrogen peroxide oxidoreductase; EC 1.11.1.7) is initiated by a rapid oxidation of it by hydrogen peroxide to give an enzyme intermediate, compound I, which reverts to the resting state via two successive single electron transfer reactions from reducing substrate molecules, the first yielding a second enzyme intermediate, compound II. To investigate the mechanism of action of horseradish peroxidase on catechol substrates we have studied the oxidation of both 4-tert-butylcatechol and dopamine catalysed by this enzyme. The different polarity of the side chains of both o-diphenol substrates could help in the understanding of the nature of the rate-limiting step in the oxidation of these substrates by the enzyme. The procedure used is based on the experimental data to the corresponding steady-state equations and permitted evaluation of the more significant individual rate constants involved in the corresponding reaction mechanism. The values obtained for the rate constants for each of the two substrates allow us to conclude that the reaction of horseradish peroxidase compound II with o-diphenols can be visualised as a two-step mechanism in which the first step corresponds to the formation of an enzyme-substrate complex, and the second to the electron transfer from the substrate to the iron atom. The size and hydrophobicity of the substrates control their access to the hydrophobic binding site of horseradish peroxidase, but electron density in the hydroxyl group of C-4 is the most important feature for the electron transfer step.  相似文献   

17.
A steady-state kinetics of peroxidase cooxidation of ascorbic acid and hydroquinone catalyzed by horseradish peroxidase was studied. Ascorbic acid and hydroquinone were shown to be oxidized successively, and hydroquinone promoted the oxidation of ascorbic acid. Excess ascorbic acid inhibited peroxidase in the cooxidation of the substrates at pH 5-7. The values of catalytic constants, (kcat, K(m), and Ka) were determined. A possible activation mechanism of the peroxidation of ascorbic acid in the presence of hydroquinone was suggested, and its biological significance was considered.  相似文献   

18.
Reactions between horseradish peroxidase (HRP) compound I and II and some natural phenolic antioxidants were studied at pH 7. The bimolecular rate constants for these reactions were determined using a sequential mixing stopped-flow spectrometer. The rate constants for the reactions of compound I were found to be two orders of magnitude higher than those for compound II. The phenols under study showed a significant difference in their one-electron reduction potential values. As the rate constants also changed systematically with their one-electron potentials, the Marcus theory of electron transfer was applied to the above determined rate constants and the thermodynamic driving force (deltaG(o)), from which the reorganization energy (lambda) for the electron transfer from phenols to both compound I and II was estimated.  相似文献   

19.
The reactions of the NAD radical (NAD.) with ferric horseradish peroxidase and with compounds I and II were investigated by pulse radiolysis. NAD. reacted with the ferric enzyme and with compound I to form the ferrous enzyme and compound II with second-order rate constants of 8 X 10(8) and 1.5 X 10(8) M-1 s-1, respectively, at pH 7.0. In contrast, no reaction of NAD. with native compound II at pH 10.0 nor with diacetyldeutero-compound II at pH 5.0-8.0 could be detected. Other reducing species generated by pulse radiolysis, such as hydrated electron (eaq-), superoxide anion (O2-), and benzoate anion radical, could not reduce compound II of the enzyme to the ferric state, although the methylviologen radical reduced it. The results are discussed in relation to the mechanism of catalysis of the one-electron oxidation of substrates by peroxidase.  相似文献   

20.
The tyrosine (eTATase) and aspartate (eAATase) aminotransferases of Escherichia coli transaminate diacarboxylic amino acids with similar rate constants. However, eTATase exhibits approximately 10(2)-10(4)-fold higher second-order rate constants for the transamination of aromatic amino acids than does eAATase. A series of natural and unnatural amino acid substrates was used to quantitate specificity differences for these two highly related enzymes. A general trend toward lower transamination activity with increasing side-chain length (extending from aspartate to glutamate to alpha-aminoadipate) is observed for both enzymes. This result suggests that dicarboxylate ligands associate with the two highly related enzymes in a similar manner. The high reactivity of the enzymes with L-Asp and L-Glu can be attributed to an ion pair interaction between the side-chain carboxylate of the amino acid substrate and the guanidino group of the active site residue Arg 292 that is common to both enzymes. A strong linear correlation between side-chain hydrophobicity and transamination rate constants obtains for n-alkyl side-chain amino substrates with eTATase, but not for eAATase. The present kinetic data support a model in which eAATase contains one binding mode for all classes of substrate, whereas the active site of eTATase allows an additional mode that has increased affinity for hydrophobic amino acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号