首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The treatment of C6 glioma cells with the nitric oxide donor, PAPANONOate ((Z)-[N-(3-ammoniopropyl)-N-(n-propyl)amino]diazen-1-ium-1,2-diolate), resulted in a dose-dependent inhibition of cell proliferation. This was associated to a rapid and significant increase of ceramide levels and was mimicked by treatments that augment cellular ceramide. Metabolic experiments with radioactive sphingosine, serine, and choline showed that nitric oxide strongly reduced the utilization of ceramide for the biosynthesis of both sphingomyelin and glucosylceramide. Nevertheless, nitric oxide did not modify the activity of different enzymes of ceramide metabolism. The possibility that nitric oxide impairs the availability of ceramide for sphingolipid biosynthesis was then investigated. The metabolism of N-hexanoyl-[(3)H]sphingosine demonstrated that nitric oxide did not affect the biosynthesis of N-hexanoyl-[(3)H]sphingolipids but inhibited the metabolic utilization of long chain [(3)H]ceramide, synthesized in the endoplasmic reticulum (ER) from the recycled [(3)H]sphingosine. Moreover, results obtained with fluorescent ceramides, brefeldin A, ATP depletion, as well as in a ceramide transport assay indicate that nitric oxide impairs the traffic of ceramide from ER to Golgi apparatus. All this supports that, in glioma cells, the modulation of ceramide traffic can contribute to the regulation of its intracellular levels and participate in the nitric oxide-activated signaling pathway involved in the control of cell proliferation.  相似文献   

2.
Enzymatic glucosylation of dolichol monophosphate (dolichol-P) from UDP-D-[3H]glucose was studied using the microsomal fraction of BHK-21 cells. The reaction product was separated by preparative thin-layer chromatography, further purified by DEAE-cellulose acetate column chromatography, and characterized as dolichyl-beta-D-glucosyl phosphate (Dol-P-Glc). The microsomal fraction of BHK cells catalyzed the incorporation of glucose from UDP-[3H]glucose into ceramides (endogenous and exogenous) and Dol-P; both reactions required Mn2+. Maximal glucosylation of Dol-P was achieved at pH 5.6-5.8 in the presence of a non-ionic detergent, Zonyl A. Glucosylation of exogenous Dol-P, from UDP-Glc, was non-competitively inhibited by exogenous ceramides. Incubation of Dol-P-[3H]Glc or Dol-P-[14C]Glc with liposomes (containing ceramides) and the microsomal fraction of BHK-21 cells resulted in the formation of a radioactive glucolipid which comigrated with the same RF value as glucosylceramide (Glc-Cer) on silica gel thin-layer chromatography. Transfer of [14C]glucose from Dol-P-[14C]Glc to exogenous ceramides was confirmed by double-labeling techniques. The pH dependence for transfer of radio-labeled glucose from Dol-P-[3H]Glc to ceramides was multi-phasic (optima at pH 4.0 and 7.0); glycosylation occurred within 5 min and Zonyl A was absolutely essential for the transfer reaction. These results indicate that Dol-P-Glc may also participate in the synthesis of ceramide hexosides.  相似文献   

3.
Mitochondria, and specially outer mitochondrial membranes, incorporate D-[14C]glucose from UDP-D-[14C]glucose into products extracted with organic solvents and into a residual precipitate, with a pH optimum of about 6.5 in (2-N-morpholino-ethane)-sulfonic acid (MES) buffer. The chloroform/methanol (2:1, v/v) extract contains two products. The major [14C]glucolipid is stable to mild alkali, but releases [14C]glucose upon mild acid hydrolysis. It is retained on DEAE-cellulose (acetate form) and is eluted with the same ionic strength as an hexosyldolichyl monophosphate diester. This [14C] glucolipid has the same chromatographic behaviour as dolichyl-mannosylphosphate in neutral, acidic and basic solvent systems; and its biosynthesis is greatly increased by exogenous dolichylmonophosphate. The other [14C]glucolipid is stable upon mild acid hydrolysis and is not retained on DEAE-cellulose. On silicic acid it is eluted with acetone. The biosynthesis of this compound is stimulated by exogenous ceramide. This glucolipid has the same chromatographic mobility in different solvent systems as glucosylceramide isolated from the liver of a patient with Gaucher's disease. Biosynthesis of these two glucolipids is inhibited by UDP, but only biosynthesis of dolichylglucosyl monophosphate is reversible with this nucleotide. The biosynthesis of these different glucosylated derivatives is stimulated by the addition of divalent cations (Mn2+, Mg2+). the effect of these two metal ions on dolichylglucosyl monophosphate and glucosylceramide formation is studied in different conditions.  相似文献   

4.
The microsomal fractions of cultured hamster fibroblasts (BHK-21 cells) catalyze the incorporation of glucose from UDPglucose or of deoxyglucose from UDPdeoxyglucose into a reaction mixture with liposomes consisting of ceramide and phosphatidylcholine. The microsomal fractions also catalyze the transfer of glucose from UDPglucose to endogenous acceptors. The specific activity of ceramide deoxyglucoside or ceramide glucoside formation was significantly higher when microsomal preparations obtained from deoxyglucose-treated or herpesvirus-infected BHK-21 cells were used as the glucosyltransferase source. Deoxyglucose was incorporated from UDPdeoxyglucose into hydroxy- and nonhydroxy-fatty acid-containing ceramides at approximately the same rate. Competitive inhibition of deoxyglucosylation of ceramides by UDPglucose suggests that both reactions were catalyzed by the same enzyme, viz. UDPglucose:ceramide glucosyltransferase. This inhibition of glycosphingolipid synthesis may account, in part, for the inhibitory effect of deoxyglucose on lipid-containing viruses.  相似文献   

5.
Pancreatic β-cell apoptosis induced by palmitate requires high glucose concentrations. Ceramides have been suggested to be important mediators of glucolipotoxicity-induced β-cell apoptosis. In INS-1 β-cells, 0.4 mM palmitate with 5 mM glucose increased the levels of dihydrosphingosine and dihydroceramides, two lipid intermediates in the de novo biosynthesis of ceramides, without inducing apoptosis. Increasing glucose concentrations to 30 mM amplified palmitate-induced accumulation of dihydrosphingosine and the formation of (dihydro)ceramides. Of note, glucolipotoxicity specifically induced the formation of C(18:0), C(22:0) and C(24:1) (dihydro)ceramide molecular species, which was associated with the up-regulation of CerS4 (ceramide synthase 4) levels. Fumonisin-B1, a ceramide synthase inhibitor, partially blocked apoptosis induced by glucolipotoxicity. In contrast, apoptosis was potentiated in the presence of D,L-threo-1-phenyl-2-palmitoylamino-3-morpholinopropan-1-ol, an inhibitor of glucosylceramide synthase. Moreover, overexpression of CerS4 amplified ceramide production and apoptosis induced by palmitate with 30 mM glucose, whereas down-regulation of CerS4 by siRNA (short interfering RNA) reduced apoptosis. CerS4 also potentiates ceramide accumulation and apoptosis induced by another saturated fatty acid: stearate. Collectively, our results suggest that glucolipotoxicity induces β-cell apoptosis through a dual mechanism involving de novo ceramide biosynthesis and the formation of ceramides with specific N-acyl chain lengths rather than an overall increase in ceramide content.  相似文献   

6.
Treatment of human osteosarcoma cells, expressing CD4 and various chemokine receptors, with the glucosylceramide synthase inhibitor 1-phenyl-2-hexadecanoylamino-3-morpholino-1-propanol (PPMP), blocked target membrane glycosphingolipid (GSL) biosynthesis and reduced the susceptibility of cells to infection and fusion mediated by envelope glycoproteins from a variety of human immunodeficiency virus type 1 (HIV-1) isolates that utilize CXCR4 and/or CCR5. PPMP treatment of the cell lines did not significantly change the cell surface expression of CD4, CXCR4, and/or CCR5, nor did it alter the chemokine receptor association with CD4. PPMP-treated cells exhibited no changes in chemokine-induced Ca(2+) mobilization and chemotaxis. However, massive envelope glycoprotein conformational changes triggered by CD4 and the appropriate chemokine receptor on the target membrane were inhibited when the target cells were treated with PPMP. Addition of various purified GSLs to PPMP-treated target cells showed that for all isolates tested, globotriaosylceramide (Gb3) was the most potent GSL in restoring the fusion susceptibility of target cells with cells expressing HIV-1 envelope glycoproteins; addition of the monosialoganglioside GM3 yielded a slight enhancement of fusion susceptibility. Our data are consistent with the notion that a limited number of specific GSL species serve as crucial elements in organizing gp120-gp41, CD4, and an appropriate chemokine receptor into a membrane fusion complex.  相似文献   

7.
The resurgence of drug-resistant apicomplexa, in particular Plasmodium falciparum, the most fatal human malarial parasite, has focused attention on the recent discovery of the shikimate pathway in these organisms, as it may provide the urgently required, novel drug targets resulting from the absence of this pathway in mammals. The direction of a parasiticidal drug design programme obviously requires knowledge of the subcellular localization and indeed full characterization of the possible enzyme targets. Here, we report the cloning and characterization of chorismate synthase from P. falciparum and present the first biochemical and immunological studies of an enzyme of the shikimate pathway from an apicomplexan parasite. We show that this chorismate synthase does not possess an intrinsic flavin reductase activity and is therefore monofunctional like the plant and bacterial chorismate synthases. Highest immunological cross-reactivity was found with a plant chorismate synthase. However, in contrast to the plant enzyme, which is located to the plastid, P. falciparum chorismate synthase is found in the parasite cytosol, akin to the fungal enzymes that possess an intrinsic flavin reductase activity (i.e. are bifunctional). Thus, P. falciparum chorismate synthase has a combination of properties that distinguishes it from other described chorismate synthases.  相似文献   

8.
We have previously shown that ongoing glucosylceramide (GlcCer) synthesis is required for basic fibroblast growth factor (bFGF) and laminin to stimulate axonal growth in cultured hippocampal neurons (Boldin, S., and Futerman, A. H. (1997) J. Neurochem. 68, 882-885). We now demonstrate that stimulation of axonal growth by bFGF leads to an increase in the rate of GlcCer synthesis. Within minutes of incubation with bFGF, a significant increase in the rate of metabolism of [(14)C]hexanoyl ceramide to [(14)C]hexanoyl GlcCer is detected, but there are no changes in the rate of [(14)C]hexanoyl sphingomyelin synthesis. In vitro analysis of GlcCer synthase activity revealed an approximately 2-fold increase in the rate of [(14)C]hexanoyl GlcCer synthesis upon incubation with either bFGF or laminin; other growth factors, which did not effect the rate of axon growth, had no effect on the rate of [(14)C]hexanoyl GlcCer synthesis. The increased rate of [(14)C]hexanoyl GlcCer synthesis was not affected by preincubation with either cycloheximide or actinomycin, and no elevation of GlcCer synthase mRNA levels was detected, suggesting that GlcCer synthase is up-regulated by a post-translational mechanism. The relevance of these results for understanding the regulation of axonal growth is discussed.  相似文献   

9.
A variety of anti-mitochondrial drugs that had previously been found to inhibit the growth of the malarial parasite Plasmodium falciparum were tested on Babesia bovis in vitro. Several of these drugs were found to be non-toxic towards B. bovis. However, those drugs that were found to inhibit babesial growth included compounds (shown in parentheses) that have the following putative mitochondrial targets in the parasite: ATP synthetase complex (rhodamine 123, oligomycin, Janus Green); ATP-ADP translocase (bongkrekic acid); electron transport (rotenone, n-heptyl-4-hydroxyquinoline-N-oxide (HQNO), antimycin A); ubiquinone (CoQ) function (BW58C, menoctone); protein synthesis (tetracycline); and the proton pump (CCCP). We have also investigated the effects of some of these drugs on pyrimidine biosynthesis de novo by following the incorporation of [14C]bicarbonate into pyrimidine nucleotides and into the pyrimidine moieties of nucleic acids. The ubiquinone analogues BW58C and menoctone inhibited this pathway in the nM-microM range of concentrations. Inhibitors of electron transport (antimycin A and oligomycin) and an uncoupler (CCCP) were also effective inhibitors of pyrimidine biosynthesis de novo. We conclude that B. bovis has a functional mitochondrion that contributes significantly to pyrimidine biosynthesis de novo and to the overall energy metabolism of the parasite.  相似文献   

10.
The results of molecular weight studies, structural analysis of the [(14)C]polysaccharides, and enzymic properties indicate that the Pisum sativum guanosine diphosphosphate glucose: glucosyltransferase is an enzymic component involved in the biosynthesis of glucomannan chains. The properties of the Pisum sativum particulate enzyme are essentially identical to the glucomannan synthetase obtained from Phaseolus aureus. Also present in the particulate preparation is an enzyme which catalyzes the formation of a [(14)C]mannolipid, using guanosine diphosphate-[(14)C]mannose as a substrate. The [(14)C]mannolipid is hydrolyzed by treatment with 0.012 m HCl, but is stable to treatment with 0.09 m NaOH. The formation of the [(14)C]mannolipid is apparently reversed by guanosine diphosphate, but not by guanosine monophosphate. The chromatographic mobility of the [(14)C]mannolipid is identical to that of a similar mannolipid synthesized by a Phaseolus aureus enzyme.  相似文献   

11.
Glycosyltransferases in the Golgi membranes of onion stem   总被引:6,自引:0,他引:6       下载免费PDF全文
Cell fractions consisting largely of Golgi membranes were prepared from the meristematic region of the onion. Several enzyme activities were found to be localized in these fractions: inosine diphosphatase, galactosyltransferases and glucosyltransferases. The fractions catalysed the transfer of [(14)C]galactose from UDP-galactose to endogenous and cell-sap acceptors, to N-acetylglucosamine and to ovalbumin. In the presence of bovine alpha-lactalbumin, transfer to glucose (lactose synthesis) was catalysed. [(14)C]Glucose was transferred from UDP-glucose to endogenous and cell-sap acceptors, to cellobiose and to fructose (sucrose synthesis). All these activities were latent, being potentiated by detergents (Triton X-100 or sodium deoxycholate). The characteristics of some of these enzyme activities are described and their biological significance is discussed.  相似文献   

12.
Abstract: We reported previously that stereoisomers of 1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP), the d - threo and l - threo forms, exerted inhibitory and stimulatory effects on glycosphingolipid (GSL) biosynthesis in B16 melanoma cells, respectively. In the present study, the primary cultured rat neocortical explants were treated with l - or d - threo -PDMP. These isomers exhibited opposite effects on neurite outgrowth: d -PDMP was inhibitory at concentrations ranging from 5 to 20 µ M , whereas l -PDMP was stimulatory over the same concentration range, and the maximal effect was observed at 10–15 µ M . Rat neocortical explants were doubly labeled with [14C]serine and [3H]galactose at 15 µ M l - or d -PDMP. l -PDMP increased the incorporations of both labels into sphinganine, sphingosine, ceramide, sphingomyelin, neutral GSLs, and gangliosides, whereas d -PDMP inhibited the glucosylation of ceramide resulting in a reduction of ganglioside biosynthesis and accumulation of precursors of glucosylceramide, ceramide, and sphingomyelin. To clarify the stimulatory effect of l -PDMP on GSL biosynthesis, serine palmitoyltransferase, sphingosine N -acyltransferase, glucosylceramide synthase, lactosylceramide synthase, GM3 synthase, and GD3 synthase were quantified in cell lysates of explants pretreated with this agent. Serine palmitoyltransferase was fully activated up to 150% of the control. Furthermore, marked increases in the activities of lactosylceramide synthase (200%), GM3 synthase (240%), and GD3 synthase (300%) were observed. These results suggest that the neurotrophic action of l -PDMP may be ascribable to its stimulatory effect on the biosynthesis of GSLs, especially that of gangliosides.  相似文献   

13.
Two mechanisms are recognized for polysaccharide chain elongation: (a) the nonreducing-end, primer-dependent mechanism and (b) the reducing-end, two-site insertion mechanism. We recently demonstrated the latter mechanism for starch biosynthesis by pulsing starch granules with ADP-[14C]Glc and chasing with ADPGlc for eight varieties of starch granules. Others have reported the addition of glucose from ADPGlc to the nonreducing ends of maltose, maltotriose, and maltopentaose and a branched maltopentasaccharide. It was concluded that starch chains are biosynthesized by the addition of glucose to the nonreducing ends of maltodextrin primers. In this study, we reinvestigated the maltodextrin reactions by reacting three kinds of starch granules from maize, wheat, and rice with ADP-[14C]Glc in the absence and presence of maltose (G2), maltotriose (G3), and maltodextrin (d.p.12) and found that they inhibited starch biosynthesis rather than stimulating it, as would be expected for primers. The major product in the presence of G2 was G3 with decreasing amounts of G4-G9 and the major products in the presence of G3 was G4 and G5, with decreasing amounts of G6-G9. It was concluded that maltodextrins are acceptors rather than primers. This was confirmed by pulsing the starch granules with ADP-[14C]Glc and chasing with G2, G3, and G6, which gave release of 14C-label from the pulsed granules in the absence of ADPGlc, further demonstrating that maltodextrins are acceptors that inhibit starch biosynthesis by releasing glucose from starch synthase, rather than acting as primers and stimulating biosynthesis.  相似文献   

14.
Although the yeast Saccharomyces cerevisiae has only one sphingolipid class with a head group based on phosphoinositol, the yeast Pichia pastoris as well as many other fungi have a second class, glucosylceramide, which has a glucose head group. These two sphingolipid classes are in addition distinguished by a characteristic structure of their ceramide backbones. Here, we investigate the mechanisms controlling substrate entry into the glucosylceramide branch of the pathway. By a combination of enzymatic in vitro studies and lipid analysis of genetically engineered yeast strains, we show that the ceramide synthase Bar1p occupies a key branching point in sphingolipid biosynthesis in P. pastoris. By preferring dihydroxy sphingoid bases and C(16)/C(18) acyl-coenzyme A as substrates, Bar1p produces a structurally well defined group of ceramide species, which is the exclusive precursor for glucosylceramide biosynthesis. Correlating with the absence of glucosylceramide in this yeast, a gene encoding Bar1p is missing in S. cerevisiae. We could not successfully investigate the second ceramide synthase in P. pastoris that is orthologous to S. cerevisiae Lag1p/Lac1p. By analyzing the ceramide and glucosylceramide species in a collection of P. pastoris knock-out strains in which individual genes encoding enzymes involved in glucosylceramide biosynthesis were systematically deleted, we show that the ceramide species produced by Bar1p have to be modified by two additional enzymes, sphingolipid Δ4-desaturase and fatty acid α-hydroxylase, before the final addition of the glucose head group by the glucosylceramide synthase. Together, this set of four enzymes specifically defines the pathway leading to glucosylceramide biosynthesis.  相似文献   

15.
The malarial parasite relies on de novo pyrimidine biosynthesis to maintain its pyrimidine pools, and unlike the human host cell it is unable to scavenge preformed pyrimidines. Dihydroorotate dehydrogenase (DHODH) catalyzes the oxidation of dihydroorotate (DHO) to produce orotate, a key step in pyrimidine biosynthesis. The enzyme is located in the outer membrane of the mitochondria of the malarial parasite. To characterize the biochemical properties of the malarial enzyme, an N-terminally truncated version of P. falciparum DHODH has been expressed as a soluble, active enzyme in E. coli. The recombinant enzyme binds 0.9 molar equivalents of the cofactor FMN and it has a pH maximum of 8.0 (k(cat) 8 s(-1), K(m)(app) DHO (40-80 microm)). The substrate specificity of the ubiquinone cofactor (CoQ(n)) that is required for the oxidation of FMN in the second step of the reaction was also determined. The isoprenoid (n) length of CoQ(n) was a determinant of reaction efficiency; CoQ(4), CoQ(6) and decylubiquinone (CoQ(D)) were efficiently utilized in the reaction, however cofactors lacking an isoprenoid tail (CoQ(0) and vitamin K(3)) showed decreased catalytic efficiency resulting from a 4 to 7-fold increase in K(m)(app). Five potent inhibitors of mammalian DHODH, Redoxal, dichloroallyl lawsone (DCL), and three analogs of A77 1726 were tested as inhibitors of the malarial enzyme. All five compounds were poor inhibitors of the malarial enzyme, with IC(50)'s ranging from 0.1-1.0 mm. The IC(50) values for inhibition of the malarial enzyme are 10(2)-10(4)-fold higher than the values reported for the mammalian enzyme, demonstrating that inhibitor binding to DHODH is species specific. These studies provide direct evidence that the malarial DHODH active site is different from the host enzyme, and that it is an attractive target for the development of new anti-malarial agents.  相似文献   

16.
It was previously shown that sphingomyelin and gangliosides can be biosynthesized starting from sphingosine or sphingosine-containing fragments which originated in the course of GM1 ganglioside catabolism. In the present paper we investigated which fragments were specifically re-used for sphingomyelin and ganglioside biosynthesis in rat liver. At 30 h after intravenous injection of GM1 labelled at the level of the fatty acid ([stearoyl-14C]GM1) or of the sphingosine ([Sph-3H]) moiety, it was observed that radioactive sphingomyelin was formed almost exclusively after the sphingosine-labelled-GM1 administration. This permitted the recognition of sphingosine as the metabolite re-used for sphingomyelin biosynthesis. Conversely, gangliosides more complex than GM1 were similarly radiolabelled after the two treatments, thus ruling out sphingosine re-utilization for ganglioside biosynthesis. For the identification of the lipid fragment re-used for ganglioside biosynthesis, we administered to rats neutral glycosphingolipids (galactosylceramide, glucosylceramide and lactosylceramide) each radiolabelled in the sphingosine moiety or in the terminal sugar residue. Thereafter we compared the formation of radiolabelled gangliosides in the liver with respect to the species administered and the label location. After galactosylceramide was injected, no radiolabelled gangliosides were formed. After the administration of differently labelled glucosylceramide, radiolabelled gangliosides were formed, regardless of the position of the label. After lactosylceramide administration, the ganglioside fraction became more radioactive when the long-chain-base-labelled precursors were used. These results suggest that glucosylceramide, derived from glycosphingolipid and ganglioside catabolism, is recycled for ganglioside biosynthesis.  相似文献   

17.
Bacteroides ruminicola is one of several species of anaerobes that are able to reductively carboxylate isovalerate (or isovaleryl-coenzyme A) to synthesize alpha-ketoisocaproate and thus leucine. When isovalerate was not supplied to growing B. ruminicola cultures, carbon from [U-14C]glucose was used for the synthesis of leucine and other cellular amino acids. When unlabeled isovalerate was available, however, utilization of [U-14C]glucose or [2-14C]acetate for leucine synthesis was markedly and specifically reduced. Enzyme assays indicated that the key enzyme of the common isopropylmalate (IPM) pathway for leucine biosynthesis, IPM synthase, was present in B. ruminicola cell extracts. The specific activity of IPM synthase was reduced when leucine was added to the growth medium but was increased by the addition of isoleucine plus valine, whereas the addition of isovalerate had little or no effect. The activity of B. ruminicola IPM synthase was strongly inhibited by leucine, the end product of the pathway. It seems unlikely that the moderate inhibition of the enzyme by isovalerate adequately explains the regulation of carbon flow by isovalerate in growing cultures. Bacteroides fragilis apparently also uses either the isovalerate carboxylation or the IPM pathway for leucine biosynthesis. Furthermore, both of these organisms synthesize isoleucine and phenylalanine, using carbon from 2-methylbutyrate and phenylacetate, respectively, in preference to synthesis of these amino acids de novo from glucose. Thus, it appears that these organisms have the ability to regulate alternative pathways for the biosynthesis of certain amino acids and that pathways involving reductive carboxylations are likely to be favored in their natural habitats.  相似文献   

18.
Platelet-activating factor modulates brain sphingomyelin metabolism.   总被引:1,自引:0,他引:1  
In the present study the modulatory action of platelet-activating factor (PAF) on sphingolipid metabolism in cerebral cortical slices was studied. PAF did not alter the basal levels of either sphingomyelin (SM) or ceramide. However, the SMase-elicited reciprocal alterations in SM and ceramide levels were partially prevented by the PAF treatment. The PAF effect was dose-dependent, with 10-8 m being the lowest effective concentration, and receptor-mediated as it was abolished by WEB 2086, a PAF receptor antagonist. Neither N-oleoylethanolamine (OE, ceramidase inhibitor) or d,l-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP, an inhibitor of glucosylceramide synthase and the formation of 1-O-acyl ceramides) prevented the action of PAF. Therefore, the effect of PAF was unlikely to be dependent upon transformation of ceramides into glycosphingolipids, 1-O-acyl ceramides or sphingosine. Experiments with different labeled compounds ([14C]serine, [14C]arachidonate and phosphatidyl [N-methyl-3H]choline) were also performed to test whether PAF could affect the resynthesis of SM. Data obtained agree with the idea that selective pools of both choline and ethanolamine phospholipids were used as precursors for the resynthesis of SM elicited by SMase treatment. PAF itself did not evoke any variation in the lipids analyzed but always prevented the SMase-evoked alterations. Together the data suggest the interesting possibility that PAF increases the overall turnover of SM. In summary, the present data demonstrate that PAF is able to regulate the cellular ceramide levels in brain by accelerating the SM cycle.  相似文献   

19.
The human malaria parasite Plasmodium falciparum synthesizes fatty acids by using a type II synthase that is structurally different from the type I system found in eukaryotes. Because of this difference and the vital role of fatty acids, the enzymes involved in fatty acid biosynthesis of P. falciparum represent interesting targets for the development of new antimalarial drugs. beta-Ketoacyl-acyl carrier protein (ACP) synthase (PfFabBF), being the only elongating beta-ketoacyl-ACP synthase in P. falciparum, is a potential candidate for inhibition. In this study we present the cloning, expression, purification, and characterization of PfFabBF. Soluble protein was obtained when PfFabBF was expressed as a NusA fusion protein in Escherichia coli BL21(DE3)-CodonPlus-RIL cells under conditions of osmotic stress. The fusion protein was purified by affinity and ion exchange chromatography. Various acyl-P. falciparum acyl carrier protein (PfACP) substrates were tested for their specific activities, and their kinetic parameters were determined. Activity of PfFabBF was highest with C(4:0)- to C(10:0)-acyl-PfACPs and decreased with use of longer chain acyl-PfACPs. Consistent with the fatty acid synthesis profile found in the parasite cell, no activity could be detected with C(16:0)-PfACP, indicating that the enzyme is lacking the capability of elongating acyl chains that are longer than 14 carbon atoms. PfFabBF was found to be specific for acyl-PfACPs, and it displayed much lower activities with the corresponding acyl-CoAs. Furthermore, PfFabBF was shown to be sensitive to cerulenin and thiolactomycin, known inhibitors of beta-ketoacyl-ACP synthases. These results represent an important step toward the evaluation of P. falciparum beta-ketoacyl-ACP synthase as a novel antimalaria target.  相似文献   

20.
Previous work has led to the identification of inhibitors of glucosylceramide synthase, the enzyme catalyzing the first glycosylation step in the synthesis of glucosylceramide-based glycosphingolipids. These inhibitors have two identified sites of action: the inhibition of glucosylceramide synthase, resulting in the depletion of cellular glycosphingolipids, and the inhibition of 1-O-acylceramide synthase, resulting in the elevation of cell ceramide levels. A new series of glucosylceramide synthase inhibitors based on substitutions in the phenyl ring of a parent compound, 1-phenyl-2-palmitoylamino-3-pyrrolidino-1-propanol (P4), was made. For substitutions of single functional groups, the potency of these inhibitors in blocking glucosylceramide synthase was primarily dependent upon the hydrophobic and electronic properties of the substituents. An exponential relationship was found between the IC50 of each inhibitor and the sum of derived hydrophobic (pi) and electronic (sigma) parameters. This relationship demonstrated that substitutions that increased the electron-donating characteristics and decreased the lipophilic characteristics of the homologues enhanced the potency of these compounds in blocking glucosylceramide formation. A novel compound was subsequently designed and observed to be even more active in blocking glucosylceramide formation. This compound, D-threo-4'-hydroxy-P4, inhibited glucosylceramide synthase at an IC50 of 90 nM. In addition, a series of dioxane substitutions was designed and tested. These included 3',4'-methylenedioxyphenyl-, 3',4'-ethylenedioxyphenyl-, and 3'4'-trimethylenedioxyphenyl-substituted homologues. D-threo-3', 4'-Ethylenedioxy-P4-inhibited glucosylceramide synthase was comparably active to the p-hydroxy homologue. 4'-Hydroxy-P4 and ethylenedioxy-P4 blocked glucosylceramide synthase activity at concentrations that had little effect on 1-O-acylceramide synthase activity. These novel inhibitors resulted in the inhibition of glycosphingolipid synthesis in cultured cells at concentrations that did not significantly raise intracellular ceramide levels or inhibit cell growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号