首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Disparate resource use originating from phenology of biotic resources, abiotic conditions, and life cycles of exploiting organisms underscores the importance of research across time and space to guide management practices. Our goal was to evaluate resource use of northern bobwhite (Colinus virginianus; bobwhite) at two spatial scales and across three age classes, from hatching through a period of the postjuvenile molt. Our study was conducted at Tall Timbers Research Station, Tallahassee, FL, USA—situated in a landscape subjected to small scale (<20 ha) prescribed fires on a 2‐year fire rotation. We predicted prescribed fire, disking, and supplemental feeding would dictate resource use, but effects would depend on time since fire, brood age, and time of day. We predicted vegetation and temperature would govern roost use by broods, but these effects would also depend on age. We radio‐tracked 62 broods 21–35 times / week during May–October 2018 and 2019. Broods were less likely to use areas with large proportions of hardwood drains but favored sites with greater proportions of burned uplands, regardless of the time of day. Broods were less likely to use areas at greater distances from supplemental feed; this relationship had no interaction with age but was stronger later in the nesting season (>July 15). Broods were more likely to use areas with greater proportions of fallow fields during the day than for roosting. Broods used roosts with more woody cover and visual obscurity than at available sites. Roosts consisted of less grass and bare ground. However, these effects interacted with age; broods used sparser cover at older ages. Neonate broods were more likely to use cooler roosts with greater thermal stability, but this effect was reversed for juveniles. Broods may alter resource use with changes in vulnerabilities to threats such as thermal risks and predation.  相似文献   

2.
Loss and degradation of grasslands in the Great Plains region have resulted in major declines in abundance of grassland bird species. To ensure future viability of grassland bird populations, it is crucial to evaluate specific effects of environmental factors among species to determine drivers of population decline and develop effective conservation strategies. We used threshold models to quantify the effects of land cover and weather changes in "lesser prairie‐chicken" and "greater prairie‐chicken" (Tympanuchus pallidicinctus and T. cupido, respectively), northern bobwhites (Colinus virginianus), and ring‐necked pheasants (Phasianus colchicus). We demonstrated a novel approach for estimating landscape conditions needed to optimize abundance across multiple species at a variety of spatial scales. Abundance of all four species was highest following wet summers and dry winters. Prairie chicken and ring‐necked pheasant abundance was highest following cool winters, while northern bobwhite abundance was highest following warm winters. Greater prairie chicken and northern bobwhite abundance was also highest following cooler summers. Optimal abundance of each species occurred in landscapes that represented a grassland and cropland mosaic, though prairie chicken abundance was optimized in landscapes with more grassland and less edge habitat than northern bobwhites and ring‐necked pheasants. Because these effects differed among species, managing for an optimal landscape for multiple species may not be the optimal scenario for any one species.  相似文献   

3.
Grassland birds have exhibited dramatic and widespread declines since the mid‐20th century. Greater prairie chickens (Tympanuchus cupido pinnatus) are considered an umbrella species for grassland conservation and are frequent targets of management, but their responses to land use and management can be quite variable. We used data collected during 2007–2009 and 2014–2015 to investigate effects of land use and grassland management practices on habitat selection and survival rates of greater prairie chickens in central Wisconsin, USA. We examined habitat, nest‐site, and brood‐rearing site selection by hens and modeled effects of land cover and management on survival rates of hens, nests, and broods. Prairie chickens consistently selected grassland over other cover types, but selection or avoidance of management practices varied among life‐history stages. Hen, nest, and brood survival rates were influenced by different land cover types and management practices. At the landscape scale, hens selected areas where brush and trees had been removed during the previous year, which increased hen survival. Hens selected nest sites in hay fields and brood‐rearing sites in burned areas, but prescribed fire had a negative influence on hen survival. Brood survival rates were positively associated with grazing and were highest when home ranges contained ≈15%–20% shrub/tree cover. The effects of landscape composition on nest survival were ambiguous. Collectively, our results highlight the importance of evaluating responses to management efforts across a range of life‐history stages and suggest that a variety of management practices are likely necessary to provide structurally heterogeneous, high‐quality habitat for greater prairie chickens. Brush and tree removal, grazing, hay cultivation, and prescribed fire may be especially beneficial for prairie chickens in central Wisconsin, but trade‐offs among life‐history stages and the timing of management practices must be considered carefully.  相似文献   

4.
Individuals of a population may vary along a pace‐of‐life syndrome from highly fecund, short‐lived, bold, dispersive “fast” types at one end of the spectrum to less fecund, long‐lived, shy, plastic “slow” types at the other end. Risk‐taking behavior might mediate the underlying life history trade‐off, but empirical evidence supporting this hypothesis is still ambiguous. Using experimentally created populations of common voles (Microtus arvalis)—a species with distinct seasonal life history trajectories—we aimed to test whether individual differences in boldness behavior covary with risk taking, space use, and fitness. We quantified risk taking, space use (via automated tracking), survival, and reproductive success (via genetic parentage analysis) in 8 to 14 experimental, mixed‐sex populations of 113 common voles of known boldness type in large grassland enclosures over a significant part of their adult life span and two reproductive events. Populations were assorted to contain extreme boldness types (bold or shy) of both sexes. Bolder individuals took more risks than shyer ones, which did not affect survival. Bolder males but not females produced more offspring than shy conspecifics. Daily home range and core area sizes, based on 95% and 50% Kernel density estimates (20 ± 10 per individual, n = 54 individuals), were highly repeatable over time. Individual space use unfolded differently for sex‐boldness type combinations over the course of the experiment. While day ranges decreased for shy females, they increased for bold females and all males. Space use trajectories may, hence, indicate differences in coping styles when confronted with a novel social and physical environment. Thus, interindividual differences in boldness predict risk taking under near‐natural conditions and have consequences for fitness in males, which have a higher reproductive potential than females. Given extreme inter‐ and intra‐annual fluctuations in population density in the study species and its short life span, density‐dependent fluctuating selection operating differently on the sexes might maintain (co)variation in boldness, risk taking, and pace‐of‐life.  相似文献   

5.
Interference competition occurs when two species have similar resource requirements and one species is dominant and can suppress or exclude the subordinate species. Wolves (Canis lupus) and coyotes (C. latrans) are sympatric across much of their range in North America where white‐tailed deer (Odocoileus virginianus) can be an important prey species. We assessed the extent of niche overlap between wolves and coyotes using activity, diet, and space use as evidence for interference competition during three periods related to the availability of white‐tailed deer fawns in the Upper Great Lakes region of the USA. We assessed activity overlap (Δ) with data from accelerometers onboard global positioning system (GPS) collars worn by wolves (n = 11) and coyotes (n = 13). We analyzed wolf and coyote scat to estimate dietary breadth (B) and food niche overlap (α). We used resource utilization functions (RUFs) with canid GPS location data, white‐tailed deer RUFs, ruffed grouse (Bonasa umbellus) and snowshoe hare (Lepus americanus) densities, and landscape covariates to compare population‐level space use. Wolves and coyotes exhibited considerable overlap in activity (Δ = 0.86–0.92), diet (B = 3.1–4.9; α = 0.76–1.0), and space use of active and inactive RUFs across time periods. Coyotes relied less on deer as prey compared to wolves and consumed greater amounts of smaller prey items. Coyotes exhibited greater population‐level variation in space use compared to wolves. Additionally, while active and inactive, coyotes exhibited greater selection of some land covers as compared to wolves. Our findings lend support for interference competition between wolves and coyotes with significant overlap across resource attributes examined. The mechanisms through which wolves and coyotes coexist appear to be driven largely by how coyotes, a generalist species, exploit narrow differences in resource availability and display greater population‐level plasticity in resource use.  相似文献   

6.
A recent focus in community ecology has been on how within‐species variability shapes interspecific niche partitioning. Primate color vision offers a rich system in which to explore this issue. Most neotropical primates exhibit intraspecific variation in color vision due to allelic variation at the middle‐to‐long‐wavelength opsin gene on the X chromosome. Studies of opsin polymorphisms have typically sampled primates from different sites, limiting the ability to relate this genetic diversity to niche partitioning. We surveyed genetic variation in color vision of five primate species, belonging to all three families of the primate infraorder Platyrrhini, found in the Yasuní Biosphere Reserve in Ecuador. The frugivorous spider monkeys and woolly monkeys (Ateles belzebuth and Lagothrix lagotricha poeppigii, family Atelidae) each had two opsin alleles, and more than 75% of individuals carried the longest‐wavelength (553–556 nm) allele. Among the other species, Saimiri sciureus macrodon (family Cebidae) and Pithecia aequatorialis (family Pitheciidae) had three alleles, while Plecturocebus discolor (family Pitheciidae) had four alleles—the largest number yet identified in a wild population of titi monkeys. For all three non‐atelid species, the middle‐wavelength (545 nm) allele was the most common. Overall, we identified genetic evidence of fourteen different visual phenotypes—seven types of dichromats and seven trichromats—among the five sympatric taxa. The differences we found suggest that interspecific competition among primates may influence intraspecific frequencies of opsin alleles. The diversity we describe invites detailed study of foraging behavior of different vision phenotypes to learn how they may contribute to niche partitioning.  相似文献   

7.
The habitat selection choices that individuals make in response to thermal environments influence both survival and reproduction. Importantly, the way that organisms behaviorally respond to thermal environments depends on the availability and juxtaposition of sites affording tolerable or preferred microclimates. Although, ground nesting birds are especially susceptible to heat extremes across many reproductive stages (i.e., breeding, nesting, brood rearing), the mechanistic drivers of nest site selection for these species are not well established from a thermal perspective. Our goal was to assess nest site selection relative to the configuration of the thermal landscape by quantifying thermal environments available to a ground-nesting bird species inhabiting a climatically stressful environment. Using northern bobwhite (Colinus virginanus) as a model species, we measured black bulb temperature (Tbb) and vegetation parameters at 87 nests, 87 paired sites and 205 random landscape sites in Western Oklahoma during spring and summer 2013 and 2014. We found that thermal space within the study area exhibited differences in Tbb of up to 40°C during peak diurnal heating, resulting in a diverse thermal landscape available to ground-nesting birds. Within this thermally heterogeneous landscape, nest sites moderated Tbb by more than 12°C compared to random landscape sites. Furthermore, successful nests remained on average 6°C cooler than unsuccessful nests on days experiencing ambient temperatures ≥ 39°C. Models of future Tbb associated with 2080 climate change projections indicate that nesting bobwhites will face substantially greater Tbb throughout the landscape for longer durations, placing an even greater importance on thermal choices for nest sites in the future. These results highlight the capacity of landscape features to act as moderators of thermal extremes and demonstrate how thermal complexity at organism-specific scales can dictate habitat selection.  相似文献   

8.
  1. Herbivores consider the variation of forage qualities (nutritional content and digestibility) as well as quantities (biomass) when foraging. Such selection patterns may change based on the scale of foraging, particularly in the case of ungulates that forage at many scales.
  2. To test selection for quality and quantity in free‐ranging herbivores across scales, however, we must first develop landscape‐wide quantitative estimates of both forage quantity and quality. Stoichiometric distribution models (StDMs) bring opportunity to address this because they predict the elemental measures and stoichiometry of resources at landscape extents.
  3. Here, we use StDMs to predict elemental measures of understory white birch quality (% nitrogen) and quantity (g carbon/m2) across two boreal landscapes. We analyzed global positioning system (GPS) collared moose (n = 14) selection for forage quantity and quality at the landscape, home range, and patch extents using both individual and pooled resource selection analyses. We predicted that as the scale of resource selection decreased from the landscape to the patch, selection for white birch quantity would decrease and selection for quality would increase.
  4. Counter to our prediction, pooled‐models showed selection for our estimates of quantity and quality to be neutral with low explanatory power and no scalar trends. At the individual‐level, however, we found evidence for quality and quantity trade‐offs, most notably at the home‐range scale where resource selection models explain the largest amount of variation in selection. Furthermore, individuals did not follow the same trade‐off tactic, with some preferring forage quantity over quality and vice versa.
  5. Such individual trade‐offs show that moose may be flexible in attaining a limiting nutrient. Our findings suggest that herbivores may respond to forage elemental compositions and quantities, giving tools like StDMs merit toward animal ecology applications. The integration of StDMs and animal movement data represents a promising avenue for progress in the field of zoogeochemistry.
  相似文献   

9.
Global climate change is causing increased climate extremes threatening biodiversity and altering ecosystems. Climate is comprised of many variables including air temperature, barometric pressure, solar radiation, wind, relative humidity, and precipitation that interact with each other. As movement connects various aspects of an animal''s life, understanding how climate influences movement at a fine‐temporal scale will be critical to the long‐term conservation of species impacted by climate change. The sedentary nature of non‐migratory species could increase some species risk of extirpation caused by climate change. We used Northern Bobwhite (Colinus virginianus; hereafter bobwhite) as a model to better understand the relationship between climate and the movement ecology of a non‐migratory species at a fine‐temporal scale. We collected movement data on bobwhite from across western Oklahoma during 2019–2020 and paired these data with meteorological data. We analyzed movement in three different ways (probability of movement, hourly distance moved, and sinuosity) using two calculated movement metrics: hourly movement (displacement between two consecutive fixes an hour apart) and sinuosity (a form of tortuosity that determines the amount of curvature of a random search path). We used generalized linear‐mixed models to analyze probability of movement and hourly distance moved, and used linear‐mixed models to analyze sinuosity. The interaction between air temperature and solar radiation affected probability of movement and hourly distance moved. Bobwhite movement increased as air temperature increased beyond 10°C during low solar radiation. During medium and high solar radiation, bobwhite moved farther as air temperature increased until 25–30°C when hourly distance moved plateaued. Bobwhite sinuosity increased as solar radiation increased. Our results show that specific climate variables alter the fine‐scale movement of a non‐migratory species. Understanding the link between climate and movement is important to determining how climate change may impact a species’ space use and fitness now and in the future.  相似文献   

10.
Tropical forests are notable for their high species diversity, even on small spatial scales, and right‐skewed species and size abundance distributions. The role of individual species as drivers of the spatial organization of diversity in these forests has been explained by several hypotheses and processes, for example, stochastic dilution, negative density dependence, or gap dynamics. These processes leave a signature in spatial distribution of small trees, particularly in the vicinity of large trees, likely having stronger effects on their neighbors. We are exploring species diversity patterns within the framework of various diversity‐generating hypotheses using individual species–area relationships. We used the data from three tropical forest plots (Wanang—Papua New Guinea, Barro Colorado Island—Panama, and Sinharaja—Sri Lanka) and included also the saplings (DBH ≥ 1 cm). Resulting cross‐size patterns of species richness and evenness reflect the dynamics of saplings affected by the distribution of large trees. When all individuals with DBH ≥1 cm are included, ~50% of all tree species from the 25‐ or 50‐ha plot can be found within 35 m radius of an individual tree. For all trees, 72%–78% of species were identified as species richness accumulators, having more species present in their surroundings than expected by null models. This pattern was driven by small trees as the analysis of DBH >10 cm trees showed much lower proportion of accumulators, 14%–65% of species identified as richness repellers and had low richness of surrounding small trees. Only 11%–26% of species had lower species evenness than was expected by null models. High proportions of species richness accumulators were probably due to gap dynamics and support Janzen–Connell hypothesis driven by competition or top‐down control by pathogens and herbivores. Observed species diversity patterns show the importance of including small tree size classes in analyses of the spatial organization of diversity.  相似文献   

11.
Understanding what variables affect ungulate neonate survival is imperative to successful conservation and management of the species. Predation is commonly cited as a cause‐specific source of mortality, and ecological covariates often influence neonate survival. However, variation in survival estimates related to capture methodology has been documented with opportunistically captured neonates generally displaying greater survival than those captured via aid of vaginal implant transmitters (VITs), likely because of increased left truncation observed in the opportunistically captured datasets. Our goal was to assess whether 3‐ and 6‐month survival estimates varied by capture method while simultaneously assessing whether capture method affected model selection and interpretation of ecological covariates for white‐tailed deer neonates captured from three study sites from 2014 to 2015 in North Dakota and South Dakota, USA. We found survival varied by capture method for 3‐month neonate survival with opportunistically captured neonates displaying up to 26% greater survival than their counterparts captured via VITs; however, this relationship was not present for 6‐month survival. We also found model selection and subsequent interpretation of ecological covariates varied when analyzing datasets comprised of neonates captured via VITs, neonates captured opportunistically, and all neonates combined regardless of capture method. When interpreting results from our VIT‐only analysis for 3‐month survival, we found survival varied by three time intervals and was lowest in the first two weeks of life. Capture method did not affect 6‐month survival, which was most influenced by total precipitation occurring during 3 – 8 weeks of a neonate''s life and percent canopy cover found at a neonate''s capture site. Our results support previous research that capture method must be accounted for when deriving survival estimates for ungulate neonates as it can impact derived estimates and subsequent interpretation of results.  相似文献   

12.
Studying social‐behavior and species associations in ecological communities is challenging because it is difficult to observe the interactions in the field. Animal behavior is especially difficult to observe when selection of habitat and activities are linked to energy costs of long‐distance movement. Migrating communities tend to be resource specific and prefer environments that offer more suitability for coexisting in a shared space and time. Given the recent advances in digital technologies, digital video recording systems are gaining popularity in wildlife research and management. We used digital video recording cameras to study social interactions and species–habitat linkages for wintering waterbirds communities in shared habitats. Examining over 8,640 hr of video footages, we built tetrapartite social‐behavioral association network of wintering waterbirds over habitat (n = 5) selection events in sites with distinct management regimes. We analyzed these networks to identify hub species and species role in activity persistence, and to explore the effects of hydrological regime on these network characteristics. Although the differences in network attributes were not significant at treatment level (p = .297) in terms of network composition and keystone species composition, our results indicated that network attributes were significantly different (p = .000, r 2 = .278) at habitat level. There were evidences suggesting that the habitat quality was better at the managed sites, where the formed networks had more species, more network nodes and edges, higher edge density, and stronger intra‐ and inter‐species interactions. In addition, we also calculated the species interaction preference scores (SIPS) and behavioral interaction preference scores (BIPS) of each network. The results showed that species synchronize activities in shared space for temporal niche partitioning in order to avoid or minimize any potential competition for shared space. Our social network analysis (SNA) approach is likely to provide a practical use for ecosystem management and biodiversity conservation.  相似文献   

13.
Both termites and large mammalian herbivores (LMH) are savanna ecosystem engineers that have profound impacts on ecosystem structure and function. Both of these savanna engineers modulate many common and shared dietary resources such as woody and herbaceous plant biomass, yet few studies have addressed how they impact one another. In particular, it is unclear how herbivores may influence the abundance of long‐lived termite mounds via changes in termite dietary resources such as woody and herbaceous biomass. While it has long been assumed that abundance and areal cover of termite mounds in the landscape remain relatively stable, most data are observational, and few experiments have tested how termite mound patterns may respond to biotic factors such as changes in large herbivore communities. Here, we use a broad tree density gradient and two landscape‐scale experimental manipulations—the first a multi‐guild large herbivore exclosure experiment (20 years after establishment) and the second a tree removal experiment (8 years after establishment)—to demonstrate that patterns in Odontotermes termite mound abundance and cover are unexpectedly dynamic. Termite mound abundance, but areal cover not significantly, is positively associated with experimentally controlled presence of cattle, but not wild mesoherbivores (15–1,000 kg) or megaherbivores (elephants and giraffes). Herbaceous productivity and tree density, termite dietary resources that are significantly affected by different LMH treatments, are both positive predictors of termite mound abundance. Experimental reductions of tree densities are associated with lower abundances of termite mounds. These results reveal a richly interacting web of relationships among multiple savanna ecosystem engineers and suggest that termite mound abundance and areal cover are intimately tied to herbivore‐driven resource availability.  相似文献   

14.
The Canada goose (Branta canadensis) population has radically changed over the past 60 years—from once being extirpated in the state of Indiana to the current level of approximately 113,000. High urban densities have resulted in persistent human–wildlife conflicts and novel interactions between geese and their physical environment. Canada geese typically choose nest sites that are on the ground or slightly elevated sites such as muskrat lodge, but we report observations of Canada geese nesting on rooftops 2.6–12.2 m above ground level in central Indiana. These observations suggest that alternative, unpredicted nesting sites are being chosen over more traditional sites, in a likely attempt to reduce risks of disturbance and predation. This atypical nest‐site selection may pose new management challenges, but further research is needed.  相似文献   

15.
Human enterprise has led to large‐scale changes in landscapes and altered wildlife population distribution and abundance, necessitating efficient and effective conservation strategies for impacted species. Greater sage‐grouse (Centrocercus urophasianus; hereafter sage‐grouse) are a widespread sagebrush (Artemisia spp.) obligate species that has experienced population declines since the mid‐1900s resulting from habitat loss and expansion of anthropogenic features into sagebrush ecosystems. Habitat loss is especially evident in North Dakota, USA, on the northeastern fringe of sage‐grouse’ distribution, where a remnant population remains despite recent development of energy‐related infrastructure. Resource managers in this region have determined a need to augment sage‐grouse populations using translocation techniques that can be important management tools for countering species decline from range contraction. Although translocations are a common tool for wildlife management, very little research has evaluated habitat following translocation, to track individual behaviors such as habitat selection and fidelity to the release site, which can help inform habitat requirements to guide selection of future release sites. We provide an example where locations from previously released radio‐marked sage‐grouse are used in a resource selection function framework to evaluate habitat selection following translocation and identify areas of seasonal habitat to inform habitat management and potential restoration needs. We also evaluated possible changes in seasonal habitat since the late 1980s using spatial data provided by the Rangeland Analysis Platform coupled with resource selection modeling results. Our results serve as critical baseline information for habitat used by translocated individuals across life stages in this study area, and will inform future evaluations of population performance and potential for long‐term recovery.  相似文献   

16.
Characteristics of birdsong, especially minimum frequency, have been shown to vary for some species between urban and rural populations and along urban–rural gradients. However, few urban–rural comparisons of song complexity—and none that we know of based on the number of distinct song types in repertoires—have occurred. Given the potential ability of song repertoire size to indicate bird condition, we primarily sought to determine if number of distinct song types displayed by Song Sparrows (Melospiza melodia) varied between an urban and a rural site. We determined song repertoire size of 24 individuals; 12 were at an urban (‘human‐dominated’) site and 12 were at a rural (‘agricultural’) site. Then, we compared song repertoire size, note rate, and peak frequency between these sites. Song repertoire size and note rate did not vary between our human‐dominated and agricultural sites. Peak frequency was greater at the agricultural site. Our finding that peak frequency was higher at the agricultural site compared to the human‐dominated site, contrary to many previous findings pertaining to frequency shifts in songbirds, warrants further investigation. Results of our pilot study suggest that song complexity may be less affected by anthropogenic factors in Song Sparrows than are frequency characteristics. Additional study, however, will be required to identify particular causal factors related to the trends that we report and to replicate, ideally via multiple urban–rural pairings, so that broader generalization is possible.  相似文献   

17.
Edge disturbance can drive liana community changes and alter liana‐tree interaction networks, with ramifications for forest functioning. Understanding edge effects on liana community structure and liana‐tree interactions is therefore essential for forest management and conservation. We evaluated the response patterns of liana community structure and liana‐tree interaction structure to forest edge in two moist semi‐deciduous forests in Ghana (Asenanyo and Suhuma Forest Reserves: AFR and SFR, respectively). Liana community structure and liana‐tree interactions were assessed in 24 50 × 50 m randomly located plots in three forest sites (edge, interior and deep‐interior) established at 0–50 m, 200 m and 400 m from edge. Edge effects positively and negatively influenced liana diversity in forest edges of AFR and SFR, respectively. There was a positive influence of edge disturbance on liana abundance in both forests. We observed anti‐nested structure in all the liana‐tree networks in AFR, while no nestedness was observed in the networks in SFR. The networks in both forests were less connected, and thus more modular and specialised than their null models. Many liana and tree species were specialised, with specialisation tending to be symmetrical. The plant species played different roles in relation to modularity. Most of the species acted as peripherals (specialists), with only a few species having structural importance to the networks. The latter species group consisted of connectors (generalists) and hubs (highly connected generalists). Some of the species showed consistency in their roles across the sites, while the roles of other species changed. Generally, liana species co‐occurred randomly on tree species in all the forest sites, except edge site in AFR where lianas showed positive co‐occurrence. Our findings deepen our understanding of the response of liana communities and liana‐tree interactions to forest edge disturbance, which are useful for managing forest edge.  相似文献   

18.
We tested the response of algal epifauna to the direct effects of predation and the indirect consequences of habitat change due to grazing and nutrient supply through upwelling using an abundant intertidal rhodophyte, Gelidium pristoides. We ran a mid‐shore field experiment at four sites (two upwelling sites interspersed with two non‐upwelling sites) along 450 km of the south coast of South Africa. The experiment was started in June 2014 and ran until June 2015. Four treatments (predator exclusion, grazer exclusion, control, and procedural control) set out in a block design (n = 5) were monitored monthly for algal cover for the first 6 months and every 2 months for the last 6 months. Epifaunal abundance, species composition, algal cover, and algal architectural complexity (measured using fractal geometry) were assessed after 12 months. Predation had no significant effect on epifaunal abundances, while upwelling interacted with treatment. Grazing reduced the architectural complexity of algae, with increased fractal dimensions in the absence of grazers, and also reduced algal cover at all sites, though the latter effect was only significant for upwelling sites. Epifaunal community composition was not significantly affected by the presence of herbivores or predators but differed among sites independently of upwelling; sites were more similar to nearby sites than those farther away. In contrast, total epifaunal abundance was significantly affected by grazing, when normalized to algal cover. Grazing reduced the cover of algae; thus, epifaunal abundances were not affected by the direct top‐down effects of predation but did respond to the indirect effects of grazing on habitat availability and quality. Our results indicate that epifaunal communities can be strongly influenced by the indirect consequences of biotic interactions.  相似文献   

19.
There is limited data regarding the nesting ecology of boreal ducks and their response to industrial development, despite this region being an important North American breeding area. We investigated how landcover and oil and gas development affect third‐order nest‐site selection of boreal ducks. We located duck nests in Alberta''s western boreal forest between 2016 and 2018. We used multiscale analysis to identify how scale affects the selection of a resource using generalized linear mixed‐effects models and determined what scale‐optimized combination of landscape features were most important in describing where ducks nest. We located 136 nests of six species of upland nesting ducks between 2016 and 2018. The magnitude, direction, and best spatial scale varied by resource. For landcover, ducks selected nest‐sites associated with mineral wetlands (300 m) and open water (300 m). Ducks avoided greater densities of seismic lines (300 m) and pipelines (2500 m) but selected nest‐sites associated with borrow pits (300 m) and roads (1000 m). We used our models to predict important duck nesting habitat in the boreal forest, which can support conservation and management decisions. We recommend conservation actions target the conservation of mineral wetlands and associated habitats within this working landscape. Further research is necessary to understand the adaptive consequences of nest‐site selection and how industrial development influences important nest predators.  相似文献   

20.
Inferring the selective forces that orthologous genes underwent across different lineages can help us understand the evolutionary processes that have shaped their extant diversity and the phenotypes they underlie. The most widespread metric to estimate the selection regimes of coding genes—across sites and phylogenies—is the ratio of nonsynonymous to synonymous substitutions (dN/dS, also known as ω). Nowadays, modern sequencing technologies and the large amount of already available sequence data allow the retrieval of thousands of orthologous genes across large numbers of species. Nonetheless, the tools available to explore selection regimes are not designed to automatically process all genes, and their practical usage is often restricted to the single‐copy ones which are found across all species considered (i.e., ubiquitous genes). This approach limits the scale of the analysis to a fraction of single‐copy genes, which can be as low as an order of magnitude in respect to those which are not consistently found in all species considered (i.e., nonubiquitous genes). Here, we present a workflow named BASE that—leveraging the CodeML framework—eases the inference and interpretation of gene selection regimes in the context of comparative genomics. Although a number of bioinformatics tools have already been developed to facilitate this kind of analyses, BASE is the first to be specifically designed to allow the integration of nonubiquitous genes in a straightforward and reproducible manner. The workflow—along with all relevant documentation—is available at github.com/for‐giobbe/BASE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号