首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The wine yeast, Saccharomyces cerevisiae, is the best understood microbial eukaryote at the molecular and cellular level, yet its natural geographic distribution is unknown. Here we report the results of a field survey for S. cerevisiae,S. paradoxus and other budding yeast on oak trees in Europe. We show that yeast species differ in their geographic distributions, and investigated which ecological variables can predict the isolation rate of S. paradoxus, the most abundant species. We find a positive association between trunk girth and S. paradoxus abundance suggesting that older trees harbor more yeast. S. paradoxus isolation frequency is also associated with summer temperature, showing highest isolation rates at intermediate temperatures. Using our statistical model, we estimated a range of summer temperatures at which we expect high S. paradoxus isolation rates, and show that the geographic distribution predicted by this optimum temperature range is consistent with the worldwide distribution of sites where S. paradoxus has been isolated. Using laboratory estimates of optimal growth temperatures for S. cerevisiae relative to S. paradoxus, we also estimated an optimum range of summer temperatures for S. cerevisiae. The geographic distribution of these optimum temperatures is consistent with the locations where wild S. cerevisiae have been reported, and can explain why only human‐associated S. cerevisiae strains are isolated at northernmost latitudes. Our results provide a starting point for targeted isolation of S. cerevisiae from natural habitats, which could lead to a better understanding of climate associations and natural history in this important model microbe.  相似文献   

2.
An evolutionary response to selection requires genetic variation; however, even if it exists, then the genetic details of the variation can constrain adaptation. In the simplest case, unlinked loci and uncorrelated phenotypes respond directly to multivariate selection and permit unrestricted paths to adaptive peaks. By contrast, ‘antagonistic’ pleiotropic loci may constrain adaptation by affecting variation of many traits and limiting the direction of trait correlations to vectors that are not favoured by selection. However, certain pleiotropic configurations may improve the conditions for adaptive evolution. Here, we present evidence that the Arabidopsis thaliana gene FRI (FRIGIDA) exhibits ‘adaptive’ pleiotropy, producing trait correlations along an axis that results in two adaptive strategies. Derived, low expression FRI alleles confer a ‘drought escape’ strategy owing to fast growth, low water use efficiency and early flowering. By contrast, a dehydration avoidance strategy is conferred by the ancestral phenotype of late flowering, slow growth and efficient water use during photosynthesis. The dehydration avoidant phenotype was recovered when genotypes with null FRI alleles were transformed with functional alleles. Our findings indicate that the well-documented effects of FRI on phenology result from differences in physiology, not only a simple developmental switch.  相似文献   

3.
Flocculation has primarily been studied as an important technological property of Saccharomyces cerevisiae yeast strains in fermentation processes such as brewing and winemaking. These studies have led to the identification of a group of closely related genes, referred to as the FLO gene family, which controls the flocculation phenotype. All naturally occurring S. cerevisiae strains assessed thus far possess at least four independent copies of structurally similar FLO genes, namely FLO1, FLO5, FLO9 and FLO10. The genes appear to differ primarily by the degree of flocculation induced by their expression. However, the reason for the existence of a large family of very similar genes, all involved in the same phenotype, has remained unclear. In natural ecosystems, and in wine production, S. cerevisiae growth together and competes with a large number of other Saccharomyces and many more non-Saccharomyces yeast species. Our data show that many strains of such wine-related non-Saccharomyces species, some of which have recently attracted significant biotechnological interest as they contribute positively to fermentation and wine character, were able to flocculate efficiently. The data also show that both flocculent and non-flocculent S. cerevisiae strains formed mixed species flocs (a process hereafter referred to as co-flocculation) with some of these non-Saccharomyces yeasts. This ability of yeast strains to impact flocculation behaviour of other species in mixed inocula has not been described previously. Further investigation into the genetic regulation of co-flocculation revealed that different FLO genes impact differently on such adhesion phenotypes, favouring adhesion with some species while excluding other species from such mixed flocs. The data therefore strongly suggest that FLO genes govern the selective association of S. cerevisiae with specific species of non-Saccharomyces yeasts, and may therefore be drivers of ecosystem organisational patterns. Our data provide, for the first time, insights into the role of the FLO gene family beyond intraspecies cellular association, and suggest a wider evolutionary role for the FLO genes. Such a role would explain the evolutionary persistence of a large multigene family of genes with apparently similar function.  相似文献   

4.
5.
A major goal in evolutionary biology is to understand how adaptive evolution has influenced natural variation, but identifying loci subject to positive selection has been a challenge. Here we present the adaptive loss of a pair of paralogous genes in specific Saccharomyces cerevisiae subpopulations. We mapped natural variation in freeze-thaw tolerance to two water transporters, AQY1 and AQY2, previously implicated in freeze-thaw survival. However, whereas freeze-thaw–tolerant strains harbor functional aquaporin genes, the set of sensitive strains lost aquaporin function at least 6 independent times. Several genomic signatures at AQY1 and/or AQY2 reveal low variation surrounding these loci within strains of the same haplotype, but high variation between strain groups. This is consistent with recent adaptive loss of aquaporins in subgroups of strains, leading to incipient balancing selection. We show that, although aquaporins are critical for surviving freeze-thaw stress, loss of both genes provides a major fitness advantage on high-sugar substrates common to many strains'' natural niche. Strikingly, strains with non-functional alleles have also lost the ancestral requirement for aquaporins during spore formation. Thus, the antagonistic effect of aquaporin function—providing an advantage in freeze-thaw tolerance but a fitness defect for growth in high-sugar environments—contributes to the maintenance of both functional and nonfunctional alleles in S. cerevisiae. This work also shows that gene loss through multiple missense and nonsense mutations, hallmarks of pseudogenization presumed to emerge after loss of constraint, can arise through positive selection.  相似文献   

6.
Although single genes underlying several evolutionary adaptations have been identified, the genetic basis of complex, polygenic adaptations has been far more challenging to pinpoint. Here we report that the budding yeast Saccharomyces paradoxus has recently evolved resistance to citrinin, a naturally occurring mycotoxin. Applying a genome-wide test for selection on cis-regulation, we identified five genes involved in the citrinin response that are constitutively up-regulated in S. paradoxus. Four of these genes are necessary for resistance, and are also sufficient to increase the resistance of a sensitive strain when over-expressed. Moreover, cis-regulatory divergence in the promoters of these genes contributes to resistance, while exacting a cost in the absence of citrinin. Our results demonstrate how the subtle effects of individual regulatory elements can be combined, via natural selection, into a complex adaptation. Our approach can be applied to dissect the genetic basis of polygenic adaptations in a wide range of species.  相似文献   

7.
The [URE3] prion is not conserved among Saccharomyces species   总被引:2,自引:2,他引:0       下载免费PDF全文
Talarek N  Maillet L  Cullin C  Aigle M 《Genetics》2005,171(1):23-34
The [URE3] prion of Saccharomyces cerevisiae is a self-propagating inactive form of the nitrogen catabolism regulator Ure2p. To determine whether the [URE3] prion is conserved in S. cerevisiae-related yeast species, we have developed genetic tools allowing the detection of [URE3] in Saccharomyces paradoxus and Saccharomyces uvarum. We found that [URE3] is conserved in S. uvarum. In contrast, [URE3] was not detected in S. paradoxus. The inability of S. paradoxus Ure2p to switch to a prion isoform results from the primary sequence of the protein and not from the lack of cellular cofactors as heterologous Ure2p can propagate [URE3] in this species. Our data therefore demonstrate that [URE3] is conserved only in a subset of Saccharomyces species. Implications of our finding on the physiological and evolutionary meaning of the yeast [URE3] prion are discussed.  相似文献   

8.
9.
Killer toxins are extracellular antifungal proteins that are produced by a wide variety of fungi, including Saccharomyces yeasts. Although many Saccharomyces killer toxins have been previously identified, their evolutionary origins remain uncertain given that many of these genes have been mobilized by double-stranded RNA (dsRNA) viruses. A survey of yeasts from the Saccharomyces genus has identified a novel killer toxin with a unique spectrum of activity produced by Saccharomyces paradoxus. The expression of this killer toxin is associated with the presence of a dsRNA totivirus and a satellite dsRNA. Genetic sequencing of the satellite dsRNA confirmed that it encodes a killer toxin with homology to the canonical ionophoric K1 toxin from Saccharomyces cerevisiae and has been named K1-like (K1L). Genomic homologs of K1L were identified in six non-Saccharomyces yeast species of the Saccharomycotina subphylum, predominantly in subtelomeric regions of the genome. When ectopically expressed in S. cerevisiae from cloned cDNAs, both K1L and its homologs can inhibit the growth of competing yeast species, confirming the discovery of a family of biologically active K1-like killer toxins. The sporadic distribution of these genes supports their acquisition by horizontal gene transfer followed by diversification. The phylogenetic relationship between K1L and its genomic homologs suggests a common ancestry and gene flow via dsRNAs and DNAs across taxonomic divisions. This appears to enable the acquisition of a diverse arsenal of killer toxins by different yeast species for potential use in niche competition.  相似文献   

10.
One of the central goals of evolutionary biology is to explain and predict the molecular basis of adaptive evolution. We studied the evolution of genetic networks in Saccharomyces cerevisiae (budding yeast) populations propagated for more than 200 generations in different nitrogen-limiting conditions. We find that rapid adaptive evolution in nitrogen-poor environments is dominated by the de novo generation and selection of copy number variants (CNVs), a large fraction of which contain genes encoding specific nitrogen transporters including PUT4, DUR3 and DAL4. The large fitness increases associated with these alleles limits the genetic heterogeneity of adapting populations even in environments with multiple nitrogen sources. Complete identification of acquired point mutations, in individual lineages and entire populations, identified heterogeneity at the level of genetic loci but common themes at the level of functional modules, including genes controlling phosphatidylinositol-3-phosphate metabolism and vacuole biogenesis. Adaptive strategies shared with other nutrient-limited environments point to selection of genetic variation in the TORC1 and Ras/PKA signaling pathways as a general mechanism underlying improved growth in nutrient-limited environments. Within a single population we observed the repeated independent selection of a multi-locus genotype, comprised of the functionally related genes GAT1, MEP2 and LST4. By studying the fitness of individual alleles, and their combination, as well as the evolutionary history of the evolving population, we find that the order in which these mutations are acquired is constrained by epistasis. The identification of repeatedly selected variation at functionally related loci that interact epistatically suggests that gene network polymorphisms (GNPs) may be a frequent outcome of adaptive evolution. Our results provide insight into the mechanistic basis by which cells adapt to nutrient-limited environments and suggest that knowledge of the selective environment and the regulatory mechanisms important for growth and survival in that environment greatly increase the predictability of adaptive evolution.  相似文献   

11.
Salmonella Newport has ranked in the top three Salmonella serotypes associated with foodborne outbreaks from 1995 to 2011 in the United States. In the current study, we selected 26 S. Newport strains isolated from diverse sources and geographic locations and then conducted 454 shotgun pyrosequencing procedures to obtain 16–24 × coverage of high quality draft genomes for each strain. Comparative genomic analysis of 28 S. Newport strains (including 2 reference genomes) and 15 outgroup genomes identified more than 140,000 informative SNPs. A resulting phylogenetic tree consisted of four sublineages and indicated that S. Newport had a clear geographic structure. Strains from Asia were divergent from those from the Americas. Our findings demonstrated that analysis using whole genome sequencing data resulted in a more accurate picture of phylogeny compared to that using single genes or small sets of genes. We selected loci around the mutS gene of S. Newport to differentiate distinct lineages, including those between invH and mutS genes at the 3′ end of Salmonella Pathogenicity Island 1 (SPI-1), ste fimbrial operon, and Clustered, Regularly Interspaced, Short Palindromic Repeats (CRISPR) associated-proteins (cas). These genes in the outgroup genomes held high similarity with either S. Newport Lineage II or III at the same loci. S. Newport Lineages II and III have different evolutionary histories in this region and our data demonstrated genetic flow and homologous recombination events around mutS. The findings suggested that S. Newport Lineages II and III diverged early in the serotype evolution and have evolved largely independently. Moreover, we identified genes that could delineate sublineages within the phylogenetic tree and that could be used as potential biomarkers for trace-back investigations during outbreaks. Thus, whole genome sequencing data enabled us to better understand the genetic background of pathogenicity and evolutionary history of S. Newport and also provided additional markers for epidemiological response.  相似文献   

12.
This work presents the genome sequencing of the lager brewing yeast (Saccharomyces pastorianus) Weihenstephan 34/70, a strain widely used in lager beer brewing. The 25 Mb genome comprises two nuclear sub-genomes originating from Saccharomyces cerevisiae and Saccharomyces bayanus and one circular mitochondrial genome originating from S. bayanus. Thirty-six different types of chromosomes were found including eight chromosomes with translocations between the two sub-genomes, whose breakpoints are within the orthologous open reading frames. Several gene loci responsible for typical lager brewing yeast characteristics such as maltotriose uptake and sulfite production have been increased in number by chromosomal rearrangements. Despite an overall high degree of conservation of the synteny with S. cerevisiae and S. bayanus, the syntenies were not well conserved in the sub-telomeric regions that contain lager brewing yeast characteristic and specific genes. Deletion of larger chromosomal regions, a massive unilateral decrease of the ribosomal DNA cluster and bilateral truncations of over 60 genes reflect a post-hybridization evolution process. Truncations and deletions of less efficient maltose and maltotriose uptake genes may indicate the result of adaptation to brewing. The genome sequence of this interspecies hybrid yeast provides a new tool for better understanding of lager brewing yeast behavior in industrial beer production.Key words: Saccharomyces pastorianus, beer, genome, interspecies hybrid, larger yeast  相似文献   

13.
Native polyacrylamide gel electrophoresis was used in the current study to identify polymorphisms in α- and β-esterase loci in the leaves of Stevia rebaudiana Bert. Bertoni. The esterases produced from the Est-2 and Est-4 loci were observed as strongly stained bands, and four alleles were detected at each of these loci from the 428 analysed S. rebaudiana plants. The observed and expected mean heterozygosity were higher in populations maintained by genetically breeding plants for higher glycoside production than in plant populations propagated by seeds or maintained by vegetative propagation. The esterase analysis employed in this study showed that the artificial selection of plant samples with specific uniform characteristics, such increased height and precocious flowering, may lead to the fixation of alleles and α/β-esterase phenotype patterns in S. rebaudiana populations. The uniform α/β-esterase phenotype may be applied in the monitoring of genetic stability in selected populations for specific traits of interest.  相似文献   

14.
Whether in natural populations or between two unrelated members of a species, most phenotypic variation is quantitative. To analyze such quantitative traits, one must first map the underlying quantitative trait loci. Next, and far more difficult, one must identify the quantitative trait genes (QTGs), characterize QTG interactions, and identify the phenotypically relevant polymorphisms to determine how QTGs contribute to phenotype. In this work, we analyzed three Saccharomyces cerevisiae high-temperature growth (Htg) QTGs (MKT1, END3, and RHO2). We observed a high level of genetic interactions among QTGs and strain background. Interestingly, while the MKT1 and END3 coding polymorphisms contribute to phenotype, it is the RHO2 3′UTR polymorphisms that are phenotypically relevant. Reciprocal hemizygosity analysis of the Htg QTGs in hybrids between S288c and ten unrelated S. cerevisiae strains reveals that the contributions of the Htg QTGs are not conserved in nine other hybrids, which has implications for QTG identification by marker-trait association. Our findings demonstrate the variety and complexity of QTG contributions to phenotype, the impact of genetic background, and the value of quantitative genetic studies in S. cerevisiae.  相似文献   

15.
Saccharomyces cerevisiae is the micro-organism of choice for the conversion of monomeric sugars into bioethanol. Industrial bioethanol fermentations are intrinsically stressful environments for yeast and the adaptive protective response varies between strain backgrounds. With the aim of identifying quantitative trait loci (QTL''s) that regulate phenotypic variation, linkage analysis on six F1 crosses from four highly divergent clean lineages of S. cerevisiae was performed. Segregants from each cross were assessed for tolerance to a range of stresses encountered during industrial bioethanol fermentations. Tolerance levels within populations of F1 segregants to stress conditions differed and displayed transgressive variation. Linkage analysis resulted in the identification of QTL''s for tolerance to weak acid and osmotic stress. We tested candidate genes within loci identified by QTL using reciprocal hemizygosity analysis to ascertain their contribution to the observed phenotypic variation; this approach validated a gene (COX20) for weak acid stress and a gene (RCK2) for osmotic stress. Hemizygous transformants with a sensitive phenotype carried a COX20 allele from a weak acid sensitive parent with an alteration in its protein coding compared with other S. cerevisiae strains. RCK2 alleles reveal peptide differences between parental strains and the importance of these changes is currently being ascertained.  相似文献   

16.
Diploid hybrids of Saccharomyces cerevisiae and its closest relative, Saccharomyces paradoxus, are viable, but the sexual gametes they produce are not. One of several possible causes of this gamete inviability is incompatibility between genes from different species—such incompatible genes are usually called “speciation genes.” In diploid F1 hybrids, which contain a complete haploid genome from each species, the presence of compatible alleles can mask the effects of (recessive) incompatible speciation genes. But in the haploid gametes produced by F1 hybrids, recessive speciation genes may be exposed, killing the gametes and thus preventing F1 hybrids from reproducing sexually. Here I present the results of an experiment to detect incompatibilities that kill hybrid gametes. I transferred nine of the 16 S. paradoxus chromosomes individually into S. cerevisiae gametes and tested the ability of each to replace its S. cerevisiae homeolog. All nine chromosomes were compatible, producing nine viable haploid strains, each with 15 S. cerevisiae chromosomes and one S. paradoxus chromosome. Thus, none of these chromosomes contain speciation genes that were capable of killing the hybrid gametes that received them. This is a surprising result that suggests that such speciation genes do not play a major role in yeast speciation.  相似文献   

17.
The three electrophoretic variants of phosphoglucomutase in Saccharomyces cerevisiae breeding stocks are produced by two unlinked genes, pgm-1 and pgm-2; pgm-1 contains two known alleles, pgm-1a and pgm-1b, each of which specifies a minor phosphoglucomutase component, and pgm-2 specifies the major phosphoglucomutase component.  相似文献   

18.
Comparative genomics can be used to infer the history of genomic rearrangements that occurred during the evolution of a species. We used the principle of parsimony, applied to aligned synteny blocks from 11 yeast species, to infer the gene content and gene order that existed in the genome of an extinct ancestral yeast about 100 Mya, immediately before it underwent whole-genome duplication (WGD). The reconstructed ancestral genome contains 4,703 ordered loci on eight chromosomes. The reconstruction is complete except for the subtelomeric regions. We then inferred the series of rearrangement steps that led from this ancestor to the current Saccharomyces cerevisiae genome; relative to the ancestral genome we observe 73 inversions, 66 reciprocal translocations, and five translocations involving telomeres. Some fragile chromosomal sites were reused as evolutionary breakpoints multiple times. We identified 124 genes that have been gained by S. cerevisiae in the time since the WGD, including one that is derived from a hAT family transposon, and 88 ancestral loci at which S. cerevisiae did not retain either of the gene copies that were formed by WGD. Sites of gene gain and evolutionary breakpoints both tend to be associated with tRNA genes and, to a lesser extent, with origins of replication. Many of the gained genes in S. cerevisiae have functions associated with ethanol production, growth in hypoxic environments, or the uptake of alternative nutrient sources.  相似文献   

19.
Balancing selection, an evolutionary force that retains genetic diversity, has been detected in multiple genes and organisms, such as the sexual mating loci in fungi. However, to quantify the strength of balancing selection and define the mating-related genes require a large number of strains. In tetrapolar basidiomycete fungi, sexual type is determined by two unlinked loci, MATA and MATB. Genes in both loci define mating type identity, control successful mating and completion of the life cycle. These loci are usually highly diverse. Previous studies have speculated, based on culture crosses, that species of the non-model genus Trichaptum (Hymenochaetales, Basidiomycota) possess a tetrapolar mating system, with multiple alleles. Here, we sequenced a hundred and eighty strains of three Trichaptum species. We characterized the chromosomal location of MATA and MATB, the molecular structure of MAT regions and their allelic richness. The sequencing effort was sufficient to molecularly characterize multiple MAT alleles segregating before the speciation event of Trichaptum species. Analyses suggested that long-term balancing selection has generated trans-species polymorphisms. Mating sequences were classified in different allelic classes based on an amino acid identity (AAI) threshold supported by phylogenetics. 17,550 mating types were predicted based on the allelic classes. In vitro crosses allowed us to support the degree of allelic divergence needed for successful mating. Even with the high amount of divergence, key amino acids in functional domains are conserved. We conclude that the genetic diversity of mating loci in Trichaptum is due to long-term balancing selection, with limited recombination and duplication activity. The large number of sequenced strains highlighted the importance of sequencing multiple individuals from different species to detect the mating-related genes, the mechanisms generating diversity and the evolutionary forces maintaining them.  相似文献   

20.
【背景】芳樟醇具有特殊的香气和多种生物学活性,是食品、医药和化妆品行业的重要原料。随着合成生物学的高速发展,代谢改造微生物进行芳樟醇生物合成是当前研究的一大热点。然而在微生物的生物合成中,芳樟醇对底盘细胞的毒性是一大瓶颈问题,也是其他单萜物质生物合成的共性问题。【目的】建立合理的耐受性改造方法,以提高微生物宿主细胞对芳樟醇的耐受性。【方法】以酿酒酵母BY4741为研究对象,通过对ABC转运蛋白、活性氧调控相关酶及转录调控因子的过表达,考察它们对酿酒酵母芳樟醇耐受性的影响,并通过对酿酒酵母细胞进行定向驯化,筛选耐受性提高的酿酒酵母突变株。【结果】单独过表达ABC转运蛋白(Yor1、Snq2、Pdr5、Pdr15和Pdr18)、ROS调控相关酶(Gre2、Ctt1、Yhb1、Gpx2、Trr1、Trx2和Gsh2)及转录调控因子(Ino2、Yap1、Yap5和Stb5)并不能有效提高酿酒酵母的耐受性,但在传代适应性驯化过程中获得了两株耐受性提高的酿酒酵母突变株,将芳樟醇的致死浓度从430mg/L提高到了645mg/L以上。进一步通过基因组重测序分析揭示了驯化菌株突变位点。其中YBR074W...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号