首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The negative charges on proteoglycans significantly affect the mechanical behaviors of articular cartilage. Mixture theories, such as the triphasic theory, can describe quantitatively how this charged nature contributes to the mechano-electrochemical behaviors of such tissue. However, the mathematical complexity of the theory has hindered its application to complicated loading profiles, e.g., indentation or other multi-dimensional configurations. In this study, the governing equations of triphasic mixture theory for soft tissue were linearized and dramatically simplified by using a regular perturbation method and the use of two potential functions. We showed that this new formulation can be used for any axisymmetric problem, such as confined or unconfined compressions, hydraulic perfusion, and indentation. A finite difference numerical program was further developed to calculate the deformational, electrical, and flow behaviors inside the articular cartilage under indentation. The calculated tissue response was highly consistent with the data from indentation experiments (our own and those reported in the literature). It was found that the charged nature of proteoglycans can increase the apparent stiffness of the solid matrix and lessen the viscous effect introduced by fluid flow. The effects of geometric and physical properties of indenter tip, cartilage thickness, and that of the electro-chemical properties of cartilage on the resulting deformation and fluid pressure fields across the tissue were also investigated and presented. These results have implications for studying chondrocyte mechanotransduction in different cartilage zones and for tissue engineering designs or in vivo cartilage repair.  相似文献   

2.
Unconfined compression test has been frequently used to study the mechanical behaviors of articular cartilage, both theoretically and experimentally. It has also been used in explant and gel-cell-complex studies in tissue engineering. In biphasic and poroelastic theories, the effect of charges fixed on the proteoglycan macromolecules in articular cartilage is embodied in the apparent compressive Young's modulus and the apparent Poisson's ratio of the tissue, and the fluid pressure is considered to be the portion above the osmotic pressure. In order to understand how proteoglycan fixed charges might affect the mechanical behaviors of articular cartilage, and in order to predict the osmotic pressure and electric fields inside the tissue in this experimental configuration, it is necessary to use a model that explicitly takes into account the charged nature of the tissue and the flow of ions within its porous interstices. In this paper, we used a finite element model based on the triphasic theory to study how fixed charges in the porous-permeable soft tissue can modulate its mechanical and electrochemical responses under a step displacement in unconfined compression. The results from finite element calculations showed that: 1) A charged tissue always supports a larger load than an uncharged tissue of the same intrinsic elastic moduli. 2) The apparent Young's modulus (the ratio of the equilibrium axial stress to the axial strain) is always greater than the intrinsic Young's modulus of an uncharged tissue. 3) The apparent Poisson's ratio (the negative ratio of the lateral strain to the axial strain) is always larger than the intrinsic Poisson's ratio of an uncharged tissue. 4) Load support derives from three sources: intrinsic matrix stiffness, hydraulic pressure and osmotic pressure. Under the unconfined compression, the Donnan osmotic pressure can constitute between 13%-22% of the total load support at equilibrium. 5) During the stress-relaxation process following the initial instant of loading, the diffusion potential (due to the gradient of the fixed charge density and the associated gradient of ion concentrations) and the streaming potential (due to fluid convection) compete against each other. Within the physiological range of material parameters, the polarity of the electric potential depends on both the mechanical properties and the fixed charge density (FCD) of the tissue. For softer tissues, the diffusion effects dominate the electromechanical response, while for stiffer tissues, the streaming potential dominates this response. 6) Fixed charges do not affect the instantaneous strain field relative to the initial equilibrium state. However, there is a sudden increase in the fluid pressure above the initial equilibrium osmotic pressure. These new findings are relevant and necessary for the understanding of cartilage mechanics, cartilage biosynthesis, electromechanical signal transduction by chondrocytes, and tissue engineering.  相似文献   

3.
The triphasic mixture theory has been used to describe the mechanical and physicochemical behaviors of articular cartilage under some specialized loading conditions. However, the mathematical complexities of this theory have limited its applications for theoretical analyses of experimental studies and models for predicting cartilage and other biological tissues' deformational behaviors. A generalized correspondence principle has been established in the present study, and this principle shows that the equilibrium deformational behavior of a charged-hydrated material under loading is identical to that of an elastic medium without charge. A set of explicit formulas has been derived to correlate the mechanical properties of an equivalent material with the intrinsic elastic moduli, fixed charge density and free-ion concentration within the cartilage tissue. The validity of these formulas is independent of the deformation state of the elastic solid matrix under an infinitesimal strain. Therefore they can be employed for any loading conditions, such as confined or unconfined compression, tension, and indentation tests, etc. In the current study, the fixed charge density of bovine cartilage is determined from the indentation creep data using this generalized correspondence principle. The proteoglycan content results were then compared with those from biochemical assay, yielding a linear regression slope of 1.034. Additionally a correspondence principle within a framework of cubic symmetry and a bilinear response in tension-compression (the conewise linear elasticity model) has also been developed to demonstrate the potential application of current methodology for inhomogeneous, anisotropic and nonlinear situations.  相似文献   

4.
Mixture models have been successfully used to describe the response of articular cartilage to various loading conditions. Mow et al. (J. Biomech. Eng. 102 (1980) 73) formulated a biphasic mixture model of articular cartilage where the collagen-proteoglycan matrix is modeled as an intrinsically incompressible porous-permeable solid matrix, and the interstitial fluid is modeled as an incompressible fluid. Lai et al. (J. Biomech. Eng. 113 (1991) 245) proposed a triphasic model of articular cartilage as an extension of their biphasic theory, where negatively charged proteoglycans are modeled to be fixed to the solid matrix, and monovalent ions in the interstitial fluid are modeled as additional fluid phases. Since both models co-exist in the cartilage literature, it is useful to show how the measured properties of articular cartilage (the confined and unconfined compressive and tensile moduli, the compressive and tensile Poisson's ratios, and the shear modulus) relate to both theories. In this study, closed-form expressions are presented that relate biphasic and triphasic material properties in tension, compression and shear. These expressions are then compared to experimental findings in the literature to provide greater insight into the measured properties of articular cartilage as a function of bathing solutions salt concentrations and proteoglycan fixed-charge density.  相似文献   

5.
The hydrolysis and synthesis of N-Acetyl-I-tyrosine-ethyl-ester catalyzed by α-chymotrypsin immobilized in polymeric supports (Sephadex), with positive or negative stationary charges has been studied. Charged matrices perturbed the equilibrium (at pH 9.0), so that no complete hydrolysis was observed in the bulk solution and ester could be synthetized from acid and alcohol. The change is due to dipole orientation energies in the electric double layer where the reactions are catalyzed. This represents a situation where the equilibrium in the system is kinetically controlled by the equilibrium in a sub-system (here the electric double layer).  相似文献   

6.
Biphasic indentation of articular cartilage--I. Theoretical analysis   总被引:4,自引:0,他引:4  
A mathematical solution has been obtained for the indentation creep and stress-relaxation behavior of articular cartilage where the tissue is modeled as a layer of linear KLM biphasic material of thickness h bonded to an impervious, rigid bony substrate. The circular (radius = a), plane-ended indenter is assumed to be rigid, porous, free-draining, and frictionless. Double Laplace and Hankel transform techniques were used to solve the partial differential equations. The transformed equations and boundary conditions yielded an integral equation of the Fredholm type which was analyzed asymptotically and solved numerically. Our asymptotic analyses showed that the linear KLM biphasic material behaves like an incompressible (v = 0.5) single-phase elastic solid at t = 0+; the instantaneous response of the material is governed by the shear modulus (mu s) of the solid matrix. The linear KLM biphasic material behaves like a compressible elastic solid with material properties defined by those of the solid matrix, i.e. (lambda s, mu s) or (mu s, v s) as t----infinity. The transient viscoelastic creep and stress-relaxation behavior, 0 less than t less than infinity, of this material is controlled by the frictional drag (which is inversely proportional to the permeability k) associated with the flow of the interstitial fluid through the porous-permeable solid matrix. For given values of the Poisson's ratio of the solid matrix v s and the aspect ratio a/h, where a is the radius of the indenter and h is the thickness of the layer, the creep behavior with respect to the dimensionless time H Akt/a2 is completely controlled by the load parameter P/2 mu sa2 and the stress relaxation behavior is completely controlled by the rate of compression parameter R0 = kH A/V0h where H A = lambda s + 2 mu s and the equilibrium strain u0/h. This mathematical solution may now be used to describe an indentation experiment on articular cartilage to determine the intrinsic material properties of the tissue, i.e. permeability k, and the elastic coefficients of the solid phase (lambda s, mu s) or (mu s, v s).  相似文献   

7.
This article addresses the boundary layer flow and heat transfer in third grade fluid over an unsteady permeable stretching sheet. The transverse magnetic and electric fields in the momentum equations are considered. Thermal boundary layer equation includes both viscous and Ohmic dissipations. The related nonlinear partial differential system is reduced first into ordinary differential system and then solved for the series solutions. The dependence of velocity and temperature profiles on the various parameters are shown and discussed by sketching graphs. Expressions of skin friction coefficient and local Nusselt number are calculated and analyzed. Numerical values of skin friction coefficient and Nusselt number are tabulated and examined. It is observed that both velocity and temperature increases in presence of electric field. Further the temperature is increased due to the radiation parameter. Thermal boundary layer thickness increases by increasing Eckert number.  相似文献   

8.
Mineralized collagen fibrils have been usually analyzed like a two-phase composite material where crystals are considered as platelets that constitute the reinforcement phase. Different models have been used to describe the elastic behavior of the material. In this work, it is shown that when Halpin–Tsai equations are applied to estimate elastic constants from typical constituent properties, not all crystal dimensions yield a model that satisfy thermodynamic restrictions. We provide the ranges of platelet dimensions that lead to positive definite stiffness matrices. On the other hand, a finite element model of a mineralized collagen fibril unit cell under periodic boundary conditions is analyzed. By applying six canonical load cases, homogenized stiffness matrices are numerically calculated. Results show a monoclinic behavior of the mineralized collagen fibril. In addition, a 5-layer lamellar structure is also considered where crystals rotate in adjacent layers of a lamella. The stiffness matrix of each layer is calculated applying Lekhnitskii transformations, and a new finite element model under periodic boundary conditions is analyzed to calculate the homogenized 3D anisotropic stiffness matrix of a unit cell of lamellar bone. Results are compared with the rule-of-mixtures showing in general good agreement.  相似文献   

9.
A one-dimensional ultrafiltration problem of fluid flow through a soft permeable tissue or gel under high pressure and compressive strain is solved. A finite deformation biphasic theory is used to model the behavior of the soft porous permeable solid matrix. This theory includes a Helmholtz free energy function which depends on the three principal invariants (I, II, III) of the right Cauchy-Green tensor and which satisfies the Baker-Ericksen inequalities on the principal stresses and strains. The dependence of the porosity phi f and the solidity phi s on deformation is deduced and a generalization of the exponential strain-dependent functional form for the permeability, k = k0 exp (M epsilon), of Lai and Mow (Biorheology 103, 111-123, 1980) is proposed. In this one-dimensional problem, we show that the dependence of the permeability on phi f, phi s, and III is equivalent to its dependence on hydration as proposed by Fatt and Goldstick (J. Colloid Sci. 20, 962-988, 1965). The exact solution of the ultrafiltration problem is derived and asymptotic and numerical methods are used to evaluate it. For high pressures and finite strains, the solution provides some surprising effects. The theory predicts that a material starting with a homogeneous porosity will have a strongly non-homogeneous porosity throughout the column during ultrafiltration. The resulting change in pore size through the filtration column may be very important in understanding its filtration characteristics. It is also found that there is a long delay time, up to 10 to 15 min, before the filtration velocity reaches an equilibrium. In filtration experiments where the rate of mass transport across the tissue or column of gel is important, sufficient time must be allowed for the steady state to be reached.  相似文献   

10.
Many cellular and intracellular processes critically depend on membrane shape, but the shape generating mechanisms are still to be fully understood. In this study we evaluate how electrostatic/electrokinetic forces contribute to membrane curvature. Membrane bilayer had finite thickness and was either elastically anisotropic or anisotropic overall, but isotropic per sections (heads and tails). The physics of the situation was evaluated using a coupled system of elastic and electrostatic/electrokinetic (Poisson-Nernst-Planck) equations. The fixed charges present only on the upper membrane surface lead to the accumulation of counter-ions and depletion of co-ions that decay spatially very rapidly (Debye length<1nm), as does the potential and electric field. Spatially uneven electric field and the permittivity mismatch also induce charges at the membrane-solution interface, which are not fixed but influence the electrostatics nevertheless. Membrane bends due to - Coulomb force (caused by fixed membrane charges in the electric field) and the dielectric force (due to the non-uniform electric field and the permittivity mismatch between the membrane and the solution). Both act as membrane surface forces, and both depend supra-linearly on the fixed charge density. Regardless of sign of the fixed charges, the membrane bends toward the charged (upper) surface owing to the action of the Coulomb force, but this is opposed by the smaller dielectric force. The spontaneous membrane curvature becomes very pronounced at high fixed charge densities, leading to very small spontaneous radii (<50nm). In conclusion the electrostatic/electrokinetic forces contribute significantly to the membrane curvature.  相似文献   

11.
Using the biphasic theory for hydrated soft tissues (Mow et al., 1980) and a transversely isotropic elastic model for the solid matrix, an analytical solution is presented for the unconfined compression of cylindrical disks of growth plate tissues compressed between two rigid platens with a frictionless interface. The axisymmetric case where the plane of transverse isotropy is perpendicular to the cylindrical axis is studied, and the stress-relaxation response to imposed step and ramp displacements is solved. This solution is then used to analyze experimental data from unconfined compression stress-relaxation tests performed on specimens from bovine distal ulnar growth plate and chondroepiphysis to determine the biphasic material parameters. The transversely isotropic biphasic model provides an excellent agreement between theory and experimental results, better than was previously achieved with an isotropic model, and can explain the observed experimental behavior in unconfined compression of these tissues.  相似文献   

12.
Swelling of articular cartilage depends on its fixed charge density and distribution, the stiffness of its collagen-proteoglycan matrix, and the ion concentrations in the interstitium. A theory for a tertiary mixture has been developed, including the two fluid-solid phases (biphasic), and an ion phase, representing cation and anion of a single salt, to describe the deformation and stress fields for cartilage under chemical and/or mechanical loads. This triphasic theory combines the physico-chemical theory for ionic and polyionic (proteoglycan) solutions with the biphasic theory for cartilage. The present model assumes the fixed charge groups to remain unchanged, and that the counter-ions are the cations of a single-salt of the bathing solution. The momentum equation for the neutral salt and for the intersitial water are expressed in terms of their chemical potentials whose gradients are the driving forces for their movements. These chemical potentials depend on fluid pressure p, salt concentration c, solid matrix dilatation e and fixed charge density cF. For a uni-uni valent salt such as NaCl, they are given by mu i = mu io + (RT/Mi)ln[gamma 2 +/- c(c + cF)] and mu w = mu wo + [p-RT phi (2c + cF) + Bwe]/pwT, where R, T, Mi, gamma +/-, phi, pwT and Bw are universal gas constant, absolute temperature, molecular weight, mean activity coefficient of salt, osmotic coefficient, true density of water, and a coupling material coefficient, respectively. For infinitesimal strains and material isotropy, the stress-strain relationship for the total mixture stress is sigma = - pI-TcI + lambda s(trE)I + 2 musE, where E is the strain tensor and (lambda s, mu s) are the Lamé constants of the elastic solid matrix. The chemical-expansion stress (-Tc) derives from the charge-to-charge repulsive forces within the solid matrix. This theory can be applied to both equilibrium and non-equilibrium problems. For equilibrium free swelling problems, the theory yields the well known Donnan equilibrium ion distribution and osmotic pressure equations, along with an analytical expression for the "pre-stress" in the solid matrix. For the confined-compression swelling problem, it predicts that the applied compressive stress is shared by three load support mechanisms: 1) the Donnan osmotic pressure; 2) the chemical-expansion stress; and 3) the solid matrix elastic stress. Numerical calculations have been made, based on a set of equilibrium free-swelling and confined-compression data, to assess the relative contribution of each mechanism to load support. Our results show that all three mechanisms are important in determining the overall compressive stiffness of cartilage.  相似文献   

13.
The main objective of this study is to determine the nature of electric fields inside articular cartilage while accounting for the effects of both streaming potential and diffusion potential. Specifically, we solve two tissue mechano-electrochemical problems using the triphasic theories developed by Lai et al. (1991, ASME J. Biomech Eng., 113, pp. 245-258) and Gu et al. (1998, ASME J. Biomech. Eng., 120, pp. 169-180) (1) the steady one-dimensional permeation problem; and (2) the transient one-dimensional ramped-displacement, confined-compression, stress-relaxation problem (both in an open circuit condition) so as to be able to calculate the compressive strain, the electric potential, and the fixed charged density (FCD) inside cartilage. Our calculations show that in these two technically important problems, the diffusion potential effects compete against the flow-induced kinetic effects (streaming potential) for dominance of the electric potential inside the tissue. For softer tissues of similar FCD (i.e., lower aggregate modulus), the diffusion potential effects are enhanced when the tissue is being compressed (i.e., increasing its FCD in a nonuniform manner) either by direct compression or by drag-induced compaction; indeed, the diffusion potential effect may dominate over the streaming potential effect. The polarity of the electric potential field is in the same direction of interstitial fluid flow when streaming potential dominates, and in the opposite direction of fluid flow when diffusion potential dominates. For physiologically realistic articular cartilage material parameters, the polarity of electric potential across the tissue on the outside (surface to surface) may be opposite to the polarity across the tissue on the inside (surface to surface). Since the electromechanical signals that chondrocytes perceive in situ are the stresses, strains, pressures and the electric field generated inside the extracellular matrix when the tissue is deformed, the results from this study offer new challenges for the understanding of possible mechanisms that control chondrocyte biosyntheses.  相似文献   

14.
The Nernst-Planck-Poisson equations for the potential profile across a membrane are exactly solved without recourse to the assumption of constant field within the membrane. It is assumed that the membrane core of thickness dc is covered by a surface layer of thickness ds in which the membrane-fixed charges are distributed at a uniform density N. The membrane boundary potentials as well as the diffusion potentials contribute to the membrane potential. It is shown that for ds greater or similar 1/k, k being the Debye-Hückel parameter, the potential in the membrane surface layer except in the region very near the membrane/solution boundary is effectively equal to the Donnan potential and that its contribution to the membrane potential becomes dominant as N increases. For low N, on the other hand, the membrane potential arises mostly from the diffusion potential.  相似文献   

15.
The electric fields within a planar slab of material due to both charges and dipoles within the slab and near to its surface are simply calculated using the method of images. If the slab is immersed in a fluid of high dielectric constant the electric field within the slab due to the charge is always reduced but that of a suitably oriented electric dipole is enhanced by as much as a factor of two.  相似文献   

16.
Modelling load bearing in diarthrodial joints is challenging, due to the complexity of the materials, the boundary and interface conditions and the geometry. The articulating surfaces are covered with cartilage layers that are filled with a fluid that plays a major role in load bearing [Mow, V.C., Holmes, M.H., Lai, W.M. (1984) "Survey article: fluid transport and mechanical properties of articular cartilage: a review", Journal of Biomechanics 17(5), 377-394]. Researchers have tended to approximate joint geometry using axisymmetry [Donzelli, P.S., Spilker, R.L., Ateshian, G.A., Mow, V.C. (1999) "Contact analysis of biphasic transversely isotropic cartilage layers and correlations with tissue failure", Journal of Biomechanics 32, 1037-1047], often with a rounded upper articulating surface, creating a form of Hertz problem [Donzelli, P.S., Spilker, R.L., Ateshian, G.A., Mow, V.C. (1999) "Contact analysis of biphasic transversely isotropic cartilage layers and correlations with tissue failure", Journal of Biomechanics 32, 1037-1047]. However, diarthrodial joints (shoulder, hip and knee) are equipped with peripheral structures (glenoid labrum, acetabular labrum and meniscus, respectively) that tend to deepen the joint contact and thus cause initial contact to be established at the periphery of the joint rather than "centrally". The surface geometries are purposefully incongruent, and the incongruency has a significant effect on the stresses, pressures and pressure gradients inside the tissue. The models show the importance of the peripheral structures and the incongruency from a load-bearing perspective. Joint shapes must provide a compromise between demands for load-bearing, lubrication and the supply of nutrients to the chondrocytes of the cartilage and cells of the peripheral structures. Retention and repair of the functionality of these peripheral structures should be a prime consideration in any surgical treatment of an injured joint.  相似文献   

17.
The sedimentation of albumin under the action of the electric and gravitational fields was determined as a function of time in discontinuous experiments in a rectangular cell, using serum with the albumin fraction stained blue. It was shown that even under the influence of strong electric fields, the upper boundary of the albumin layer fell no further than the mid-point of the cell. In continuous single-stage separation of gamma-globulin from other serum proteins, only about half the gamma-globulins can be obtained from the solution because it remains homogeneously distributed throughout the solution and is only free from albumin and other proteins in the upper half of the cell. In experiments with continuously operated triangular cells, the process was optimized to give gamma-globulin of 97.5% purity in a yield of 80%, at serum flow-through rates of up to 0.5 l/h in a block composed of 40 cells.  相似文献   

18.
Coarse-grained elastic network models elucidate the fluctuation dynamics of proteins around their native conformations. Low-frequency collective motions derived by simplified normal mode analysis are usually involved in biological function, and these motions often possess noteworthy symmetries related to the overall shape of the molecule. Here, insights into these motions and their frequencies are sought by considering continuum models with appropriate symmetry and boundary conditions to approximately represent the true atomistic molecular structure. We solve the elastic wave equations analytically for the case of spherical symmetry, yielding a symmetry-based classification of molecular motions together with explicit predictions for their vibrational frequencies. We address the case of icosahedral symmetry as a perturbation to the spherical case. Applications to lumazine synthase, satellite tobacco mosaic virus, and brome mosaic virus show that the spherical elastic model efficiently provides insights on collective motions that are otherwise obtained by detailed elastic network models. A major utility of the continuum models is the possibility of estimating macroscopic material properties such as the Young's modulus or Poisson's ratio for different types of viruses.  相似文献   

19.
Lipid bilayer was deformed by the electrostatic/electrokinetic forces induced by the fixed charges on the top monolayer-solution interface. The strains, stresses and energy were simulated using finite element method. The elastic moduli of the heads were four times greater than those of tails sections, but were individually isotropic. The physics of the situation was evaluated using a coupled system of linear elastic equations and electrostatic-electrokinetic (Poisson-Nernst-Planck) equations. The Coulomb force (due to fixed charges in the electric field), and the dielectric force (due to uneven electric field and the solution-membrane permittivity mismatch) bend the membrane, but unevenly. Whereas the bottom monolayer extends vertically (towards charged surface), the top monolayer compresses. In contrast the top monolayer extends horizontally, but the bottom monolayer compresses. The horizontal normal stress is higher in the heads than in the tails sections, but is similar in two monolayers, whereas the vertical normal stress is small. The horizontal normal stress is associated with horizontal normal strain, and vertical with both vertical and horizontal strain. Surprisingly, the shear stress (an indicator where the membrane will deform), is greater in the tails sections. Finally, the elastic energy (which is clearly greater in the heads sections) is dominated by its horizontal component and peaks in the middle of the membrane. The shear component dominates in the tails sections, and is minimal in the membrane center. Even spatially uniform external force thus leads to complex membrane deformation and generates complex profiles of stress and elastic energy.  相似文献   

20.
A three-dimensional (3D) contact finite element formulation has been developed for biological soft tissue-to-tissue contact analysis. The linear biphasic theory of Mow, Holmes, and Lai (1984, J. Biomech., 17(5), pp. 377-394) based on continuum mixture theory, is adopted to describe the hydrated soft tissue as a continuum of solid and fluid phases. Four contact continuity conditions derived for biphasic mixtures by Hou et al. (1989, ASME J. Biomech. Eng., 111(1), pp. 78-87) are introduced on the assumed contact surface, and a weighted residual method has been used to derive a mixed velocity-pressure finite element contact formulation. The Lagrange multiplier method is used to enforce two of the four contact continuity conditions, while the other two conditions are introduced directly into the weighted residual statement. Alternate formulations are possible, which differ in the choice of continuity conditions that are enforced with Lagrange multipliers. Primary attention is focused on a formulation that enforces the normal solid traction and relative fluid flow continuity conditions on the contact surface using Lagrange multipliers. An alternate approach, in which the multipliers enforce normal solid traction and pressure continuity conditions, is also discussed. The contact nonlinearity is treated with an iterative algorithm, where the assumed area is either extended or reduced based on the validity of the solution relative to contact conditions. The resulting first-order system of equations is solved in time using the generalized finite difference scheme. The formulation is validated by a series of increasingly complex canonical problems, including the confined and unconfined compression, the Hertz contact problem, and two biphasic indentation tests. As a clinical demonstration of the capability of the contact analysis, the gleno-humeral joint contact of human shoulders is analyzed using an idealized 3D geometry. In the joint, both glenoid and humeral head cartilage experience maximum tensile and compressive stresses are at the cartilage-bone interface, away from the center of the contact area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号