首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《BBA》1986,849(3):355-365
Rapid CO2 gas exchange by Helianthus leaves was analysed kinetically using a computer model which distinguished different components of the gas exchange by different time constants. A rapid phase of CO2 uptake was ascribed to the solubilization of CO2 in all leaf compartments and to the conversion of the dissolved CO2 to HCO3 in the chloroplast stroma which contains carbonic anhydrase. From stromal HCO3CO2 ratios the stroma pH of darkened leaves was estimated to be close to 7.5. Occasionally, values as high as 8 or as low as 7 were also obtained. If fast HCO3 formation also occurs in the cytosol, pH values may be lower by about 0.3 pH units than those calculated under the assumption that carbonic anhydrase is localized in chloroplasts only. Illumination with a light intensity close to saturation of photosynthesis caused an increase in CO2 solubilization which indicated the alkalization of the chloroplast stroma by about 0.6 pH units. This is an underestimation, if the pH of cytosol decreases in the light liberating CO2 by the action of carbon anhydrase. An alkalization of the stroma by 0.6 pH units indicates the export of about 450 nmol H+/mg chlorophyll from the stroma. This forms the basis of a large transthylakoid pH gradient which drives light-dependent ATP synthesis. A pH gradient between stroma and cytosol is capable of supporting secondary gradients between these compartments in the light, such as a gradient in the ATPADP ratio. On darkening, the stroma alkalization was reversed. The rate of stroma acidification was much higher in the presence of CO2 than in its absence.  相似文献   

2.
Hydrogen peroxide (H2O2) has key signaling roles at physiological levels, while causing molecular damage at elevated concentrations. H2O2 production by mitochondria is implicated in regulating processes inside and outside these organelles. However, it remains unclear whether and how mitochondria in intact cells release H2O2. Here, we employed a genetically encoded high‐affinity H2O2 sensor, HyPer7, in mammalian tissue culture cells to investigate different modes of mitochondrial H2O2 release. We found substantial heterogeneity of HyPer7 dynamics between individual cells. We further observed mitochondria‐released H2O2 directly at the surface of the organelle and in the bulk cytosol, but not in the nucleus or at the plasma membrane, pointing to steep gradients emanating from mitochondria. Gradient formation is controlled by cytosolic peroxiredoxins, which act redundantly and with a substantial reserve capacity. Dynamic adaptation of cytosolic thioredoxin reductase levels during metabolic changes results in improved H2O2 handling and explains previously observed differences between cell types. Our data suggest that H2O2‐mediated signaling is initiated only in close proximity to mitochondria and under specific metabolic conditions.  相似文献   

3.
Unbalanced endoplasmic reticulum (ER) homeostasis (ER stress) leads to increased generation of reactive oxygen species (ROS). Disulfide-bond formation in the ER by Ero1 family oxidases produces hydrogen peroxide (H2O2) and thereby constitutes one potential source of ER-stress-induced ROS. However, we demonstrate that Ero1α-derived H2O2 is rapidly cleared by glutathione peroxidase (GPx) 8. In 293 cells, GPx8 and reduced/activated forms of Ero1α co-reside in the rough ER subdomain. Loss of GPx8 causes ER stress, leakage of Ero1α-derived H2O2 to the cytosol, and cell death. In contrast, peroxiredoxin (Prx) IV, another H2O2-detoxifying rough ER enzyme, does not protect from Ero1α-mediated toxicity, as is currently proposed. Only when Ero1α-catalyzed H2O2 production is artificially maximized can PrxIV participate in its reduction. We conclude that the peroxidase activity of the described Ero1α–GPx8 complex prevents diffusion of Ero1α-derived H2O2 within and out of the rough ER. Along with the induction of GPX8 in ER-stressed cells, these findings question a ubiquitous role of Ero1α as a producer of cytoplasmic ROS under ER stress.  相似文献   

4.
In order to study the mechanisms behind the infection process of the necrotrophic fungus Botrytis cinerea, the subcellular distribution of hydrogen peroxide (H2O2) was monitored over a time frame of 96 h post inoculation (hpi) in Arabidopsis thaliana Col-0 leaves at the inoculation site (IS) and the area around the IS which was defined as area adjacent to the inoculation site (AIS). H2O2 accumulation was correlated with changes in the compartment-specific distribution of ascorbate and glutathione and chloroplast fine structure. This study revealed that the severe breakdown of the antioxidative system, indicated by a drop in ascorbate and glutathione contents at the IS at later stages of infection correlated with an accumulation of H2O2 in chloroplasts, mitochondria, cell walls, nuclei and the cytosol which resulted in the development of chlorosis and cell death, eventually visible as tissue necrosis. A steady increase of glutathione contents in most cell compartments within infected tissues (up to 600% in chloroplasts at 96 hpi) correlated with an accumulation of H2O2 in chloroplasts, mitochondria and cell walls at the AIS indicating that high glutathione levels could not prevent the accumulation of reactive oxygen species (ROS) which resulted in chlorosis. Summing up, this study reveals the intracellular sequence of events during Botrytis cinerea infection and shows that the breakdown of the antioxidative system correlated with the accumulation of H2O2 in the host cells. This resulted in the degeneration of the leaf indicated by severe changes in the number and ultrastructure of chloroplasts (e.g. decrease of chloroplast number, decrease of starch and thylakoid contents, increase of plastoglobuli size), chlorosis and necrosis of the leaves.  相似文献   

5.
Ascorbate peroxidase (APX) isoforms localized in the stroma and thylakoid of the chloroplast play a principle role in detoxifying hydrogen peroxide (H2O2) generated in photosystem I; however, once the ascorbate is depleted, the enzyme is attacked by H2O2 and rapidly loses its activity. Here, we report that radical transfer across the porphyrin moiety and amino acid residues in the reaction intermediate and H2O2-mediated enzyme inactivation involve cooperative interactions of the Cys26, Trp35, and Cys126 residues of stromal APX. The wild-type enzyme had a half-time of inactivation of <10 s, while the triple mutant of the three residues retained 50% of the initial activity after H2O2 treatment for 3 min. The H2O2 tolerance of this mutant was comparable to that of the H2O2-tolerant APX isoform localized in the cytosol.  相似文献   

6.
Photosynthesis of C3 plants is occasionally inhibited upon switching from normal to low partial pressure of O2. Leaves of Solanum tuberosum exhibited this effect reproducibly under saturating light and 700 microbars of CO2. We determined the partitioning of recent photosynthate between starch and sucrose and measured the concentration of hexose monophosphates in the stroma and cytosol after nonaqueous fractionation. The reduction in the rate of photosynthesis upon switching to low partial pressure of O2 was caused by reduced starch synthesis. The concentration of hexose monophosphates in the stroma fell and the glucose 6-phosphate to fructose 6-phosphate to fructose 6-phosphate ratio fell from 2.7 to 1.3, indicating an inhibition of phosphoglucoisomerase as described by K-J Dietz ([1985] Biochim Biophys Acta 839: 240-248). The concentration of hexose monophosphates in the cytosol increased, ruling out a sucrose synthesis limitation by reduced transport from the chloroplast as the explanation for low O2 inhibition of photosynthesis.  相似文献   

7.
In photosynthetic organisms, sudden changes in light intensity perturb the photosynthetic electron flow and lead to an increased production of reactive oxygen species. At the same time, thioredoxins can sense the redox state of the chloroplast. According to our hypothesis, thioredoxins and related thiol reactive molecules downregulate the activity of H2O2-detoxifying enzymes, and thereby allow a transient oxidative burst that triggers the expression of H2O2 responsive genes. It has been shown recently that upon light stress, catalase activity was reversibly inhibited in Chlamydomonas reinhardtii in correlation with a transient increase in the level of H2O2. Here, it is shown that Arabidopsis thaliana mutants lacking the NADP–malate dehydrogenase have lost the reversible inactivation of catalase activity and the increase in H2O2 levels when exposed to high light. The mutants were slightly affected in growth and accumulated higher levels of NADPH in the chloroplast than the wild-type. We propose that the malate valve plays an essential role in the regulation of catalase activity and the accumulation of a H2O2 signal by transmitting the redox state of the chloroplast to other cell compartments.  相似文献   

8.
Pfanz H  Heber U 《Plant physiology》1986,81(2):597-602
Since environmental pollution by potentially acidic gases such as SO2 causes proton release inside leaf tissues, homogenates of needles of spruce (Picea abies) and fir (Abies alba) and of leaves of spinach (Spinacia oleracea) and barley (Hordeum vulgare) were titrated and buffer capacities were determined as a function of pH. Titration curves of barley leaves were compared with titration curves of barley mesophyll protoplasts. From the protoplasts, chloroplasts and vacuoles were isolated and subjected to titration experiments. From the titration curves, the intracellular distribution of buffering capacities could be deduced. Buffering was strongly pH-dependent. It was high at the extremes of pH but still significant close to neutrality. Owing to its large size, the vacuole was mainly responsible for cellular buffering. However, on a unit volume basis, the cytoplasm was much more strongly buffered than the vacuole. Potentially acidic gases are trapped in the anionic form. They release protons when trapped. The magnitude of diffusion gradients from the atmosphere into the cells, which determines flux, depends on intracellular pH. In the light, the chloroplast stroma, as the most alkaline leaf compartment, has the highest trapping potential. Acidification of the chloroplast stroma inhibits photosynthesis. The trapping potential of the chloroplast is followed by that of the cytosol. Compared with the cytoplasm, the vacuole possesses little trapping potential in spite of its large size. It is particularly small in the acidic vacuoles of conifer needles. In the physiological pH range (slightly above neutrality), chloroplast buffering was about 1 microequivalents H+ per milligram chlorophyll per pH unit or 35 microequivalents H+ per milliliter per pH unit in barley or spinach chloroplasts. This compares with SO2-generated H+ production of somewhat more than 1 microequivalent H+ per milligram chlorophyll per hour, which results from observed SO2 uptake of leaves when stomata were open and the atmospheric SO2 concentration was 0.4 microliters per liter (GE Taylor Jr, DT Tingey 1983 Plant Physiol 72: 237-244). At lower SO2 concentrations, similar H+ generation inside the cells requires correspondingly longer exposure times.  相似文献   

9.
In the absence of PSII, non-photochemical reduction of plastoquinones (PQs) occurs following NADH or NADPH addition in thylakoid membranes of the green alga Chlamydomonas reinhardtii. The nature of the enzyme involved in this reaction has been investigated in vitro by measuring chlorophyll fluorescence increase in anoxia and light-dependent O2 uptake in the presence of methyl viologen. Based on the insensitivity of these reactions to rotenone, a type-I NADH dehydrogenase (NDH-1) inhibitor, and their sensitivity to flavoenzyme inhibitors and thiol blocking agents, we conclude to the involvement of a type-II NADH dehydrogenase (NDH-2) in PQ reduction. Intact Chlamydomonas cells placed in anoxia have the property to produce H2 in the light by a Fe-hydrogenase which uses reduced ferredoxin as an electron donor. H2 production also occurs in the absence of PSII thanks to the existence of a non-photochemical pathway of PQ reduction. From inhibitors effects, we suggest the involvement of a plastidial NDH-2 in PSII-independent H2 production in Chlamydomonas. These results are discussed in relation to the absence of ndh genes in Chlamydomonas plastid genome and to the existence of 7 ORFs homologous to type-II NDHs in its nuclear genome.  相似文献   

10.
Background and Aims In photosynthetic organisms exposure to high light induces the production of reactive oxygen species (ROS), such as hydrogen peroxide (H2O2), which in part is prevented by non-photochemical quenching (NPQ). As one of the most stable and longest-lived ROS, H2O2 is involved in key signalling pathways in development and stress responses, although in excess it can induce damage. A ubiquitous response to high light is the induction of the xanthophyll cycle, but its role in algae is unclear as it is not always associated with NPQ induction. The aim of this study was to reveal how diurnal changes in the level of H2O2 are regulated in a freshwater algal community.Methods A natural freshwater community of algae in a temporary rainwater pool was studied, comprising photosynthetic Euglena species, benthic Navicula diatoms, Chlamydomonas and Chlorella species. Diurnal measurements were made of photosynthetic performance, concentrations of photosynthetic pigments and H2O2. The frequently studied model organisms Chlamydomonas and Chlorella species were isolated to study photosynthesis-related H2O2 responses to high light.Key Results NPQ was shown to prevent H2O2 release in Chlamydomonas and Chlorella species under high light; in addition, dissolved organic carbon excited by UV-B radiation was probably responsible for a part of the H2O2 produced in the water column. Concentrations of H2O2 peaked at 2 µm at midday and algae rapidly scavenged H2O2 rather than releasing it. A vertical H2O2 gradient was observed that was lowest next to diatom-rich benthic algal mats. The diurnal changes in photosynthetic pigments included the violaxanthin and diadinoxanthin cycles; the former was induced prior to the latter, but neither was strictly correlated with NPQ.Conclusions The diurnal cycling of H2O2 was apparently modulated by the organisms in this freshwater algal community. Although the community showed flexibility in its levels of NPQ, the diurnal changes in xanthophylls correlated with H2O2 concentrations. Alternative NPQ mechanisms in algae involving proteins of the light-harvesting complex type and antioxidant protection of the thylakoid membrane by de-epoxidized carotenoids are discussed.  相似文献   

11.
Thermotolerance is improved by heat stress (HS) acclimation, and the thermotolerance level is “remembered” by plants. However, the underlying signalling mechanisms remain largely unknown. Here, we showed NADPH oxidase‐mediated H2O2 (NADPH‐H2O2), and chloroplast‐H2O2 promoted the sustained expression of HS‐responsive genes and programmed cell death (PCD) genes, respectively, during recovery after HS acclimation. When spraying the NADPH oxidase inhibitor, diphenylene iodonium, after HS acclimation, the NADPH‐H2O2 level significantly decreased, resulting in a decrease in the expression of HS‐responsive genes and the loss of maintenance of acquired thermotolerance (MAT). In contrast, compared with HS acclimation, NADPH‐H2O2 declined but chloroplast‐H2O2 further enhanced during recovery after HS over‐acclimation, resulting in the reduced expression of HS‐responsive genes and substantial production of PCD. Notably, the further inhibition of NADPH‐H2O2 after HS over‐acclimation also inhibited chloroplast‐H2O2, alleviating the severe PCD and surpassing the MAT of HS over‐acclimation treatment. Due to the change in subcellular H2O2 after HS acclimation, the tomato seedlings maintained a constant H2O2 level during recovery, resulting in stable and lower total H2O2 levels during a tester HS challenge conducted after recovery. We conclude that tomato seedlings increase their MAT by enhancing NADPH‐H2O2 content and controlling chloroplast‐H2O2 production during recovery, which enhances the expression of HS‐responsive genes and balances PCD levels, respectively.  相似文献   

12.
Current models of C3 photosynthesis incorporate a phosphate limitation to carboxylation which arises when the capacity for starch and sucrose synthesis fails to match the capacity for the production of triose phosphates in the Calvin cycle. As a result, the release of inorganic phosphate in the chloroplast stroma fails to keep pace with its rate of sequestration into triose phosphate, and phosphate becomes limiting to photosynthesis. Such a model predicts that when phosphate is limiting, assimilation becomes insensitive to both CO2 and O2, and is thus incapable of explaining the experimental observation that assimilation, under phosphate-limited conditions, frequently exhibits reversed sensitivity to both CO2 and O2, i.e., increasing O2 stimulates assimilation and increasing CO2 inhibits assimilation. We propose a model which explains reversed sensitivity to CO2 and O2 by invoking the net release of phosphate in the photorespiratory oxidation cycle. In order for this to occur, some fraction of the glycollate carbon which leaves the stroma and which is recycled to the chloroplast by the photorespiratory pathway as glycerate must remain in the cytosol, perhaps in the form of amino acids. In that case, phosphate normally used in the stromal glycerate kinase reaction to generate PGA from glycerate is made available for photophosphorylation, stimulating RuBP regeneration and assimilation. The model is parameterized for data obtained on soybean and cotton, and model behavior in response to CO2, O2, and light is demonstrated.Abbreviations PFD photon flux density - PGA 3-phosphoglycerate - Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase - RuBP ribulose-1,5-bisphosphate - TPU triose phosphate utilization  相似文献   

13.
Yamane K  Taniguchi M  Miyake H 《Protoplasma》2012,249(2):301-308
The localization of salt-induced H2O2 accumulation in the leaves of rice was examined using 3,3-diaminobenzidine and CeCl3 staining at ultrastructure level. When the 3-week-old rice plants were affected by 100 mM NaCl for 14 days, the swelling of thylakoids and the destruction of thylakoid membranes were observed. H2O2 accumulation was also observed in the chloroplast of the leaf treated with NaCl. The electron dense products of 3,3-diaminobenzidine and CeCl3 were mainly observed especially around the swelling of thylakoids. H2O2 accumulation and any ultrastructural changes were not observed in the chloroplasts under dark condition. Furthermore, treatment with ascorbic acid suppressed both H2O2 accumulation and the changes in chloroplast ultrastructure. These results suggest that light-induced production of excess H2O2 under salinity is responsible for the changes in chloroplast ultrastructure. H2O2 accumulation was also observed in the mitochondria, peroxisomes, plasma membrane, and cell walls under light but not dark, suggesting that these organelles are also the source of H2O2 and the production is light dependent under salinity.  相似文献   

14.
Cellular metabolism is inherently linked to the production of oxidizing by-products, including reactive oxygen species (ROS) hydrogen peroxide (H2O2). When present in excess, H2O2 can damage cellular biomolecules, but when produced in coordinated fashion, it typically serves as a mobile signaling messenger. It is therefore not surprising that cell health critically relies on both low-molecular-weight and enzymatic antioxidant components, which protect from ROS-mediated damage and shape the propagation and duration of ROS signals. This review focuses on H2O2–antioxidant cross talk in the endoplasmic reticulum (ER), which is intimately linked to the process of oxidative protein folding. ER-resident or ER-regulated sources of H2O2 and other ROS, which are subgrouped into constitutive and stimulated sources, are discussed and set into context with the diverse antioxidant mechanisms in the organelle. These include two types of peroxide-reducing enzymes, a high concentration of glutathione derived from the cytosol, and feedback-regulated thiol–disulfide switches, which negatively control the major ER oxidase ER oxidoreductin-1. Finally, new evidence highlighting emerging principles of H2O2-based cues at the ER will likely set a basis for establishing ER redox processes as a major line of future signaling research. A fundamental problem that remains to be solved is the specific, quantitative, time resolved, and targeted detection of H2O2 in the ER and in specialized ER subdomains.  相似文献   

15.
This report describes a new method to measure the chloroplastic lumenal proton pool in leaves (tobacco and sunflower). The method is based on measurement of CO2 outbursts from leaves caused by the shift in the CO2 + H2O ↔ HCO3  + H+ equilibrium in the chloroplast stroma as protons return from the lumen after darkening. Protons did not accumulate in the lumen to a significant extent when photosynthesis was light-limited, but a large pool of >100 μmol H+ m−2 accumulated in the lumen as photosynthesis became light-saturated. During thylakoid energization in the light, large amounts of protons are moved from binding sites in the stroma to binding sites in the lumen. The transthylakoidal difference in the chemical potential of free protons (ΔpH) is largely based on the difference in the chemical potential of bound protons in the lumenal and stromal compartments (pK). Over the course of the dark-light induction of photosynthesis protons accumulate in the lumen during reduction of 3-phosphoglycerate. The accumulation of electrons in reduced compounds of the stroma and cytosol is the natural cause for accumulation of a stoichiometric pool of lumenal protons during this transient event.  相似文献   

16.
17.
Employing immunogold electron microscopy, the subcellular location of the Calvin cycle enzyme phosphoribulokinase (PRK) was determined for two diverse species of microalgae. In both the red alga Porphyridium cruentum and the green alga Chlamydomonas reinhardtii, PRK was distributed throughout the thylakoid-containing chloroplast stroma. In contrast, the next enzyme in the pathway, ribulose 1,5-bisphosphate carboxylase/oxygenase, was predominantly pyrenoid-localized in both species. In Porphyridium, the chloroplast stroma abuts the pyrenoid but in Chlamydomonas and other green algae, the pyrenoid appears encased in a starch sheath. Unique inclusions found in the pyrenoid of Chlamydomonas were immunolabelled by anti-PRK and thus identified as regions of chloroplast stroma. It is postulated that such PRK-containing stromal inclusions in the pyrenoids of Chlamydomonas and perhaps other green algae provide a means for exchange of Calvin cycle metabolites between pyrenoid and stroma.  相似文献   

18.
Kow YW  Erbes DL  Gibbs M 《Plant physiology》1982,69(2):442-447
A spinach (Spinacia oleracia var. America) chloroplast particle fortified with ferredoxin, fructose-1,6-bisphosphate, or ribose-5-phosphate and NADP has been shown to generate NADPH by the oxidation of glyceraldehyde-3 phosphate to glycerate-3-phosphate (PGA) and to reduce ferredoxin with the NADPH. The resulting reduced ferredoxin can reduce O2 to H2O2, nitrite to ammonia, or protons to H2. Hydrogen production was the result of adding hydrogenase from Chlamydomonas reinhardii to the chloroplast preparation. The predicted stoichiometry of 1 PGA:1 O2 in the absence of and 2 PGA:1 O2 in the presence of catalase was observed indicating H2O2 as the end product of O2 reduction. The predicted stoichiometry of 3 PGA:1 nitrite:1 ammonia was also observed. A scheme is presented to account for a sustained generation of NADP and ATP necessary for the dissimilation of starch in the darkened chloroplast. The unifying term chloroplast respiration is introduced to account for those reactions in which reduced ferredoxin interacts with physiological acceptors other than NADP or nitrite, hydrogen, or O2 respiration when nitrite, protons, or O2 is the ultimate electron acceptor.  相似文献   

19.
Brennan T 《Plant physiology》1980,66(5):815-817
Dark activation of light-inactivated glucose-6-phosphate dehydrogenase was inhibited by catalase in a broken pea chloroplast system. Partially purified glucose-6-phosphate dehydrogenase from pea leaf chloroplasts can be inactivated in vitro by dithiothreitol and thioredoxin and reactivated by H2O2. The in vitro activation by H2O2 was not enhanced by horseradish peroxidase, and dark activation in the broken chloroplast system was only slightly inhibited by NaCN. These results indicate that the dark activation of glucose-6-phosphate dehydrogenase may involve oxidation by H2O2 of SH groups on the enzyme which were reduced in the light by the light effect mediator system.  相似文献   

20.
The unfolded-protein response (UPR) of the endoplasmic reticulum (ER) has been linked to oxidant production, although the molecular details and functional significance of this linkage are poorly understood. Using a ratiometric H2O2 sensor targeted to different subcellular compartments, we demonstrate specific production of H2O2 by the ER in response to the stressors tunicamycin and HIV-1 Tat, but not to thapsigargin or dithiothreitol. Knockdown of the oxidase Nox4, expressed on ER endomembranes, or expression of ER-targeted catalase blocked ER H2O2 production by tunicamycin and Tat and prevented the UPR following exposure to these two agonists, but not to thapsigargin or dithiothreitol. Tat also triggered Nox4-dependent, sustained activation of Ras leading to ERK, but not phosphatidylinositol 3-kinase (PI3K)/mTOR, pathway activation. Cell fractionation studies and green fluorescent protein (GFP) fusions of GTPase effector binding domains confirmed selective activation of endogenous RhoA and Ras on the ER surface, with ER-associated K-Ras acting upstream of the UPR and downstream of Nox4. Notably, the Nox4/Ras/ERK pathway induced autophagy, and suppression of autophagy unmasked cell death and prevented differentiation of endothelial cells in 3-dimensional matrix. We conclude that the ER surface provides a platform to spatially organize agonist-specific Nox4-dependent oxidative signaling events, leading to homeostatic protective mechanisms rather than oxidative stress.Coupled in part to its function as a major site of protein synthesis, the endoplasmic reticulum (ER) has emerged as an important signaling organelle, responding to various cell stresses and controlling cell fate. Much of this signaling is initiated on the ER membrane surface. In response to an overload of misfolded client proteins in the ER lumen, for example, transmembrane ER stress sensors such as IRE1, PERK, and ATF6 initiate signals on the cytosolic face of the ER to reduce global protein synthesis, promote protein folding, and increase the degradation of misfolded proteins (36). Failure of this response to alleviate protein misfolding stress leads to late expression of proteins such as CHOP, culminating in cell death. In addition to factors controlling this unfolded-protein response (UPR), cyclins, pro- and anti-apoptotic BH3 domain proteins, caspases, and signaling adapters associate with the ER surface and control cell cycle entry, cell death, Ca2+ flux, amino acid metabolism, oxidative-stress response, and autophagy (15, 17-19, 41). Thus, the ER integrates a variety of stresses (metabolic, protein misfolding, and oxidative) to coordinate cellular stress responses.Another ER transmembrane protein is the NADPH oxidase Nox4. Like other Nox family members, Nox4 produces H2O2 and is thought to function primarily in cell signaling. Consistent with its ER localization, Nox4 mediates oxidative inactivation of the ER-resident phosphatase PTP1B and responds to ER stress induced by the LDL oxysterol 7-ketocholesterol (10, 34). The presence of Nox4 on the ER surface is notable, since ER stress is associated with the production of reactive oxygen species (ROS), though the nature of this association is poorly understood. Agents that cause ER stress initiate ATF4-dependent glutathione (GSH) synthesis, which is necessary to diminish ROS production and subsequent cell death (15). The mechanism of ROS production is also unclear, but it is thought to be a consequence of the UPR, possibly downstream of CHOP (25, 26). For the most part, such studies suggest a role for oxidants as late effectors of cell death, downstream from the UPR. The ER itself may be a source of oxidants, as knockdown of the ER oxidase Ero-1 in pek-1-null worms diminishes oxidant production (15). To some extent, the excessive production of ROS by the stressed ER would seem to run counter to recent observations that chemical and physiologic ER stressors converge on the production of a hyperreduced ER interior (28). In addition, [rho0] Saccharomyces cerevisiae lacking mitochondria also fails to produce ROS in response to ER stress, suggesting a mitochondrial source (16). In part, such studies linking the ER and oxidative stress have been hampered by reliance on probes, such as dichlorofluorescein, that are untargeted and nonspecific, reacting with a broad variety of oxidants as well as non-ROS compounds, such as cytosolic cytochrome c.In this study, using an H2O2-specific probe targeted to the ER, we found that Nox4 participates early in ER stress signaling in an agonist-specific fashion through a novel process involving focal activation of Ras on the ER. This Nox4-dependent pathway leads to activation of autophagy, which prevents the progression of the UPR to cell death, thus distinguishing Nox4 oxidant signaling from oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号