首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Infection by one strain of influenza type A provides some protection (cross-immunity) against infection by a related strain. It is important to determine how this influences the observed co-circulation of comparatively minor variants of the H1N1 and H3N2 subtypes. To this end, we formulate discrete and continuous time models with two viral strains, cross-immunity, age structure, and infectious disease dynamics. Simulation and analysis of models with cross-immunity indicate that sustained oscillations cannot be maintained by age-specific infection activity level rates when the mortality rate is constant; but are possible if mortalities are age-specific, even if activity levels are independent of age. Sustained oscillations do not seem possible for a single-strain model, even in the presence of age-specific mortalities; and thus it is suggested that the interplay between cross-immunity and age-specific mortalities may underlie observed oscillations.  相似文献   

2.
The bifurcations of the periodic solutions of SEIR and SIR epidemic models with sinusoidally varying contact rate are investigated. The analysis is carried out with respect to two parameters: the mean value and the degree of seasonality of the contact rate. The corresponding portraits in the two-parameter space are obtained by means of a numerical continuation method. Codimension two bifurcations (degenerate flips and cusps) are detected, and multiple stable modes of behavior are identified in various regions of the parameter space. Finally, it is shown how the parametric portrait of the SEIR model tends to that of the SIR model when the latent period tends to zero.  相似文献   

3.
4.
5.
This paper is concerned with a stochastic SIR (susceptible  infective  removed) model for the spread of an epidemic amongst a population of individuals, with a random network of social contacts, that is also partitioned into households. The behaviour of the model as the population size tends to infinity in an appropriate fashion is investigated. A threshold parameter which determines whether or not an epidemic with few initial infectives can become established and lead to a major outbreak is obtained, as are the probability that a major outbreak occurs and the expected proportion of the population that are ultimately infected by such an outbreak, together with methods for calculating these quantities. Monte Carlo simulations demonstrate that these asymptotic quantities accurately reflect the behaviour of finite populations, even for only moderately sized finite populations. The model is compared and contrasted with related models previously studied in the literature. The effects of the amount of clustering present in the overall population structure and the infectious period distribution on the outcomes of the model are also explored.  相似文献   

6.
This paper deals with the nonlinear dynamics of a susceptible-infectious-recovered (SIR) epidemic model with nonlinear incidence rate, vertical transmission, vaccination for the newborns of susceptible and recovered individuals, and the capacity of treatment. It is assumed that the treatment rate is proportional to the number of infectives when it is below the capacity and constant when the number of infectives reaches the capacity. Under some conditions, it is shown that there exists a backward bifurcation from an endemic equilibrium, which implies that the disease-free equilibrium coexists with an endemic equilibrium. In such a case, reducing the basic reproduction number less than unity is not enough to control and eradicate the disease, extra measures are needed to ensure that the solutions approach the disease-free equilibrium. When the basic reproduction number is greater than unity, the model can have multiple endemic equilibria due to the effect of treatment, vaccination and other parameters. The existence and stability of the endemic equilibria of the model are analyzed and sufficient conditions on the existence and stability of a limit cycle are obtained. Numerical simulations are presented to illustrate the analytical results.  相似文献   

7.
This paper is concerned with a general stochastic model for susceptible→infective→removed epidemics, among a closed finite population, in which during its infectious period a typical infective makes both local and global contacts. Each local contact of a given infective is with an individual chosen independently according to a contact distribution ‘centred’ on that infective, and each global contact is with an individual chosen independently and uniformly from the whole population. The asymptotic situation in which the local contact distribution remains fixed as the population becomes large is considered. The concepts of local infectious clump and local susceptibility set are used to develop a unified approach to the threshold behaviour of this class of epidemic models. In particular, a threshold parameter R* governing whether or not global epidemics can occur, the probability that a global epidemic occurs and the mean proportion of initial susceptibles ultimately infected by a global epidemic are all determined. The theory is specialised to (i) the households model, in which the population is partitioned into households and local contacts are chosen uniformly within an infective’s household; (ii) the overlapping groups model, in which the population is partitioned in several ways, with local uniform mixing within the elements of the partitions; and (iii) the great circle model, in which individuals are equally spaced on a circle and local contacts are nearest-neighbour.  相似文献   

8.
Network epidemic models with two levels of mixing   总被引:1,自引:0,他引:1  
The study of epidemics on social networks has attracted considerable attention recently. In this paper, we consider a stochastic SIR (susceptible-->infective-->removed) model for the spread of an epidemic on a finite network, having an arbitrary but specified degree distribution, in which individuals also make casual contacts, i.e. with people chosen uniformly from the population. The behaviour of the model as the network size tends to infinity is investigated. In particular, the basic reproduction number R(0), that governs whether or not an epidemic with few initial infectives can become established is determined, as are the probability that an epidemic becomes established and the proportion of the population who are ultimately infected by such an epidemic. For the case when the infectious period is constant and all individuals in the network have the same degree, the asymptotic variance and a central limit theorem for the size of an epidemic that becomes established are obtained. Letting the rate at which individuals make casual contacts decrease to zero yields, heuristically, corresponding results for the model without casual contacts, i.e. for the standard SIR network epidemic model. A deterministic model that approximates the spread of an epidemic that becomes established in a large population is also derived. The theory is illustrated by numerical studies, which demonstrate that the asymptotic approximations work well, even for only moderately sized networks, and that the degree distribution and the inclusion of casual contacts can each have a major impact on the outcome of an epidemic.  相似文献   

9.
We investigate the properties of a simple discrete time stochastic epidemic model. The model is Markovian of the SIR type in which the total population is constant and individuals meet a random number of other individuals at each time step. Individuals remain infectious for R time units, after which they become removed or immune. Individual transition probabilities from susceptible to diseased states are given in terms of the binomial distribution. An expression is given for the probability that any individuals beyond those initially infected become diseased. In the model with a finite recovery time R, simulations reveal large variability in both the total number of infected individuals and in the total duration of the epidemic, even when the variability in number of contacts per day is small. In the case of no recovery, R=infinity, a formal diffusion approximation is obtained for the number infected. The mean for the diffusion process can be approximated by a logistic which is more accurate for larger contact rates or faster developing epidemics. For finite R we then proceed mainly by simulation and investigate in the mean the effects of varying the parameters p (the probability of transmission), R, and the number of contacts per day per individual. A scale invariant property is noted for the size of an outbreak in relation to the total population size. Most notable are the existence of maxima in the duration of an epidemic as a function of R and the extremely large differences in the sizes of outbreaks which can occur for small changes in R. These findings have practical applications in controlling the size and duration of epidemics and hence reducing their human and economic costs.  相似文献   

10.
11.
Kar TK  Batabyal A 《Bio Systems》2011,104(2-3):127-135
This paper focuses on the study of a nonlinear mathematical SIR epidemic model with a vaccination program. We have discussed the existence and the stability of both the disease free and endemic equilibrium. Vaccine induced reproduction number is determined and the impact of vaccination in reducing the vaccine induced reproduction number is discussed. Then to achieve control of the disease, a control problem is formulated and it is shown that an optimal control exists for our model. The optimality system is derived and solved numerically using the Runge-Kutta fourth order procedure.  相似文献   

12.
We consider a simple unstructured individual based stochastic epidemic model with contact tracing. Even in the onset of the epidemic, contact tracing implies that infected individuals do not act independent of each other. Nevertheless, it is possible to analyze the embedded non-stationary Galton-Watson process. Based upon this analysis, threshold theorems and also the probability for major outbreaks can be derived. Furthermore, it is possible to obtain a deterministic model that approximates the stochastic process, and in this way, to determine the prevalence of disease in the quasi-stationary state and to investigate the dynamics of the epidemic.  相似文献   

13.
14.
The basic reproduction number, ?(0), one of the most well-known thresholds in deterministic epidemic theory, predicts a disease outbreak if ?(0)>1. In stochastic epidemic theory, there are also thresholds that predict a major outbreak. In the case of a single infectious group, if ?(0)>1 and i infectious individuals are introduced into a susceptible population, then the probability of a major outbreak is approximately 1-(1/?(0))( i ). With multiple infectious groups from which the disease could emerge, this result no longer holds. Stochastic thresholds for multiple groups depend on the number of individuals within each group, i ( j ), j=1, …, n, and on the probability of disease extinction for each group, q ( j ). It follows from multitype branching processes that the probability of a major outbreak is approximately [Formula: see text]. In this investigation, we summarize some of the deterministic and stochastic threshold theory, illustrate how to calculate the stochastic thresholds, and derive some new relationships between the deterministic and stochastic thresholds.  相似文献   

15.
Stochastic compartmental models of the SEIR type are often used to make inferences on epidemic processes from partially observed data in which only removal times are available. For many epidemics, the assumption of constant removal rates is not plausible. We develop methods for models in which these rates are a time-dependent step function. A reversible jump MCMC algorithm is described that permits Bayesian inferences to be made on model parameters, particularly those associated with the step function. The method is applied to two datasets on outbreaks of smallpox and a respiratory disease. The analyses highlight the importance of allowing for time dependence by contrasting the predictive distributions for the removal times and comparing them with the observed data.   相似文献   

16.
The dynamics of deterministic and stochastic discrete-time epidemic models are analyzed and compared. The discrete-time stochastic models are Markov chains, approximations to the continuous-time models. Models of SIS and SIR type with constant population size and general force of infection are analyzed, then a more general SIS model with variable population size is analyzed. In the deterministic models, the value of the basic reproductive number R0 determines persistence or extinction of the disease. If R0 < 1, the disease is eliminated, whereas if R0 > 1, the disease persists in the population. Since all stochastic models considered in this paper have finite state spaces with at least one absorbing state, ultimate disease extinction is certain regardless of the value of R0. However, in some cases, the time until disease extinction may be very long. In these cases, if the probability distribution is conditioned on non-extinction, then when R0 > 1, there exists a quasi-stationary probability distribution whose mean agrees with deterministic endemic equilibrium. The expected duration of the epidemic is investigated numerically.  相似文献   

17.
Stability analysis and optimal vaccination of an SIR epidemic model   总被引:2,自引:1,他引:1  
Zaman G  Han Kang Y  Jung IH 《Bio Systems》2008,93(3):240-249
Almost all mathematical models of diseases start from the same basic premise: the population can be subdivided into a set of distinct classes dependent upon experience with respect to the relevant disease. Most of these models classify individuals as either a susceptible individual S, infected individual I or recovered individual R. This is called the susceptible-infected-recovered (SIR) model. In this paper, we describe an SIR epidemic model with three components; S, I and R. We describe our study of stability analysis theory to find the equilibria for the model. Next in order to achieve control of the disease, we consider a control problem relative to the SIR model. A percentage of the susceptible populations is vaccinated in this model. We show that an optimal control exists for the control problem and describe numerical simulations using the Runge-Kutta fourth order procedure. Finally, we describe a real example showing the efficiency of this optimal control.  相似文献   

18.
Deterministic models are presented for epidemics which occur quickly and for long-term endemic diseases where births and deaths must be considered. Contact-rate matrices are formulated in terms of activity levels and subpopulation sizes by using a proportionate-mixing assumption. Methods are presented for estimating epidemic and endemic parameters in both homogeneous and heterogeneous populations. Other authors' approaches to contact-rate matrices and spatial heterogeneity are described. Three immunization programs are analyzed for a model of a spatially heterogeneous population and are compared in a “city and villages” example.  相似文献   

19.
A simple mathematical model for human disease epidemics that takes the human learning behaviour and self-protective measures into account is proposed and investigated. We have analysed the effect of endogenous self-protective measures with respect to the prevalence level of the disease and conversely. In the model it is assumed that people start reacting against contracting a disease with self-protective measures whenever they are informed about the disease and when the burden of the disease is in a recognizable stage. It is shown that increasing the average effectiveness of self-protective measures is more important in decreasing the prevalence of a disease than increasing the proportion of individuals in a population into which awareness is created.  相似文献   

20.
Models for sexual partner choice are discussed for the case of highly variable sexual activity in the population. It is demonstrated that the variances in the number of infected persons may be extremely large. For the random mixing model, higher order cumulants are also evaluated. On the basis of these results the applicability of deterministic models and models for expectations only are questioned. A general model is proposed for handling nonrandom, or correlated, mixing. The problem of inconsistency is overcome by considering the couples having sex as the natural unit in the model. In the case of s discrete homogeneous groups it is shown that only (s2) parameters defining the interaction between the groups can be chosen freely. Finally, the effect of correlation in partner choice is demonstrated by a bivariate lognormal model for partner choice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号