首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Studies of how the eukaryotic nucleus is functionally organized have led to the realization that nuclei are incredibly dynamic. Many nuclear structures are actually by products of a large steady-state flux of macromolecules through a given domain. A recent conference in the south of France on Nuclear Structure and Dynamics brought together scientists with diverse perspectives on the nucleus to try to provide a more coherent picture of the nucleus's dynamic organization and how this architecture is entwined with epigenetic control of gene expression.  相似文献   

2.
3.
The importin α/β transport machinery mediates the nuclear import of cargo proteins that bear a classical nuclear localization sequence (cNLS). These cargo proteins are linked to the major nuclear protein import factor, importin‐β, by the importin‐α adapter, after which cargo/carrier complexes enter the nucleus through nuclear pores. In the nucleus, cargo is released by the action of RanGTP and the nuclear pore protein Nup2, after which the importins are recycled to the cytoplasm for further transport cycles. The nuclear export of importin‐α is mediated by Cse1/CAS. Here, we exploit structures of functionally important complexes to identify residues that are critical for these interactions and provide insight into how cycles of protein import and recycling of importin‐α occur in vivo using a Saccharomyces cerevisiae model. We examine how these molecular interactions impact protein localization, cargo import, function and complex formation. We show that reversing the charge of key residues in importin‐α (Arg44) or Cse1 (Asp220) results in loss of function of the respective proteins and impairs complex formation both in vitro and in vivo. To extend these results, we show that basic residues in the Nup2 N‐terminus are required for both Nup2 interaction with importin‐α and Nup2 function. These results provide a more comprehensive mechanistic model of how Cse1, RanGTP and Nup2 function in concert to mediate cNLS‐cargo release in the nucleus.  相似文献   

4.
Güttler T  Görlich D 《The EMBO journal》2011,30(17):3457-3474
Nuclear export is an essential eukaryotic activity. It proceeds through nuclear pore complexes (NPCs) and is mediated by soluble receptors that shuttle between nucleus and cytoplasm. RanGTPase-dependent export mediators (exportins) constitute the largest class of these carriers and are functionally highly versatile. All of these exportins load their substrates in response to RanGTP binding in the nucleus and traverse NPCs as ternary RanGTP-exportin-cargo complexes to the cytoplasm, where GTP hydrolysis leads to export complex disassembly. The different exportins vary greatly in their substrate range. Recent structural studies of both protein- and RNA-specific exporters have illuminated how exportins bind their cargoes, how Ran triggers cargo loading and how export complexes are disassembled in the cytoplasm. Here, we review the current state of knowledge and highlight emerging principles as well as prevailing questions.  相似文献   

5.
The best understood system for the transport of macromolecules between the cytoplasm and the nucleus is the classical nuclear import pathway. In this pathway, a protein containing a classical basic nuclear localization signal (NLS) is imported by a heterodimeric import receptor consisting of the beta-karyopherin importin beta, which mediates interactions with the nuclear pore complex, and the adaptor protein importin alpha, which directly binds the classical NLS. Here we review recent studies that have advanced our understanding of this pathway and also take a bioinformatics approach to analyze the likely prevalence of this system in vivo. Finally, we describe how a predicted NLS within a protein of interest can be confirmed experimentally to be functionally important.  相似文献   

6.
The mammalian cell nucleus is functionally compartmentalized into various substructures. Nuclear speckles, also known as interchromatin granule clusters, are enriched with SR splicing factors and are implicated in gene expression. Here we report that nuclear speckle formation is developmentally regulated; in certain cases phosphorylated SR proteins are absent from the nucleus and are instead localized at granular structures in the cytoplasm. To investigate how the nuclear architecture is formed, we performed a phenotypic screen of HeLa cells treated with a series of small interfering RNAs. Depletion of Ran-binding protein 2 induced cytoplasmic intermediates of nuclear speckles in G1 phase. Detailed analyses of these structures suggested that a late step in the sequential nuclear entry of mitotic interchromatin granule components was disrupted and that phosphorylated SR proteins were sequestered in an SR protein kinase-dependent manner. As a result, the cells had an imbalanced subcellular distribution of phosphorylated and hypophosphorylated SR proteins, which affected alternative splicing patterns. This study demonstrates that the speckled distribution of phosphorylated pre-mRNA processing factors is regulated by the nucleocytoplasmic transport system in mammalian cells and that it is important for alternative splicing.  相似文献   

7.
It is well known that substrate properties like stiffness and adhesivity influence stem cell morphology and differentiation. Recent experiments show that cell morphology influences nuclear geometry and hence gene expression profile. The mechanism by which surface properties regulate cell and nuclear properties is only beginning to be understood. Direct transmission of forces as well as chemical signalling are involved in this process. Here, we investigate the formal aspect by studying the correlation between cell spreading and nuclear deformation using Mesenchymal stem cells under a wide variety of conditions. It is observed that a robust quantitative relation holds between the cell and nuclear projected areas, irrespective of how the cell area is modified or when various cytoskeletal or nuclear components are perturbed. By studying the role of actin stress fibers in compressing the nucleus we propose that nuclear compression by stress fibers can lead to enhanced cell spreading due to an interplay between elastic and adhesion factors. The significance of myosin-II in regulating this process is also explored. We demonstrate this effect using a simple technique to apply external compressive loads on the nucleus.  相似文献   

8.
9.
Trafficking of RNA molecules and proteins within the cell nucleus is central to genome function. Recent work has revealed the nature of RNA and protein motion within the nucleus and across the nuclear membrane. These studies have given insight into how molecules find their destinations within the nucleus and have uncovered some of the structural properties of the nuclear microenvironment. Control of RNA and protein trafficking is now emerging as a physiological regulatory mechanism in gene expression and nuclear function.  相似文献   

10.
The export of mRNA from the nucleus to the cytoplasm involves interactions of proteins with mRNA and the nuclear pore complex. We isolated Crp79p, a novel mRNA export factor from the same synthetic lethal screen that led to the identification of spMex67p in Schizosaccharomyces pombe. Crp79p is a 710-amino-acid-long protein that contains three RNA recognition motif domains in tandem and a distinct C-terminus. Fused to green fluorescent protein (GFP), Crp79p localizes to the cytoplasm. Like Mex67p, Crp79-GFP binds poly(A)(+) RNA in vivo, shuttles between the nucleus and the cytoplasm, and contains a nuclear export activity at the C-terminus that is Crm1p-independent. All of these properties are essential for Crp79p to promote mRNA export. Crp79p import into the nucleus depends on the Ran system. A domain of spMex67p previously identified as having a nuclear export activity can functionally substitute for the nuclear export activity at the C-terminus of Crp79p. Although both Crp79p and spMex67p function to export mRNA, Crp79p does not substitute for all of spMex67p functions and probably is not a functional homologue of spMex67p. We propose that Crp79p is a nonessential mRNA export carrier in S. pombe.  相似文献   

11.
Active genes at the nuclear pore complex   总被引:2,自引:0,他引:2  
The nucleus is spatially and functionally organized and its architecture is now seen as a key contributor to genome functions. A central component of this architecture is the nuclear envelope, which is studded with nuclear pore complexes that serve as gateways for communication between the nucleoplasm and cytoplasm. Although the nuclear periphery has traditionally been described as a repressive compartment and repository for gene-poor chromosome regions, several recent studies in yeast have demonstrated that repressive and activating domains can both be positioned at the periphery of the nucleus. Moreover, association with the nuclear envelope favors the expression of particular genes, demonstrating that nuclear organization can play an active role in gene regulation.  相似文献   

12.
Despite significant advances in deciphering the molecular events underlying genomic function, our understanding of these integrated processes inside the functioning cell nucleus has, until recently, met with only very limited success. A major conundrum has been the "layers of complexity" characteristic of all cell structure and function. To understand how the cell nucleus functions, we must also understand how the cell nucleus is put together and functions as a whole. The value of this neo-holistic approach is demonstrated by the enormous progress made in recent years in identifying a wide variety of nuclear functions associated with the nuclear matrix. In this article we summarize basic properties of in situ nuclear structure, isolated nuclear matrix systems, nuclear matrix-associated functions, and DNA replication in particular. Emphasis is placed on identifying current problems and directions of research in this field and illustrating the intrinsic heuristic value of this global approach to genomic organization and function.  相似文献   

13.
14.
CD38 is an ectoenzyme, which can produce metabolites with intracellular Ca(2+) mobilizing properties and has multiple immunological functions. However, we have recently shown that CD38 is also localized to the nucleus of rat hepatocyte whereby its metabolite cADPR, is able to mobilize nuclear Ca(2+) stores. In this study, we further characterize the localization of nuclear CD38 in the spleen, an important immune organ. We managed to detect the presence of ADP-ribosyl cyclase activity in the nuclear fraction. With Western blotting, we managed to characterize a 42-45 kDa protein band that is typical of CD38 under reducing and non-reducing conditions. However, as a comparison, other nuclear fractions from tissues like thymus, cardiac muscle and cerebellum yielded an additional 85 kDa protein band under non-reducing conditions. Both protein bands could be blocked with a CD38 blocking peptide. Immunohistochemical studies revealed the expression of CD38 in the marginal zone and in the red pulp. In contrast, the germinal center remained largely immunonegative for CD38. This is the first report of a functionally active ADP-ribosyl cyclase/CD38 in the spleen nuclear fraction. The results here suggest that the presence of CD38 in the nuclear environment might have a corollary to functional and regulatory roles in the nucleus.  相似文献   

15.
Mechanical stresses on the myocyte nucleus have been associated with several diseases and potentially transduce mechanical stimuli into cellular responses. Although a number of physical links between the nuclear envelope and cytoplasmic filaments have been identified, previous studies have focused on the mechanical properties of individual components of the nucleus, such as the nuclear envelope and lamin network. The mechanical interaction between the cytoskeleton and chromatin on nuclear deformability remains elusive. Here, we investigated how cytoskeletal and chromatin structures influence nuclear mechanics in cardiac myocytes. Rapid decondensation of chromatin and rupture of the nuclear membrane caused a sudden expansion of DNA, a consequence of prestress exerted on the nucleus. To characterize the prestress exerted on the nucleus, we measured the shape and the stiffness of isolated nuclei and nuclei in living myocytes during disruption of cytoskeletal, myofibrillar, and chromatin structure. We found that the nucleus in myocytes is subject to both tensional and compressional prestress and its deformability is determined by a balance of those opposing forces. By developing a computational model of the prestressed nucleus, we showed that cytoskeletal and chromatin prestresses create vulnerability in the nuclear envelope. Our studies suggest the cytoskeletal–nuclear–chromatin interconnectivity may play an important role in mechanics of myocyte contraction and in the development of laminopathies by lamin mutations.  相似文献   

16.
Most chloroplast and mitochondrial proteins are encoded by nuclear genes that once resided in the organellar genomes. Transfer of most of these genes appears to have occurred soon after the endosymbiotic origin of organelles, and so little is known about the process. Our efforts to understand how chloroplast genes are functionally transferred to the nuclear genome have led us to discover the most recent evolutionary gene transfer yet described. The gene rpl22, encoding chloroplast ribosomal protein CL22, is present in the chloroplast genome of all plants examined except legumes, while a functional copy of rpl22 is located in the nucleus of the legume pea. The nuclear rpl22 gene has acquired two additional domains relative to its chloroplast ancestor: an exon encoding a putative N-terminal transit peptide, followed by an intron which separates this first exon from the evolutionarily conserved, chloroplast-derived portion of the gene. This gene structure suggests that the transferred region may have acquired its transit peptide by a form of exon shuffling. Surprisingly, phylogenetic analysis shows that rpl22 was transferred to the nucleus in a common ancestor of all flowering plants, at least 100 million years preceding its loss from the legume chloroplast lineage.  相似文献   

17.
A Taddei  SM Gasser 《Genetics》2012,192(1):107-129
Budding yeast, like other eukaryotes, carries its genetic information on chromosomes that are sequestered from other cellular constituents by a double membrane, which forms the nucleus. An elaborate molecular machinery forms large pores that span the double membrane and regulate the traffic of macromolecules into and out of the nucleus. In multicellular eukaryotes, an intermediate filament meshwork formed of lamin proteins bridges from pore to pore and helps the nucleus reform after mitosis. Yeast, however, lacks lamins, and the nuclear envelope is not disrupted during yeast mitosis. The mitotic spindle nucleates from the nucleoplasmic face of the spindle pole body, which is embedded in the nuclear envelope. Surprisingly, the kinetochores remain attached to short microtubules throughout interphase, influencing the position of centromeres in the interphase nucleus, and telomeres are found clustered in foci at the nuclear periphery. In addition to this chromosomal organization, the yeast nucleus is functionally compartmentalized to allow efficient gene expression, repression, RNA processing, genomic replication, and repair. The formation of functional subcompartments is achieved in the nucleus without intranuclear membranes and depends instead on sequence elements, protein-protein interactions, specific anchorage sites at the nuclear envelope or at pores, and long-range contacts between specific chromosomal loci, such as telomeres. Here we review the spatial organization of the budding yeast nucleus, the proteins involved in forming nuclear subcompartments, and evidence suggesting that the spatial organization of the nucleus is important for nuclear function.  相似文献   

18.
Nucleoplasmin: the archetypal molecular chaperone   总被引:7,自引:0,他引:7  
Nucleoplasmin was the first protein to be described as a molecular chaperone. Studies of nucleoplasmin have resulted in advances in two areas of cell biology. Firstly, the pathway of nucleosome assembly in Xenopus oocytes and eggs has been elucidated and is the only assembly pathway known in detail. Nucleosome assembly represents the major chaperoning function of nucleoplasmin. Secondly, nucleoplasmin has been used to elucidate the transport of proteins into the nucleus, revealing a selective entry mechanism for nuclear proteins, passage through the nuclear pore complex, and a two-step mechanism of transport. The properties and functions of nucleoplasmin are reviewed, together with other proteins which are related either structurally or functionally to nucleoplasmin.  相似文献   

19.
Lipids have long been recognized as quantitatively minor components of the nucleus, where they were initially thought to have little functional importance; but they now command growing interest, with recognition of their diverse signaling and modulating properties in that organelle. This applies to the lipid-poor compartments of the nucleoplasm as well as the relatively lipid-rich nuclear envelope. Phosphoglycerides and sphingomyelin, as the predominant lipids, have attracted the most interest among researchers, but some of the less-abundant lipids such as gangliosides, sphingosine, and sphingosine phosphate are now becoming recognized as functionally important nuclear constituents. Among recent advances in this emerging field are detailed findings on the metabolic enzymes that synthesize and catabolize nuclear lipids; the fact that these are localized primarily within the nucleus itself indicates considerable autonomy with respect to lipid metabolism. Current studies suggest several key processes involving RNA and DNA reactivity that are dependent on these lipid-initiated events. Neural cell nuclei have been the subject of such investigations, with results that closely parallel the more numerous studies on nuclei of extraneural cells. This review attempts to outline some of the major findings on nuclear lipids of diverse cell types; results with nonneural nuclei will hopefully provide useful guideposts to further studies of neural systems.  相似文献   

20.
Recently, scientific interest in electric pulses, always more intense and shorter and able to induce biological effects on both plasma and nuclear membranes, has greatly increased. Hence, microdosimetric models that include internal organelles like the nucleus have assumed increasing importance. In this work, a circuit model of the cell including the nucleus is proposed, which accounts for the dielectric dispersion of all cell compartments. The setup of the dielectric model of the nucleus is of fundamental importance in determining the transmembrane potential (TMP) induced on the nuclear membrane; here, this is demonstrated by comparing results for three different sets of nuclear dielectric properties present in the literature. The results have been compared, even including or disregarding the dielectric dispersion of the nucleus. The main differences have been found when using pulses shorter than 10 ns. This is due to the fact that the high spectral components of the shortest pulses are differently taken into account by the nuclear membrane transfer functions computed with and without nuclear dielectric dispersion. The shortest pulses are also the most effective in porating the intracellular structures, as confirmed by the time courses of the TMP calculated across the plasma and nuclear membranes. We show how dispersive nucleus models are unavoidable when dealing with pulses shorter than 10 ns because of the large spectral contents arriving above 100 MHz, i.e., over the typical relaxation frequencies of the dipolar mechanism of the molecules constituting the nuclear membrane and the subcellular cell compartments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号