首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The human mitochondrial branched chain aminotransferase isoenzyme (hBCATm) must be stored in a reducing environment to remain active. Oxidation or labeling of hBCATm with sulfhydryl reagents results in enzyme inhibition. In this study, we investigated both the structural and biochemical basis for the sensitivity of hBCATm to these reagents. In its native form, hBCATm has two reactive cysteine residues which were identified as Cys315 and Cys318 using iodinated beta-(4-hydroxyphenyl)ethyl maleimide. These are located in the large domain of the homodimer, about 10 A from the active site. The crystal structures show evidence for a thiol-thiolate hydrogen bond between Cys315 and Cys318. Under oxidizing conditions, these cysteine residues can reasonably form a disulfide bond because of the short distance between the sulfur atoms (3.09-3.46 A), requiring only a decrease of 1.1-1.5 A. In addition to Cys315 playing a structural role by anchoring Tyr173, which in the ketimine form increases access to the active site, our evidence indicates that these cysteine residues act as a redox switch in hBCATm. Electrospray ionization mass spectrometry analysis and UV-Vis spectroscopic studies of 5,5'-dithiobis(2-nitrobenzoic acid) labeled hBCATm showed that during labeling, an intrasubunit disulfide bond was formed in a significant portion of the protein. Furthermore, it was established that reaction of hBCATm with H2O2 abolished its activity and resulted in the formation of an intrasubunit disulfide bond between Cys315 and Cys318. Addition of dithiothreitol completely reversed the oxidation and restored activity. Therefore, the results demonstrate that there is redox-linked regulation of hBCATm activity by a peroxide sensitive CXXC center. Future studies will determine if this center has an in vivo role in the regulation of branched chain amino acid metabolism.  相似文献   

2.
Mammalian branched chain aminotransferases (BCATs) have a unique CXXC center. Kinetic and structural studies of three CXXC center mutants (C315A, C318A, and C315A/C318A) of human mitochondrial (hBCATm) isozyme and the oxidized hBCATm enzyme (hBCATm-Ox) have been used to elucidate the role of this center in hBCATm catalysis. X-ray crystallography revealed that the CXXC motif, through its network of hydrogen bonds, plays a crucial role in orienting the substrate optimally for catalysis. In all structures, there were changes in the structure of the beta-turn preceding the CXXC motif when compared with wild type protein. The N-terminal loop between residues 15 and 32 is flexible in the oxidized and mutant enzymes, the disorder greater in the oxidized protein. Disordering of the N-terminal loop disrupts the integrity of the side chain binding pocket, particularly for the branched chain side chain, less so for the dicarboxylate substrate side chain. The kinetic studies of the mutant and oxidized enzymes support the structural analysis. The kinetic results showed that the predominant effect of oxidation was on the second half-reaction rather than the first half-reaction. The oxidized enzyme was completely inactive, whereas the mutants showed limited activity. Model building of the second half-reaction substrate alpha-ketoisocaproate in the pyridoxamine 5'-phosphate-hBCATm structure suggests that disruption of the CXXC center results in altered substrate orientation and deprotonation of the amino group of pyridoxamine 5'-phosphate, which inhibits catalysis.  相似文献   

3.
The three-dimensional structures of the isoleucine ketimine and the pyridoxamine phosphate forms of human mitochondrial branched chain aminotransferase (hBCATm) have been determined crystallographically at 1.9 A resolution. The hBCATm-catalyzed transamination can be described in molecular terms together with the earlier solved pyridoxal phosphate forms of the enzyme. The active site lysine, Lys202, undergoes large conformational changes, and the pyridine ring of the cofactor tilts by about 18 degrees during catalysis. A major determinant of the enzyme's substrate and stereospecificity for L-branched chain amino acids is a group of hydrophobic residues that form three hydrophobic surfaces and lock the side chain in place. Short-chain aliphatic amino acid side chains are unable to interact through van der Waals contacts with any of the surfaces whereas bulky aromatic side chains would result in significant steric hindrance. As shown by modeling, and in agreement with previous biochemical data, glutamate but not aspartate can form hydrogen bond interactions. The carboxylate group of the bound isoleucine is on the same side as the phosphate group of the cofactor. These active site interactions are largely retained in a model of the human cytosolic branched chain aminotransferase (hBCATc), suggesting that residues in the second tier of interactions are likely to determine the specificity of hBCATc for the drug gabapentin. Finally, the structures reveal a unique role for cysteine residues in the mammalian BCAT. Cys315 and Cys318, which immediately follow a beta-turn (residues 311-314) and are located just outside the active site, form an unusual thiol-thiolate hydrogen bond. This beta-turn positions Thr313 for its interaction with the pyridoxal phosphate oxygens and substrate alpha-carboxylate group.  相似文献   

4.
Conway ME  Poole LB  Hutson SM 《Biochemistry》2004,43(23):7356-7364
The redox-active dithiol/disulfide C315-Xaa-Xaa-C318 center has been implicated in the regulation of the human mitochondrial branched chain aminotransferase isozyme (hBCATm) [Conway, M. E., Yennawar, N., Wallin, R., Poole, L. B., and Hutson, S. M. (2002) Biochemistry 41, 9070-9078]. To explore further the mechanistic details of this CXXC center, mutants of the Cys residues at positions 315 and 318 of hBCATm were individually and in combination converted to alanine or serine by site-directed mutagenesis (C315A, C315S, C318A, C318S, C315/318A, and C315/318S). The effects of these mutations on cofactor absorbance, secondary structures, steady-state kinetics, and sensitivity toward hydrogen peroxide (H(2)O(2)) treatment were examined. Neither the UV-visible spectroscopic studies nor the circular dichroism data showed any major perturbations in the structure of the mutants. Kinetic analyses of the CXXC mutant proteins indicated primarily a modest reduction in k(cat) with no significant change in K(m). The largest effect on the steady-state kinetics was observed with the C315 single mutants, in which substitution of the thiol group resulted in a reduced k(cat) (to 26-33% of that of wild-type hBCATm). Moreover, the C315 single mutants lost their sensitivity to oxidation by H(2)O(2). The kinetic parameters of the C318 mutants were largely unaffected by the substitutions, and as with wild-type hBCATm, reaction of the C318A mutant protein with H(2)O(2) resulted in the complete loss of activity. In the case of oxidized C318A, this loss was largely irreversible on incubation with dithiothreitol. Mass spectrometry and dimedone modification results revealed overoxidation of the thiol group at position 315 to sulfonic acid occurring via a sulfenic acid intermediate in the H(2)O(2)-treated C318A enzyme. Thus, C315 appears to be the sensor for redox regulation of BCAT activity, whereas C318 acts as the "resolving cysteine", allowing for reversible formation of a disulfide bond.  相似文献   

5.
This study presents the first three-dimensional structures of human cytosolic branched-chain aminotransferase (hBCATc) isozyme complexed with the neuroactive drug gabapentin, the hBCATc Michaelis complex with the substrate analog, 4-methylvalerate, and the mitochondrial isozyme (hBCATm) complexed with gabapentin. The branched-chain aminotransferases (BCAT) reversibly catalyze transamination of the essential branched-chain amino acids (leucine, isoleucine, valine) to alpha-ketoglutarate to form the respective branched-chain alpha-keto acids and glutamate. The cytosolic isozyme is the predominant BCAT found in the nervous system, and only hBCATc is inhibited by gabapentin. Pre-steady state kinetics show that 1.3 mm gabapentin can completely inhibit the binding of leucine to reduced hBCATc, whereas 65.4 mm gabapentin is required to inhibit leucine binding to hBCATm. Structural analysis shows that the bulky gabapentin is enclosed in the active-site cavity by the shift of a flexible loop that enlarges the active-site cavity. The specificity of gabapentin for the cytosolic isozyme is ascribed at least in part to the location of the interdomain loop and the relative orientation between the small and large domain which is different from these relationships in the mitochondrial isozyme. Both isozymes contain a CXXC center and form a disulfide bond under oxidizing conditions. The structure of reduced hBCATc was obtained by soaking the oxidized hBCATc crystals with dithiothreitol. The close similarity in active-site structures between cytosolic enzyme complexes in the oxidized and reduced states is consistent with the small effect of oxidation on pre-steady state kinetics of the hBCATc first half-reaction. However, these kinetic data do not explain the inactivation of hBCATm by oxidation of the CXXC center. The structural data suggest that there is a larger effect of oxidation on the interdomain loop and residues surrounding the CXXC center in hBCATm than in hBCATc.  相似文献   

6.
The catabolic pathways of branched-chain amino acids have two common steps. The first step is deamination catalyzed by the vitamin B(6)-dependent branched-chain aminotransferase isozymes (BCATs) to produce branched-chain alpha-keto acids (BCKAs). The second step is oxidative decarboxylation of the BCKAs mediated by the branched-chain alpha-keto acid dehydrogenase enzyme complex (BCKD complex). The BCKD complex is organized around a cubic core consisting of 24 lipoate-bearing dihydrolipoyl transacylase (E2) subunits, associated with the branched-chain alpha-keto acid decarboxylase/dehydrogenase (E1), dihydrolipoamide dehydrogenase (E3), BCKD kinase, and BCKD phosphatase. In this study, we provide evidence that human mitochondrial BCAT (hBCATm) associates with the E1 decarboxylase component of the rat or human BCKD complex with a K(D) of 2.8 microM. NADH dissociates the complex. The E2 and E3 components do not interact with hBCATm. In the presence of hBCATm, k(cat) values for E1-catalyzed decarboxylation of the BCKAs are enhanced 12-fold. Mutations of hBCATm proteins in the catalytically important CXXC center or E1 proteins in the phosphorylation loop residues prevent complex formation, indicating that these regions are important for the interaction between hBCATm and E1. Our results provide evidence for substrate channeling between hBCATm and BCKD complex and formation of a metabolic unit (termed branched-chain amino acid metabolon) that can be influenced by the redox state in mitochondria.  相似文献   

7.
This paper presents the cloning and the molecular modelling of the cytosolic branched-chain amino acid aminotransferase (BCATc) from sheep brain. The sheep BCATc cDNA (3 kb) encodes a mature polypeptide of 385 amino acids with a calculated molecular mass of 43072.93 Da. The sequence of the sheep BCATc cDNA is more similar to other mammalian BCATc cDNAs (53-87% identical) than to the sheep mitochondrial branched-chain amino acid aminotransferase (52%). Sheep BCATc belongs to the IV Folding class of pyridoxal-5'-phosphate-depending enzymes. Based on the known structure of the branched-chain amino acid aminotransferase (BCAT) from Escherichia coli, a molecular model of sheep BCATc (amino acid residues 62-385) was built. This is the first three-dimensional model of any mammalian BCAT. It suggests that the enzymatic mechanism of sheep BCATc and likely of all mammalian BCAT is very similar to the mechanism of the E. coli BCAT and confirms the hypotheses regarding to the substrate binding sites of E. coli BCAT. Sheep skeletal muscle, which is the main in vivo site for transamination of branched-chain amino acids, exhibits an unique expression of BCATc.  相似文献   

8.
Branched-chain amino acid aminotransferase (BCAT), which has pyridoxal 5'-phosphate as a cofactor, is a key enzyme in the biosynthetic pathway of hydrophobic amino acids (leucine, isoleucine, and valine). The enzyme reversibly catalyzes the transfer of the amino group of a hydrophobic amino acid to 2-oxoglutarate to form a 2-oxo acid and glutamate. Therefore, the active site of BCAT should have a mechanism to enable recognition of an acidic amino acid as well as a hydrophobic amino acid (double substrate recognition). The three-dimensional structures of Escherichia coli BCAT (eBCAT) in complex with the acidic substrate (glutamate) and the acidic substrate analogue (glutarate) have been determined by X-ray diffraction at 1.82 and 2.15 A resolution, respectively. The enzyme is a homo hexamer, with the polypeptide chain of the subunit folded into small and large domains, and an interdomain loop. The eBCAT in complex with the natural substrate, glutamate, was assigned as a ketimine as the most probable form based upon absorption spectra of the crystal complex and the shape of the residual electron density corresponding to the cofactor-glutamate bond structure. Upon binding of an acidic substrate, the interdomain loop approaches the substrate to shield it from the solvent region, as observed in the complex with a hydrophobic substrate. Both the acidic and the hydrophobic side chains of the substrates are bound to almost the same position in the pocket of the enzyme and are identical in structure. The inner side of the pocket is mostly hydrophobic to accommodate the hydrophobic side chain but has four sites to coordinate with the gamma-carboxylate of glutamate. The mechanism for the double substrate recognition observed in eBCAT is in contrast to those in aromatic amino acid and histidinol-phosphate aminotransferases. In an aromatic amino acid aminotransferase, the acidic side chain is located at the same position as that for the aromatic side chain because of large-scale rearrangements of the hydrogen bond network. In the histidinol-phosphate aminotransferase, the acidic and basic side chains are located at different sites and interact with different residues of the disordered loop.  相似文献   

9.
The branched chain aminotransferase enzymes (BCAT) serve as nitrogen donors for the production of 30% of de novo glutamate synthesis in rat brain. Despite the importance of this major metabolite and excitatory neurotransmitter, the distribution of BCAT proteins in the human brain (hBCAT) remains unreported. We have studied this and report, for the first time, that the mitochondrial isoform, hBCATm is largely confined to vascular endothelial cells, whereas the cytosolic hBCATc is restricted to neurons. The majority of hBCATc‐labelled neurons were either GABA‐ergic or glutamatergic showing both cell body and axonal staining indicating a role for hBCATc in both glutamate production and glutamate release during excitation. Strong staining in hormone secreting cells suggests a further role for the transaminases in hormone regulation potentially similar to that proposed for insulin secretion. Expression of hBCATm in the endothelial cells of the vasculature demonstrates for the first time that glutamate could be metabolized by aminotranferases in these cells. This has important implications given that the dysregulation of glutamate metabolism, leading to glutamate excitotoxicity, is an important contributor to the pathogenesis of several neurodegenerative conditions, where the role of hBCATm in metabolizing excess glutamate may factor more prominently.  相似文献   

10.
Sequence analysis of the class A G protein-coupled receptors (GPCRs) reveals that most of the highly conserved sites are located in the transmembrane helices. A second level of conservation exists involving those residues that are conserved as a group characterized by small and/or weakly polar side chains (Ala, Gly, Ser, Cys, Thr). These positions can have group conservation levels of up to 99% across the class A GPCRs and have been implicated in mediating helix-helix interactions in membrane proteins. We have previously shown that mutation of group-conserved residues present on transmembrane helices H2-H4 in the β(2)-adrenergic receptor (β(2)-AR) can influence both receptor expression and function. We now target the group-conserved sites, Gly315(7.42) and Ser319(7.46), on H7 for structure-function analysis. Replacing Ser319(7.46) with smaller amino acids (Ala or Gly) did not influence the ability of the mutant receptors to bind to the antagonist dihydroalprenolol (DHA) but resulted in ~15-20% agonist-independent activity. Replacement of Ser319(7.46) with the larger amino acid leucine lowered the expression of the S319L mutant and its ability to bind DHA. Both the G315A and G315S mutants also exhibited agonist-independent signaling, while the G315L mutant did not show specific binding to DHA. These data indicate that Gly315(7.42) and Ser319(7.46) are stabilizing β(2)-AR in an inactive conformation. We discuss our results in the context of van der Waals interactions of Gly315(7.42) with Trp286(6.48) and hydrogen bonding interactions of Ser319(7.46) with amino acids on H1-H2-H7 and with structural water.  相似文献   

11.
D J Abraham  A J Leo 《Proteins》1987,2(2):130-152
The fragment method of calculating partition coefficients (P) has been extended to include the common amino acids (AAs). The results indicate that polar and charged side chains influence the hydrophobicity of atoms in the side chain in a predictable manner. Field effects, as evidenced through polar proximity factors and bond factors, need to be considered for accurate estimation of transfer phenomena. The calculated log P and delta G degree ' values of the 20 AAs agree well with the observed values. Pro calculates to be more hydrophilic than the observed log P. Hydrophobicity scales for peptide side chain residues are compared and evaluated in terms of suitability. Calculated pi values for nonpolar side chain residues agree well with the observed values; calculated values for uncharged polar side chain residues deviate by about 0.6 log units except for Gln and Cys; and polar side chain residues with charged side chains calculate as too hydrophilic. Reasons for the differences are explored. We also suggest that tightly bound water to polar moieties in amino acids and peptides may be transferred into the octanol phase during partitioning experiments. A quantitative methodology is presented which characterizes the thermodynamic partitioning of groups and individual atoms in amino acids and proteins.  相似文献   

12.
The conserved target of rapamycin complex 1 (TORC1) integrates nutrient signals to orchestrate cell growth and proliferation. Leucine availability is conveyed to control TORC1 activity via the leu-tRNA synthetase/EGOC-GTPase module in yeast and mammals, but the mechanisms sensing leucine remain only partially understood. We show here that both leucine and its α-ketoacid metabolite, α-ketoisocaproate, effectively activate the yeast TORC1 kinase via both EGOC GTPase-dependent and -independent mechanisms. Leucine and α-ketoisocaproate are interconverted by ubiquitous branched-chain aminotransferases (BCAT), which in yeast are represented by the mitochondrial and cytosolic enzymes Bat1 and Bat2, respectively. BCAT yeast mutants exhibit severely compromised TORC1 activity, which is partially restored by expression of Bat1 active site mutants, implicating both catalytic and structural roles of BCATs in TORC1 control. We find that Bat1 interacts with branched-chain amino acid metabolic enzymes and, in a leucine-dependent fashion, with the tricarboxylic acid (TCA)-cycle enzyme aconitase. BCAT mutation perturbed TCA-cycle intermediate levels, consistent with a TCA-cycle block, and resulted in low ATP levels, activation of AMPK, and TORC1 inhibition. We propose the biosynthetic capacity of BCAT and its role in forming multicomplex metabolons connecting branched-chain amino acids and TCA-cycle metabolism governs TCA-cycle flux to activate TORC1 signaling. Because mammalian mitochondrial BCAT is known to form a supramolecular branched-chain α-keto acid dehydrogenase enzyme complex that links leucine metabolism to the TCA-cycle, these findings establish a precedent for understanding TORC1 signaling in mammals.  相似文献   

13.
Zinc coordination sphere in biochemical zinc sites   总被引:13,自引:0,他引:13  
David S. Auld 《Biometals》2001,14(3-4):271-313
Zinc is known to be indispensable to growth and development and transmission of the genetic message. It does this through a remarkable mosaic of zinc binding motifs that orchestrate all aspects of metabolism. There are now nearly 200 three dimensional structures for zinc proteins, representing all six classes of enzymes and covering a wide range of phyla and species. These structures provide standards of reference for the identity and nature of zinc ligands in other proteins for which only the primary structure is known. Three primary types of zinc sites are apparent from examination of these structures: structural, catalytic and cocatalytic. The most common amino acids that supply ligands to these sites are His, Glu, Asp and Cys. In catalytic sites zinc generally forms complexes with water and any three nitrogen, oxygen and sulfur donors with His being the predominant amino acid chosen. Water is always a ligand to such sites. Structural zinc sites have four protein ligands and no bound water molecule. Cys is the preferred ligand in such sites. Cocatalytic sites contain two or three metals in close proximity with two of the metals bridged by a side chain moiety of a single amino acid residue, such as Asp, Glu or His and sometimes a water molecule. Asp and His are the preferred amino acids for these sites. No Cys ligands are found in such sites. The scaffolding of the zinc sites is also important to the function and reactivity of the bound metal. The influence of zinc on quaternary protein structure has led to the identification of a fourth type of zinc binding site, protein inteface. In this case zinc sites are formed from ligands supplied from amino acid residues residing in the binding surface of two proteins. The resulting zinc site usually has the coordination properties of a catalytic or structural zinc binding site.  相似文献   

14.
The IgE-binding site of the human low-affinity receptor for IgE (Fc epsilon RII/CD23) has previously been mapped to the extracellular domain between amino acid residues 160 and 287. We now have investigated which conformational epitope within this domain specifies the receptor-ligand interaction. The analysis of homolog-scanning mutants expressed in mammalian cells demonstrates that amino acid side chains that affect IgE binding are located in two discontinuous segments, between residues 165-190 and 224-256. The overall structure of the chimeric binding domains, as probed with 11 conformation-sensitive monoclonal antibodies, is generally not distorted, except by replacement of residues 165-183. In this region, disruption of binding function appears to be caused by global conformational constraints on the binding site. Substitution and deletion mutants demonstrate that six out of eight extracellular cysteines, Cys163, Cys174, Cys191, Cys259, Cys273, and Cys282, are necessary for IgE binding and are most likely involved in intramolecular disulfide bridges. We show that the Fc epsilon RII domain delineated by Cys163 and Cys282 encodes all the structural information required to form the IgE-binding site.  相似文献   

15.
Branched chain aminotransferase (BCAT) is the first enzyme in the catabolism of branched chain amino acids (BCAA). Unlike other amino acid degrading enzymes present in liver, BCAT is only expressed in extrahepatic tissues, and is not regulated by dietary protein, glucagon or glucocorticoids. However, the mitochondrial (m) isoform of BCAT is highly expressed in the fetal liver and rapidly decays after birth. The purpose of the present work was to establish if liver cells under conditions of rapid cell proliferation such as in hepatoma AS30D cells or during liver regeneration after partial hepatectomy were associated with an increase in the activity and expression of BCATm. BCAT activity in mitochondria of AS30D cells was 18.6 mU/mg protein. Western, Northern blot, and immunohistochemical analysis revealed that AS30D hepatoma cells expressed only BCATm. The apparent Km of BCATm in isolated AS30D cells mitochondria for leucine, isoleucine and valine was 1.0+/-0.02, 1.3+/-0.1 and 2.1+/-0.1 mM, respectively. The regenerated liver showed BCAT activity from day 3 to day 6, and the maximal BCAT activity (7.0 mU/mg protein) was on day 5. By day 14 after partial hepatectomy BCAT activity and expression was almost undetectable. Interestingly, there was a relationship between BCAT activity and the Mr. of the immunoreactive band of BCATm. The presence of a 41 kDa band was associated with BCAT activity, whereas the 43 kDa band with undetectable activity. The results of this study indicate that BCATm activity is required in liver cells under conditions of rapid cell proliferation.  相似文献   

16.
Ligand binding may involve a wide range of structural changes in the receptor protein, from hinge movement of entire domains to small side-chain rearrangements in the binding pocket residues. The analysis of side chain flexibility gives insights valuable to improve docking algorithms and can provide an index of amino-acid side-chain flexibility potentially useful in molecular biology and protein engineering studies. In this study we analyzed side-chain rearrangements upon ligand binding. We constructed two non-redundant databases (980 and 353 entries) of "paired" protein structures in complexed (holo-protein) and uncomplexed (apo-protein) forms from the PDB macromolecular structural database. The number and identity of binding pocket residues that undergo side-chain conformational changes were determined. We show that, in general, only a small number of residues in the pocket undergo such changes (e.g., approximately 85% of cases show changes in three residues or less). The flexibility scale has the following order: Lys > Arg, Gln, Met > Glu, Ile, Leu > Asn, Thr, Val, Tyr, Ser, His, Asp > Cys, Trp, Phe; thus, Lys side chains in binding pockets flex 25 times more often then do the Phe side chains. Normalizing for the number of flexible dihedral bonds in each amino acid attenuates the scale somewhat, however, the clear trend of large, polar amino acids being more flexible in the pocket than aromatic ones remains. We found no correlation between backbone movement of a residue upon ligand binding and the flexibility of its side chain. These results are relevant to 1. Reduction of search space in docking algorithms by inclusion of side-chain flexibility for a limited number of binding pocket residues; and 2. Utilization of the amino acid flexibility scale in protein engineering studies to alter the flexibility of binding pockets.  相似文献   

17.
18.
Determination of the nucleotide sequence of a cDNA for batroxobin, a thrombin-like enzyme from Bothrops atrox, moojeni venom, allowed elucidation of the complete amino acid sequence of batroxobin for the first time for a thrombin-like snake venom enzyme. The molecular weight of batroxobin is 25,503 (231 amino acids). The amino acid sequence of batroxobin exhibits significant homology with those of mammalian serine proteases (trypsin, pancreatic kallikrein, and thrombin), indicating that batroxobin is a member of the serine protease family. Based on this homology and enzymatic and chemical studies, the catalytic residues and disulfide bridges of batroxobin were deduced to be as follows: catalytic residues, His41, Asp86, and Ser178; and disulfide bridges, Cys7-Cys139, Cys26-Cys42, Cys74-Cys230, Cys118-Cys184, Cys150-Cys163, and Cys174-Cys199. The amino-terminal amino acid residue of batroxobin, valine, is preceded by 24 amino acids. This may indicate that the amino-terminal hydrophobic peptide (18 amino acids) is a prepeptide and that the hydrophilic peptide (6 amino acids), preceded by the putative prepeptide, is a propeptide.  相似文献   

19.
Cysteine (Cys) residues often play critical roles in proteins, for example, in the formation of structural disulfide bonds, metal binding, targeting proteins to the membranes, and various catalytic functions. However, the structural determinants for various Cys functions are not clear. Thiol oxidoreductases, which are enzymes containing catalytic redox-active Cys residues, have been extensively studied, but even for these proteins there is little understanding of what distinguishes their catalytic redox Cys from other Cys functions. Herein, we characterized thiol oxidoreductases at a structural level and developed an algorithm that can recognize these enzymes by (i) analyzing amino acid and secondary structure composition of the active site and its similarity to known active sites containing redox Cys and (ii) calculating accessibility, active site location, and reactivity of Cys. For proteins with known or modeled structures, this method can identify proteins with catalytic Cys residues and distinguish thiol oxidoreductases from the enzymes containing other catalytic Cys types. Furthermore, by applying this procedure to Saccharomyces cerevisiae proteins containing conserved Cys, we could identify the majority of known yeast thiol oxidoreductases. This study provides insights into the structural properties of catalytic redox-active Cys and should further help to recognize thiol oxidoreductases in protein sequence and structure databases.  相似文献   

20.
Branched-chain aminotransferases (BCAT), which utilize pyridoxal 5′-phosphate (PLP) as a cofactor, reversibly catalyze the transfer of the α-amino groups of three of the most hydrophobic branched-chain amino acids (BCAA), leucine, isoleucine, and valine, to α-ketoglutarate to form the respective branched-chain α-keto acids and glutamate. The BCAT from Deinococcus radiodurans (DrBCAT), an extremophile, was cloned and expressed in Escherichia coli for structure and functional studies. The crystal structures of the native DrBCAT with PLP and its complexes with l-glutamate and α-ketoisocaproate (KIC), respectively, have been determined. The DrBCAT monomer, comprising 358 amino acids, contains large and small domains connected with an interdomain loop. The cofactor PLP is located at the bottom of the active site pocket between two domains and near the dimer interface. The substrate (l-glutamate or KIC) is bound with key residues through interactions of the hydrogen bond and the salt bridge near PLP inside the active site pocket. Mutations of some interaction residues, such as Tyr71, Arg145, and Lys202, result in loss of the specific activity of the enzymes. In the interdomain loop, a dynamic loop (Gly173 to Gly179) clearly exhibits open and close conformations in structures of DrBCAT without and with substrates, respectively. DrBCAT shows the highest specific activity both in nature and under ionizing radiation, but with lower thermal stability above 60°C, than either BCAT from Escherichia coli (eBCAT) or from Thermus thermophilus (HB8BCAT). The dimeric molecular packing and the distribution of cysteine residues at the active site and the molecular surface might explain the resistance to radiation but small thermal stability of DrBCAT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号