首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Abstract: Nascent cellulosic cell wall microfibrils and transverse (with respect of cell growth axis) arrays of cortical microtubules (MTs) beneath the plasma membrane (PM) are two well established features of the periphery of higher plant cells. Together with transmembrane synthase complexes, they represent the most characteristic form of a “cell periphery complex” of higher plant cells which determines the orientation of the diffuse (intercalary) type of their cell growth. However, there are some plant cell types having distinct cell cortex domains which are depleted of cortical MTs. These particular cell cortex domains are, instead, typically enriched with components of the actin‐based cytoskeleton. In higher plants, this feature is prominent at extending apices of two cell types displaying tip growth ‐ pollen tubes and root hairs. In the latter cell type, highly dynamic F‐actin meshworks accumulate at extending tips, and they appear to be critical for the apparently motile character of these subcellular domains. Importantly, tip growth of both root hairs and pollen tubes is immediately stopped when the most dynamic F‐actin population is depolymerized with low levels of anti‐F‐actin drugs. Intriguingly, MTs of tip‐growing plant cells are organized in the form of longitudinal arrays, throughout the cytoplasm, which interconnect the extending tips with the subapical nuclei. This suggests that actin‐rich cell cortex domains polarize plant “cell bodies” represented by nucleus‐MTs complexes. A similar polarization of “cell bodies” is typical of mitotic and cytokinetic plant cells. A further type of MT‐depleted and actomyosin‐enriched plant cell cortex domain comprises the plasmodesmata. Primary plasmodesmata are formed during cytokinesis as part of the myosin VIII‐enriched callosic cell plates, representing “juvenile” forms of the plant “cell periphery complex”. In phylogenetic terms the association between F‐actin and the PM may be considered for a more “primitive” form of cellular organization than does the association of cortical MTs with the PM. We hypothesize that the actin cytoskeleton is a natural partner of the PM in all eukaryotic cells. In most plant cells, however, it was replaced by a tubulin‐based “cell periphery apparatus” which regulates, via still unknown mechanisms, the spatial deposition of nascent cellulosic microfibrils synthesized by PM‐associated synthase complexes.  相似文献   

3.
Fibroblast spreading was studied using immunofluorescent method that provided visualization of actin structures and adhesion contacts in the same cell. Four stages of actin system formation were observed. 1. Actin concentration in ruffles at the cell periphery. Formation of numerous dot-like contacts along the whole perimeter of the cell. 2. Formation of a circumferential actin bundle. Focal contacts are located at the outer edge of the bundle. 3. Gradual transformation of the circumferential bundle into actin network with triangular meshes. Peripheral (rather than internal) filaments of the network are associated with the focal contacts. 4. Appearance of the system of long straight actin bundles (stress fibers) associated with dash-like focal contacts. The stress fibers are supposed to arise from the triangular actin network which in its turn arises from the circumferential bundle. It is suggested that the formation of actin cytoskeleton is a process driven by the development of tensions in actin structures attached to the focal contacts at the cell periphery.  相似文献   

4.
Yamashita H  Sato Y  Kanegae T  Kagawa T  Wada M  Kadota A 《Planta》2011,233(2):357-368
Cytoskeleton dynamics during phototropin-dependent chloroplast photorelocation movement was analyzed in protonemal cells of actin- and microtubule-visualized lines of Physcomitrella patens expressing GFP- or tdTomato-talin and GFP-tubulin. Using newly developed epi- and trans-microbeam irradiation systems that permit fluorescence observation of the cell under blue microbeam irradiation inducing chloroplast relocation, it was revealed that meshwork of actin filaments formed at the chloroplast-accumulating area both in the avoidance and accumulation movements. The structure disappeared soon when blue microbeam was turned off, and it was not induced under red microbeam irradiation that did not evoke chloroplast relocation movement. In contrast, no apparent change in microtubule organization was detected during the movements. The actin meshwork was composed of short actin filaments distinct from the cytoplasmic long actin cables and was present between the chloroplasts and plasma membrane. The short actin filaments emerged from around the chloroplast periphery towards the center of chloroplast. Showing highly dynamic behavior, the chloroplast actin filaments (cp-actin filaments) were rapidly organized into meshwork on the chloroplast surface facing plasma membrane. The actin filament configuration on a chloroplast led to the formation of actin meshwork area in the cell as the chloroplasts arrived at and occupied the area. After establishment of the meshwork, cp-actin filaments were still highly dynamic, showing appearance, disappearance, severing and bundling of filaments. These results indicate that the cp-actin filaments have significant roles in the chloroplast movement and positioning in the cell.  相似文献   

5.
During fission yeast cytokinesis, actin filaments nucleated by cortical formin Cdc12 are captured by myosin motors bound to a band of cortical nodes and bundled by cross-linking proteins. The myosin motors exert forces on the actin filaments, resulting in a net pulling of the nodes into a contractile ring, while cross-linking interactions help align actin filaments and nodes into a single bundle. We used these mechanisms in a three-dimensional computational model of contractile ring assembly, with semiflexible actin filaments growing from formins at cortical nodes, capturing of filaments by neighboring nodes, and cross-linking among filaments through attractive interactions. The model was used to predict profiles of actin filament density at the cell cortex, morphologies of condensing node-filament networks, and regimes of cortical tension by varying the node pulling force and strength of cross-linking among actin filaments. Results show that cross-linking interactions can lead to confinement of actin filaments at the simulated cortical boundary. We show that the ring-formation region in parameter space lies close to regions leading to clumps, meshworks or double rings, and stars/cables. Since boundaries between regions are not sharp, transient structures that resemble clumps, stars, and meshworks can appear in the process of ring assembly. These results are consistent with prior experiments with mutations in actin-filament turnover regulators, myosin motor activity, and changes in the concentration of cross-linkers that alter the morphology of the condensing network. Transient star shapes appear in some simulations, and these morphologies offer an explanation for star structures observed in prior experimental images. Finally, we quantify tension along actin filaments and forces on nodes during ring assembly and show that the mechanisms describing ring assembly can also drive ring constriction once the ring is formed.  相似文献   

6.
We have used fluorescence recovery after photobleaching to study the effect of muscle α-actinin on the structure of actin filaments in dilute solutions. Unexpectedly we found that α-actinin partitioned filaments into two types: those with a high mobility and those with low mobility. We have determined that the high mobility (smaller sized) population is too large to be simple monomeric actin:α-actinin complexes. Although it is known that cofilin encourages the transformation of α-actinin:actin gels into large meshworks of inter-digitating actin filament bundles (Maciver et al. 1991), we have found that the presence of cofilin also increases the cross-linking of actin filaments by α-actinin and hypothesize that this is due to cofilin’s ability to alter the filament twist. This effectively makes more potential α-actinin binding sites per unit of actin filament. As expected from previous work, this effect was more marked at pH 6.5 than at pH 8.0. Both effects are likely to operate in cells to deny other actin-binding proteins access to binding these particular filaments and may explain how very different actin cytoskeletal structures may co-exist in the same cell at the same time.  相似文献   

7.
Chloroplasts change their positions in a cell in response to light intensities. The photoreceptors involved in chloroplast photo-relocation movements and the behavior of chloroplasts during their migration were identified in our previous studies, but the mechanism of movement has yet to be clarified. In this study, the behavior of actin filaments under various light conditions was observed in Adiantum capillus-veneris gametophytes. In chloroplasts staying in one place under a weak light condition and not moving, circular structures composed of actin filaments were observed around the chloroplast periphery. In contrast, short actin filaments were observed at the leading edge of moving chloroplasts induced by partial cell irradiation. In the dark, the circular structures found under the weak light condition disappeared and then reappeared around the moving chloroplasts. Mutant analyses revealed that the disappearance of the circular actin structure was mediated by the blue light photoreceptor, phototropin2.  相似文献   

8.
Novel actin-like protein (NAP) is a highly divergent actin expressed in Chlamydomonas. With its low sequence similarity, it is uncertain whether NAP can polymerize into filaments. Here I assessed it by ectopically expressing enhanced green fluorescent protein-tagged NAP (EGFP-NAP) in cultured cells. EGFP-NAP was excluded from stress fibres but partially co-localized with endogenous actin in the cell periphery. In fluorescence recovery after photobleaching experiment, turnover rate of EGFP-NAP was similar to the estimated diffusion rate of monomeric actin. Therefore, EGFP-NAP likely accumulates by diffusion. These findings suggest that NAP has extremely poor ability to polymerize.  相似文献   

9.
《The Journal of cell biology》1989,109(4):1597-1608
Listeria monocytogenes was used as a model intracellular parasite to study stages in the entry, growth, movement, and spread of bacteria in a macrophage cell line. The first step in infection is phagocytosis of the Listeria, followed by the dissolution of the membrane surrounding the phagosome presumably mediated by hemolysin secreted by Listeria as nonhemolytic mutants remain in intact vacuoles. Within 2 h after infection, each now cytoplasmic Listeria becomes encapsulated by actin filaments, identified as such by decoration of the actin filaments with subfragment 1 of myosin. These filaments are very short. The Listeria grow and divide and the actin filaments rearrange to form a long tail (often 5 microns in length) extending from only one end of the bacterium, a "comet's tail," in which the actin filaments appear randomly oriented. The Listeria "comet" moves to the cell surface with its tail oriented towards the cell center and becomes incorporated into a cell extension with the Listeria at the tip of the process and its tail trailing into the cytoplasm behind it. This extension contacts a neighboring macrophage that phagocytoses the extension of the first macrophage. Thus, within the cytoplasm of the second macrophage is a Listeria with its actin tail surrounded by a membrane that in turn is surrounded by the phagosome membrane of the new host. Both these membranes are then solubilized by the Listeria and the cycle is repeated. Thus, once inside a host cell, the infecting Listeria and their progeny can spread from cell to cell by remaining intracellular and thus bypass the humoral immune system of the organism. To establish if actin filaments are essential for the spread of Listeria from cell to cell, we treated infected macrophages with cytochalasin D. The Listeria not only failed to spread, but most were found deep within the cytoplasm, rather than near the periphery of the cell. Thin sections revealed that the net of actin filaments is not formed nor is a "comet" tail produced.  相似文献   

10.
Summary Different antibodies against actin, tubulin and cytokeratin were utilized to demonstrate the spatial organization of the cytoskeleton in basal epithelial cells of the freshwater sponge Spongilla lacustris. Accordingly, actin is localized in a cortical layer beneath the plasma membrane and in distinct fibers within the cytoplasmic matrix. Microtubules exhibit a different distributional pattern by radiating from a perinuclear sheath and terminating at, the cell periphery; in contrast, intermediate filaments are lacking. Cytoplasmic streaming activity was studied by in-vivo staining of mitochondria and endoplasmic reticulum by means of fluorescent dyes. Single-frame analysis of such specimens revealed a regular shuttle movement of mitochondria and other small particles between the cell nucleus and the plasma membrane, which can be stopped in a reversible manner with the use of colcemid or colchicine but not with cytochalasin D. The results point to the microtubular system as a candidate for cell organelle transport, whereas the actomyosin system rather serves for changes in cellular shape and motility.  相似文献   

11.
Summary. Pears (Pyrus pyrifolia L.) have an S-RNase-based gametophytic self-incompatibility system, and S-RNases have also been implicated in self-pollen or genetically identical pollen rejection. Tip growth of the pollen tube is dependent on a functioning actin cytoskeleton. In this study, configurations of the actin cytoskeleton in P. pyrifolia pollen and effects of stylar S-RNases on its dynamics were investigated by fluorescence and confocal microscopy. Results show that actin filaments in normal pollen grains exist in fusiform or circular structures. When the pollen germinates, actin filaments assembled around one of the germination pores, and then actin bundles oriented axially throughout the shank of the growing tube. There was a lack of actin filaments 5–15 μm from the tube tip. When self-stylar S-RNase was added to the basal medium, pollen germination and tube growth were inhibited. The configuration of the actin cytoskeleton changed throughout the culturing time: during the first 20 min, the actin configurations in the self-pollen and tube were similar to the control; after 20 min of treatment, the actin filaments in the pollen tube gradually moved into a network running from the shank to the tip; finally, there was punctate actin present throughout the whole tube. Although the actin filaments of the self-pollen grain also disintegrated into punctate foci, the change was slower than in the tube. Furthermore, the alterations to the actin cytoskeleton occurred prior to the arrest of pollen tube growth. These results suggest that P. pyrifolia stylar S-RNase induces alterations in the actin cytoskeleton in self-pollen grains and tubes. Correspondence: Shao-ling Zhang, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People’s Republic of China.  相似文献   

12.
Summary This paper describes the role of actin filaments in setting up the phragmosome — the transvacuolar device that anticipates the division plane — and in forming a supracellular system that seems to override cell boundaries. Tradescantia leaf epidermal cells were induced to divide by wounding the leaf. New division planes formed parallel to slits, and encircled puncture wounds — the new division planes lining up across cells, instead of the joints being off-set as in normal, unwounded tissue. Within 30 min after wounding, rhodamine phalloidin staining showed that a belt of fine, cortical actin filaments formed parallel to the wound. In the next stage, migration of nuclei to a wall adjacent to the wound, involved pronounced association of actin filaments with the nucleus. Migration could be inhibited with cytochalasin D, confirming the role of actin in traumatotaxis. Later still, actin strands were seen to line up from cell to cell, parallel to the wound, anticipating the future division plane. Next, actin filaments accumulated in this anticlinal plane, throughout the depth of the cell, thereby contributing to the formation of the phragmosome. The phragmosome has been shown in previous work (Flanders et al. 1990) to contain microtubules that bridge nucleus to cortex, and is now found to contain actin filaments. Actin filaments are therefore involved in the key stages of nuclear migration and division plane alignment. The supracellular basis of actin alignment is discussed.Dedicated to the memory of Professor Oswald Kiermayer  相似文献   

13.
We investigated the structural distribution of both types of actin arrays, filaments and plaques, in a soil-borne phytopathogenic peronosporomycete (oomycete), Aphanomyces cochlioides, under standardized host-free bioassays. The phenomenon was monitored during progression through all the asexual developmental processes of the organism. It was noted that the filamentous-form of actin was predominant during the morphogenic (morphologically active) stages of development. Conversely, during non-morphogenic (morphologically quiescent) stages, plaques dominated. From these analyses, we proposed a criterion that predominance of an actin form relates to, and precedes the morphological behaviour of a cellular stage in Peronosporomycetes. A decrease in the quantity of plaques in the encysted zoospore (non-morphogenic stage) during its developmental progression into morphogenic stages, both in germination and regeneration processes, asserted the notion that plaques function as the organization centres and are related to the reorganization of cell structure and the transition of the cell into a new stage. Furthermore, polymerization of filamentous-form during emergence stages in zoospore regeneration process revealed that filaments render motility to a developing zoospore. This unprecedented function of filaments in the developing zoospores was demonstrated using nicotinamide (0.8 × 10−6 m), which did not cause actin disruption, but could induce zoospore encystment, and its further replacement with water triggered the zoospore emergence process. Additionally, by using latrunculin B, an actin polymerization inhibitor, we also demonstrated the functional necessity of actin during various developmental processes in Aphanomyces.  相似文献   

14.
We have previously demonstrated that alpha-smooth muscle (alpha-SM) actin is predominantly distributed in the central region and beta-non-muscle (beta-NM) actin in the periphery of cultured rabbit aortic smooth muscle cells (SMCs). To determine whether this reflects a special form of segregation of contractile and cytoskeletal components in SMCs, this study systematically investigated the distribution relationship of structural proteins using high-resolution confocal laser scanning fluorescent microscopy. Not only isoactins but also smooth muscle myosin heavy chain, alpha-actinin, vinculin, and vimentin were heterogeneously distributed in the cultured SMCs. The predominant distribution of beta-NM actin in the cell periphery was associated with densely distributed vinculin plaques and disrupted or striated myosin and alpha-actinin aggregates, which may reflect a process of stress fiber assembly during cell spreading and focal adhesion formation. The high-level labeling of alpha-SM actin in the central portion of stress fibers was related to continuous myosin and punctate alpha-actinin distribution, which may represent the maturation of the fibrillar structures. The findings also suggest that the stress fibers, in which actin and myosin filaments organize into sarcomere-like units with alpha-actinin-rich dense bodies analogous to Z-lines, are the contractile structures of cultured SMCs that link to the network of vimentin-containing intermediate filaments through the dense bodies and dense plaques.  相似文献   

15.
Summary A three-dimensional network of structural filaments was visible with common electron microscopes in the cytoplasm ofEuglena gracilis green cells extracted with buffers containing the nonionic detergent Triton X-100. A similar filamentous web was detected at the periphery of critical point dried cells cleaved on grids by means of an adhesive tape. SDS-polyacrylamide gel electrophoresis of the detergent-resistent cytoskeleton showed that actin or actin-like proteins of molecular weight in the range of 43–45 K are not among the components having a structural role inEuglena. The significance of these findings was discussed in relation to the capability of the alga to change the cell shape.The study was supported by grants from Consiglio Nazionale delle Ricerche (CNR) and Ministero della Pubblica Istruzione of Italy.  相似文献   

16.
L A Liss 《Tsitologiia》1985,27(3):342-345
Using double immunofluorescence staining, microtubules and intermediate filaments were shown to have similar distribution in the substrate-spread mouse embryo fibroblasts. However, in cells spreading on the substrate, microtubules grow from the centre to the periphery regions quicker than intermediate filaments. We suppose that microtubules may guide the spreading of intermediate filaments from the perinuclear regions to the periphery of the cell during its spreading.  相似文献   

17.
We have investigated spreading of postmitotic PtK2 cells and the behavior of actin filaments in this system by time-lapse microscopy and photoactivation of fluorescence. During mitosis PtK2 cells round up and at cytokinesis the daughter cells spread back to regain their interphase morphology. Normal spreading edges are quite homogenous and are not comprised of two distinct areas (lamellae and lamellipodia) as found in moving edges of interphase motile cells. Spreading edges are connected to a network of long, thin, actin-rich fibers called retraction fibers. A role for retraction fibers in spreading was tested by mechanical disruption of fibers ahead of a spreading edge. Spreading is inhibited over the region of disruption, but not over neighboring intact fibers. Using photoactivation of fluorescence to mark actin filaments, we have determined that the majority of actin filaments move forward in spreading edges at the same rate as the edge. As far as we are aware, this is the first time that forward movement of a cell edge has been correlated with forward movement of actin filaments. In contrast, actin filaments in retraction fibers remain stationary with respect to the substrate. Thus there are at least two dynamic populations of actin polymer in spreading postmitotic cells. This is supported by the observation that actin filaments in some spreading edges not only move forward, but also separate into two fractions or broaden with time. A small fraction of postmitotic cells have a spreading edge with a distinct lamellipodium. In these edges, marked actin polymer fluxes backward with respect to substrate. We suggest that forward movement of actin filaments may participate in generating force for spreading in postmitotic cells and perhaps more generally for cell locomotion.  相似文献   

18.
Huebner E  Gutzeit H 《Tissue & cell》1986,18(5):753-764
Fluorescent staining of Rhodnius prolixus ovarioles with rhodaminylphalloidin revealed an elaborate interconnecting meshwork of F-actin encasing the microtubule rich core. The thick actin struts have branches extending partially into the nurse cell lobes extending from the syncytical core. Basally the network ends at the nurse cell-pre-follicular interface and does not extend into the trophic cords. Light microscopy, TEM and SEM show the dense fibrous struts have numerous branch points creating a porous cylindrical collar at the core periphery. The filaments are organized in a dense felt-like anisotropic meshwork rather in parallel arrays. This morphology coupled with the stability of the entire structure in extraction procedures suggests the actin filaments are crosslinked, presumably by associated proteins. Detergent extraction experiments indicate isolation of the mesh is possible. Comparison of Nomarski DIC images with polarizing microscopy images of the same preparations show the F-actin struts are not birefringent while the microtubules of the core are highly birefringent and resistant to nocodazole. Indirect immunocytochemical staining of sections for actin confirmed the F-actin distribution visualized with phalloidin and contrasted markedly with staining pattern for tubulin. The discovery of this prominent actin meshwork must now be incorporated into models attempting to explain the mechanisms underlying polarized nurse cell-oocyte transport.  相似文献   

19.
The three-dimensional organization of the cytoplasm of randomly migrating neutrophils was studied by stereo high-voltage electron microscopy. Examination of whole-mount preparations reveals with unusual clarity the structure of the cytoplasmic ground substance and cytoskeletal organization; similar clarity is not observed in conventional sections. An extensive three-dimensional network of fine filaments (microtrabeculae) approximately 7 to 17 nm in diameter extends throughout the cytoplasm and between the two cell cortices; it also comprises the membrane ruffles and filopodia. The granules are dispersed within the lattice and are surrounded by microtrabeculae. The lattice appears to include dense foci from which the microtrabeculae emerge. Triton X-100 dissolves the plasma membrane, most of the granules, and many of the microtrabecular strands and leaves as a more stable structure a cytoskeletal network composed of various filaments and microtubules. Heavy meromyosin-subfragment 1 (S1) decoration discloses actin filaments as the major filamentous component present in membrane ruffles and filopodia. Actin filaments, extending from the leading edge of the cells, are of uniform polarity, with arrowheads pointing towards the cell body. Likewise, the filaments forming the core of filopodia have the barbed end distal. End-to-side associations of actin filaments as well as fine filaments (2--3 nm) which are not decorated with S1 and link actin filaments are observed. The ventral cell cortex includes numerous substrate-associated dense foci with actin filaments radiating from the dense center. Virtually all the microtubules extend from the centrosome. An average of 35 +/- 7 microtubules originate near the pair of centrioles and radiate towards the cell periphery; microtubule fragments are rare. Intermediate filaments form an open network of single filaments in the perinuclear space. Comparison of Triton-extracted and unextracted cells suggest that many of the filamentous strands seen in unextracted cells have as a core a stable actin filament.  相似文献   

20.
This study reports the cytoskeletal organisation within chondrocytes, isolated from the superficial and deep zones of articular cartilage and seeded into agarose constructs. At day 0, marked organisation of actin microfilaments was not observed in cells from both zones. Partial or clearly organised microtubules and vimentin intermediate filaments cytoskeletal components were present, however, in a proportion of cells. Staining for microtubules and vimentin intermediate filaments was less marked after 1 day in culture however than on initial seeding. For all three cytoskeletal components there was a dramatic increase in organisation between days 3 and 14 and, in general, organisation was greater within deep zone cells. Clear organisation for actin microfilaments was characterised by a cortical network and punctate staining around the periphery of the cell, while microtubules and vimentin intermediate filaments formed an extensive fibrous network. Cytoskeletal organisation within chondrocytes in agarose appears, therefore, to be broadly similar to that described in situ. Variations in the organisation of actin microfilaments between chondrocytes cultured in agarose and in monolayer are consistent with a role in phenotypic modulation. Vimentin intermediate filaments and microtubules form a link between the plasma membrane and the nucleus and may play a role in the mechanotransduction process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号