首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
Mechanisms of tolerance to herbivore damage:what do we know?   总被引:24,自引:2,他引:22  
Identifying mechanisms of tolerance to herbivore damage will facilitate attempts to understand the role of tolerance in the evolutionary and ecological dynamics of plants and herbivores. Investigations of the physiological and morphological changes that occur in plants in response to herbivore damage have identified several potential mechanisms of tolerance. However, it is unlikely that all physiological changes that occur following damage are tolerance mechanisms. Few studies have made direct comparisons between the expression of tolerance and the relative expression of putative mechanisms. I briefly review empirical evidence for some of the better-studied potential mechanisms, including increased photosynthetic activity, compensatory growth, utilization of stored reserves, and phenological delays. For each of these mechanisms I discuss reasons why the relationship between tolerance and these characters may be more complicated than it first appears. I conclude by discussing several empirical approaches, including herbivore manipulations, quantitative trait loci (QTL) analysis, and selection experiments, that will further our understanding of tolerance mechanisms. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
Diabetes mellitus (DM) is becoming increasingly prevalent worldwide. Although major complications of this condition involve kidney, retina and peripheral nerves, the skin of diabetic patients is also frequently injured. Hence, interest is mounting in the definition of the structural and molecular profile of non-complicated diabetic skin, i.e., before injuries occur. Most of the available knowledge in this area has been obtained relatively recently and, in part, derives from various diabetic animal models. These include both insulin-dependent and insulin-resistant models. Structural work in human diabetic skin has also been carried out by means of tissue samples or of non-invasive methods. Indications have indeed been found for molecular/structural changes in diabetic skin. However, the overall picture that emerges is heterogeneous, incomplete and often contradictory and many questions remain unanswered. This review aims to detail, as much as possible, the various pieces of current knowledge in a systematic and synoptic manner. This should aid the identification of areas in which key questions are still open and more research is needed. A comprehensive understanding of this field could help in determining molecular targets for the prevention and treatment of skin injuries in DM and markers for the monitoring of cutaneous and systemic aspects of the disease. Additionally, with the increasing development of non-invasive optics-based deep-tissue-imaging diagnostic technologies, precise knowledge of cutaneous texture and molecular structure becomes an important pre-requisite for the use of such methods in diabetic patients.  相似文献   

6.
A variety of models have shown that spatial dynamics and small-scale endogenous heterogeneity (e.g., forest gaps or local resource depletion zones) can change the rate and outcome of competition in communities of plants or other sessile organisms. However, the theory appears complicated and hard to connect to real systems. We synthesize results from three different kinds of models: interacting particle systems, moment equations for spatial point processes, and metapopulation or patch models. Studies using all three frameworks agree that spatial dynamics need not enhance coexistence nor slow down dynamics; their effects depend on the underlying competitive interactions in the community. When similar species would coexist in a nonspatial habitat, endogenous spatial structure inhibits coexistence and slows dynamics. When a dominant species disperses poorly and the weaker species has higher fecundity or better dispersal, competition-colonization trade-offs enhance coexistence. Even when species have equal dispersal and per-generation fecundity, spatial successional niches where the weaker and faster-growing species can rapidly exploit ephemeral local resources can enhance coexistence. When interspecific competition is strong, spatial dynamics reduce founder control at large scales and short dispersal becomes advantageous. We describe a series of empirical tests to detect and distinguish among the suggested scenarios.  相似文献   

7.
Penicillium digitatum is the major source of postharvest decay in citrus fruits worldwide. This fungus shows a limited host range, being able to infect mainly mature fruit belonging to the Rutaceae family. This highly specific host interaction has attracted the interest of the scientific community. Researchers have investigated the chemical interactions and specialized virulence strategies that facilitate this fungus's fruit colonization, thereby leading to a successful citrus infection. There are several factors that mediate and affect the interaction between P. digitatum and its host citrus, including hydrogen peroxide modulation, secretion of organic acids and consequently pH control, and other strategies described here. The recently achieved sequencing of the complete P. digitatum genome opened up new possibilities for exploration of the virulence factors related to the host-pathogen interaction. Through such techniques as RNAseq, RT-PCR and targeted gene knockout mediated by Agrobacterium tumefaciens, important genes involved in the fungal infection process in citrus have been reported, helping to elucidate the molecular mechanisms, metabolites and genetic components that are involved in the pathogenicity of P. digitatum. Understanding the infection process and fungal strategies represents an important step in developing ways to protect citrus from P. digitatum infection, possibly leading to more productive citriculture.  相似文献   

8.
Clinical trials have demonstrated the importance of aromatase inhibitor (AI) therapy in the effective treatment of hormone-dependent breast cancers. Yet, as with all prolonged drug therapy, resistance to aromatase inhibitors does develop. To date, the precise mechanism responsible for resistance to aromatase inhibitors is not completely understood. In this paper, several mechanisms of de novo/intrinsic resistance and acquired resistance to AIs are discussed. These mechanisms are hypothesized based on important findings from a number of laboratories.

To better understand this question, our lab has generated, in vitro, breast cancer cell lines that are resistant to aromatase inhibitors. Resistant cell lines were generated over a prolonged period of time using the MCF-7aro (aromatase overexpressed) breast cancer line. These cell lines are resistant to the aromatase inhibitors letrozole, anastrozole and exemestane and the anti-estrogen tamoxifen, for comparison. Two types of resistant cell lines have been generated, those that grow in the presence of testosterone (T) which is needed for cell growth, and resistant lines that are cultured in the presence of inhibitor only (no T). In addition to functional characterization of aromatase and ER in these resistant cell lines, microarray analysis has been employed in order to determine differential gene expression within the aromatase inhibitor resistant cell lines versus tamoxifen, in order to better understand the mechanism responsible for AI resistance on a genome-wide scale. We anticipate that our studies will generate important information on the mechanisms of AI resistance. Such information can be valuable for the development of treatment strategies against AI-resistant breast cancers.  相似文献   


9.
Wound repair is a complex process involving the orchestrated interaction of multiple growth factors, cytokines, chemokines, and cell types. Dysregulation of this process leads to problems such as excessive healing in the form of keloids and hypertrophic scars and chronic, nonhealing wounds. These issues have broad global implications. Stem cells offer enormous potential for enhancing tissue repair and regeneration following injury. The rapidly developing fields of stem cell biology and skin tissue engineering create translational opportunities for the development of novel stem cell-based wound-healing therapies.  相似文献   

10.
Death with dementia is increasingly common, yet research on end of life with dementia and end-of-life care for such patients has been sparse. This article reviews recent studies in this area, most of which were done in US nursing homes. Research focused on five domains: prognosis, decision making, treatment, patient's health and suffering, and family's circumstances and satisfaction with care. Prognostication focused on developing risk scores for mortality within 6 months or a year, and while decision making was usually studied qualitatively, the other three domains were largely covered by a series of small, retrospective studies. Future direction in research is discussed, including the ongoing CASCADE project in Boston and the Dutch End of Life with Dementia Study (DEOLD). Both of these prospective studies in nursing home residents assess decision making, as well as factors associated with family's satisfaction and patient suffering. These studies will provide insight into interventions that are most likely to improve end of life care of patients with dementia in the respective countries and elsewhere.  相似文献   

11.
Apicomplexan zoites enter host cells by forming and actively moving through a tight junction (TJ) formed between the parasite and host cell surfaces. Although the TJ was first described decades ago, its molecular characterization has proved difficult mainly because of its transient existence during an internalization process that lasts only seconds. In the past 7 years, work has led to a model of the TJ in which the association between AMA1 and RON proteins structures the TJ and bridges the cytoskeletons of the two cells. However, more recent work questions this view. Here, we critically discuss the current model and speculate on alternative models of the AMA1-RON association and of the apicomplexan TJ.  相似文献   

12.
Chronic sun exposure causes degenerative changes in the skin that are recognized as photoaging, immunosuppression and photocarcinogenesis. Sun is necessary for life, so total sun avoidance is impossible. Sun exposure during the first 15 years of life and blistering sunburns before age 20 have been linked to an increased risk of melanoma. Individuals who have outdoor lifestyles, live in sunny climates, and are lightly pigmented will experience the greatest degree of photoaging. In our study, performed four years ago, we have shown the knowledge of more than 4000 people about the effects of UV rays on the skin. The results show us that sun exposure is still exaggerated and uncontrolled due to the lack of knowledge about this topic. Encouraging photoprotection and improving the awareness of the general public about the harmful effects of too much sun exposure must be the leading preventative health strategy.  相似文献   

13.
14.
15.
R. L. Peterson 《Plant biosystems》2013,147(6):1145-1152
Abstract

Ectomycorrhizas are subterranean organs resulting from the alteration in root structure by soil-inhabiting symbiotic fungi. Hyphae of the mycobiont have to contact the root surface, become attached to the root, and subsequently enter the root by growing between epidermal cells (and in some species, cortical cells) to form the Hartig net. A chemotropic stimulus might be involved in early hypha-root contact and recognition-adhesion may involve a polysaccharide-lectin interaction, but further research is needed to confirm this. Fungal hyphae adhering to the root surface change their mode of growth from apical, extension growth to a loss of this pattern resulting in a multi-branched mycelium. A similar change in pattern of branching occurs as hyphae form the Hartig net. In both cases, a change in the cytoskeleton might precede the change in branching. The ingress of hyphae between epidermal cells in angiosperm roots triggers radial rather than axial elongation of these cells; a reorientation of the cytoskeleton and subsequently the cellulose microfibrils is hypothesized to be involved in this process. Wall changes in root cells contiguous to Hartig net hyphae also occur, and these might facilitate nutrient exchange between the symbionts.  相似文献   

16.
Recombination is a ubiquitous genetic process which results in the exchange of DNA between two substrates. Homologous recombination occurs between DNA species with identical sequence whereas illegitimate recombination can occur between DNA with very little or no homology. Site-specific recombination is often used by temperate phages to stably integrate into bacterial chromosomes. Characterisation of the mechanisms of recombination in mycobacteria has mainly focussed on RecA-dependent homologous recombination and phage-directed site-specific recombination. In contrast the high frequency of illegitimate recombination in slow-growing mycobacteria has not been explained. The role of DNA repair in dormancy and infection have not yet been fully established, but early work suggests that RecA-mediated pathways are not required for virulence. All three recombination mechanisms have been utilised in developing genetic techniques for the analysis of the biology and pathogenesis of mycobacteria. A recently developed method for studying essential genes will generate further insights into the biology of these important organisms.  相似文献   

17.
Animals that occupy temperate and polar regions have specialized traits that help them survive in harsh, highly seasonal environments. One particularly important adaptation is seasonal coat colour (SCC) moulting. Over 20 species of birds and mammals distributed across the northern hemisphere undergo complete, biannual colour change from brown in the summer to completely white in the winter. But as climate change decreases duration of snow cover, seasonally winter white species (including the snowshoe hare Lepus americanus, Arctic fox Vulpes lagopus and willow ptarmigan Lagopus lagopus) become highly contrasted against dark snowless backgrounds. The negative consequences of camouflage mismatch and adaptive potential is of high interest for conservation. Here we provide the first comprehensive review across birds and mammals of the adaptive value and mechanisms underpinning SCC moulting. We found that across species, the main function of SCC moults is seasonal camouflage against snow, and photoperiod is the main driver of the moult phenology. Next, although many underlying mechanisms remain unclear, mammalian species share similarities in some aspects of hair growth, neuroendocrine control, and the effects of intrinsic and extrinsic factors on moult phenology. The underlying basis of SCC moults in birds is less understood and differs from mammals in several aspects. Lastly, our synthesis suggests that due to limited plasticity in SCC moulting, evolutionary adaptation will be necessary to mediate future camouflage mismatch and a detailed understanding of the SCC moulting will be needed to manage populations effectively under climate change.  相似文献   

18.
Pleiotropic effects of statins: do they matter?   总被引:7,自引:0,他引:7  
Treatment with the 3-hydroxy-3-methylglutaryl coenyzme A reductase inhibitors (or statins) reduces the risk for cardiovascular events across a broad spectrum of patient profiles, as evidenced by both primary prevention and secondary prevention trials. Improved survival by way of reduced deaths from coronary heart disease was also reported with these agents, which are primarily indicated for substantial reduction in LDL-cholesterol levels. However, the statins are extremely complex drugs and exhibit a wide variety of vascular effects that may or may not be dependent on their lipid-modifying properties. These so-called pleiotropic effects include alterations of endothelial function, inflammation, coagulation, and plaque stability. The relative contribution of the nonlipid effects of statin therapy to the well-documented clinical benefits is currently under intense investigation.  相似文献   

19.
Recent research suggests that non-additive genotypic effects may play an important role in the establishment success of invasive species. However, most empirical data for these inferences come from greenhouse experiments. Only recently has researchers tested non-additive genotypic effects and establishment success of invasive alien species under field conditions. Here we give a brief overview of this research and also carefully consider data from the first publication, to our knowledge, to report on non-additive genotypic effects on invasion success under field conditions. We identify some shortcomings in this important study and make suggestions for future research aimed at better understanding the contributions of non-additive genotypic effects to establishment success and invasion.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号