首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thecal cell steroidogenesis plays a major role in folliculogenesis within the porcine ovary. Accordingly, the effects of physiological concentrations of steroids on 3 beta-hydroxysteroid dehydrogenase activity (3 beta-HSD) were determined. Theca was excised from large porcine follicles and prepared in a monolayer culture in 1 ml of serum-free media. Cells were treated 24 h after culture as follows: (1) control, (2) hCG (5 IU); (3) progesterone (P, 3 micrograms); estradiol-17 beta (E, 4 micrograms); 5 beta-dihydrotestosterone (DHT, 1 microgram); (4) hCG + P or E or DHT. At 3, 6, 12, 24 and 48 h after treatment, media were assessed for P levels. For 3 beta-HSD activity, P formation by microsomal fractions incubated with 1 microM pregnenolone + 5 microM NAD+ for 1 h (37 degrees C) was monitored. Thecal cell P secretion increased from 27 to 72 h. hCG significantly (P less than 0.05) increased P levels after 36 h compared to controls. E or E + hCG decreased P levels at 36, 48, and 72 h and DHT prevented the hCG-induced increase in P secretion. 3 beta-HSD activity in thecal microsomes increased significantly from 27 to 72 h. hCG had little effect on 3 beta-HSD activity compared with controls from 27 to 36 h, but significantly (P less than 0.05) decreased 3 beta-HSD activity at 48 and 72 h. However, P or P + hCG significantly (P less than 0.05) decreased 3 beta-HSD activity at all times. In addition, E or E + hCG significantly (P less than 0.05) decreased 3 beta-HSD activity at 48 and 72 h. DHT prevented the hCG-induced decrease in 3 beta-HSD activity. In conclusion, porcine thecal secretion of P and microsomal 3 beta-HSD activity increased during 72 h of culture. Paradoxically, the addition of hCG to cultures enhanced media P concentrations but inhibited 3 beta-HSD activity. Further, the addition of E to cultures decreased media concentrations of P while P or E decreased 3 beta-HSD activity. Therefore, paracrine/autocrine effects of locally produced steroids may play a role in modulating thecal cell steroidogenesis.  相似文献   

2.
Porcine thecal cells synthesize estradiol, which may function as an intraovarian regulator of follicular growth. Production of estradiol by granulosa-cell aromatase is modulated by gonadotropins and local steroidal and nonsteroidal factors. Therefore, the effect of human chorionic gonadotropin (hCG) and physiological concentrations of steroids on aromatase activity of the thecal cells was determined. Theca was excised from large porcine follicles (greater than 10 mm diameter) and plated as monolayer cultures in 1 ml of serum-free medium. Twenty-four hours after culture, cells were treated as follows: 1) control; 2) hCG (5 IU); 3) progesterone (P, 3 micrograms), estradiol-17 beta (E, 4 micrograms), or dihydrotestosterone (DHT, 1 microgram); 4) hCG + P, E, or DHT. After 27, 30, 36, 48, and 72 h of culture, media were assessed for levels of P and E. Aromatase activity was determined by a radiometric assay. Levels of P in control media increased from 27 to 72 h. hCH significantly (p less than 0.01) increased P levels from 27 to 72 h of culture. Estrogen decreased (p less than 0.05) P levels at 36, 48, and 72 h compared to controls and also prevented the hCG-induced increase in P levels at these times. DHT significantly increased (p less than 0.05) P levels at 48 and 72 h. DHT + hCG reduced the hCG-associated increase in P concentration at 36 h and 72 h, but enhanced the hCG-induced increase in P levels at 48 h.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
In Experiment 1, the influence of exogenous GH on steroid secretion by granulosa and theca interna cells recovered from small (1-3 mm), medium (4-6 mm) and large (8-12 mm) follicles was tested. In the second experiment, theca cells (Tc) and granulosa cells (Gc) obtained from large follicles were cultured separately or in two types, Tc/Gc co-culture, where both types of cells were mixed in one well or Gc and Tc were separated by cell culture membrane inserts. In the third experiment, the influence of GH on the morphology of Gc and Tc cells and activity of Delta(5),3beta-hydroxysteroid dehydrogenase (3beta-HSD) was studied. Cells were grown in the control medium (M199+5% of calf serum) or supplemented with 100 ng/ml GH. Testosterone (10(-7) M) was added as the aromatase substrate to granulosa cells cultures. The media were assayed after 48 h of culture for progesterone and oestradiol by RIA. GH added to the culture media had no effect on oestradiol and progesterone secretion by granulosa cells isolated from small and medium follicles while it stimulated both oestradiol and progesterone secretion by Gc isolated from large preovulatory follicles. A stimulatory effect on oestradiol secretion by Tc isolated from all size follicles was observed. GH did not stimulate progesterone secretion by Tc isolated from small follicles but stimulated progesterone secretion by Tc isolated from medium and large preovulatory follicles. Both co-culture systems exhibited synergistic effect on oestradiol secretion. The stimulatory effect on progesterone secretion under the influence of GH was observed in Gc cultured alone and Tc cultured alone. In contrast, the secretion of progesterone was attenuated in both co-culture systems and the addition of GH further augmented this attenuation. A statistically significant increase in oestradiol secretion was observed in all culture conditions. The addition of GH to the culture medium stimulated the activity of 3beta-HSD compared with the control culture from both types of cells. In conclusion, the present studies indicate that there are direct and follicular development stage dependent actions of GH on steroidogenesis of porcine follicular cells.  相似文献   

4.
The regulation of the production of steroids and steroid sulfates and the activity of aromatase in human luteinized granulosa cells were investigated. The cells were cultured for 48 h in the presence or absence of hCG and FSH. Basal production of pregnenolone (Pre, 0.3 +/- 0.03 ng/micrograms protein) and progesterone (P, 19.3 +/- 1.7 ng/micrograms protein) were high compared with that of other steroids beyond P in the steroidogenic pathway. The concentration of 17 alpha-hydroxyprogesterone (17-OHP) was lower 0.17 +/- 0.06 ng/micrograms and that of other steroids in the 4-ene and 5-ene pathways and steroid sulfates less than 0.05 ng/micrograms. Both hCG and FSH (100 ng/ml) stimulated the production of Pre and P 3- to 5-fold, but only minimal stimulation of other steroids and steroid sulfates was observed. Aromatase activity of granulosa-luteal cells was measured from the rate of formation of 3H2O from 1 beta-[3H]androstenedione (1 beta[3H]A) after exposing the cells to hCG, FSH or estradiol (E2) for 48 h. Basal aromatase activity was relatively low, but hCG and FSH stimulated aromatase 8- and 4-fold, respectively. The incubation of granulosa-luteal cells with E2 did not affect basal aromatase activity, but E2 augmented FSH-stimulated aromatase 1.4-fold (P less than 0.025). The results suggest that there is low 17 alpha-hydroxylase and steroid sulfokinase activity in human granulosa-luteal cells. Aromatase activity in these cells is regulated by both hCG and FSH, and intra-ovarian estrogens may regulate granulosa cell aromatase activity.  相似文献   

5.
The objective of this study was to assess the effect of ovine follicular fluid (FF) treatment (with or without FSH replacement) during the late follicular phase on plasma concentrations of gonadotrophins and the development of the ovulatory follicle. Ovarian steroid secretion and expression of mRNA encoding inhibin alpha and beta A, beta B subunits, P450 aromatase and P450 17 alpha-hydroxylase were used as endpoints. After induction of luteolysis by injection of 100 micrograms cloprostenol on days 10-12, Scottish Blackface ewes were allocated to one of three groups: (1) control (n = 7): no further treatment; (2) FF (n = 9): subcutaneous injections of 3 ml steroid-free ovine follicular fluid at 9 h intervals, 18 and 27 h after cloprostenol injection; (3) FF + FSH (n = 8): injections of follicular fluid as above plus subcutaneous injections of 0.36 iu ovine FSH at 6 h intervals, 18, 24, and 30 h after cloprostenol injection. Jugular venous blood samples were obtained via indwelling cannulae at 6 h intervals from 0 to 36 h after cloprostenol injection, and at 10 min intervals from 12 to 18 h (control phase) and from 30 to 36 h after cloprostenol injection (treatment phase). At laparotomy, 36 h after cloprostenol injection, ovarian venous blood was collected and ovaries were removed and processed for in situ hybridization. Plasma concentrations of FSH, luteinizing hormone (LH) and oestradiol were determined by radioimmunoassay. Follicular fluid treatment resulted in a decrease (P < 0.001) in FSH concentrations associated with an acute decrease in ovarian steroid secretion (P < 0.01) and a specific depression in P450 aromatase, (P < 0.001), inhibin-activin beta B subunit (P < 0.05) and thecal LH receptor (P < 0.001) expression. Follicular fluid treatment had no effect on inhibin-activin alpha and beta A, subunit or P450 17 alpha-hydroxylase expression. FSH co-treatment with follicular fluid restored circulating FSH concentrations to normal values and reversed some of the effects of follicular fluid (androstenedione, testosterone and progesterone secretion, and inhibin beta B and thecal LH receptor expression) but not oestradiol secretion or P450 aromatase expression. It was concluded that the actions of follicular fluid are mediated via both central effects on pituitary FSH secretion and by direct ovarian effects on granulosa cell aromatase activity. The results indicate that follicular fluid contains a factor that inhibits aromatase activity of granulosa cells directly and may play a role in the selection of the dominant follicle.  相似文献   

6.
Immature rats were treated with PMSG followed 56 h later by 10 i.u. hCG. Follicles were removed at intervals after hCG injection. Transient increases in progesterone, testosterone and oestradiol synthesis were first evident 1 h after hCG, but values peaked at 3-5 h and returned to control levels by 10 h. Increased synthesis of PGE-2 and PGF-2 alpha was not evident until 3 h and peaked at more than 10 h after hCG. Ovulation began between 8 and 10 h after hCG and 83% of animals had ovulated within 12 h. Doses of 90 or 1800 micrograms indomethacin given together with hCG substantially inhibited ovulation and PG synthesis, but only the higher dose inhibited the hCG-induced elevation of progesterone and testosterone synthesis; hCG-induced oestradiol synthesis was not affected by either dose of indomethacin. We conclude that the peak of PG synthesis after hCG treatment related closely to the timing of ovulation; the steroidogenic response to hCG was not blocked by doses of indomethacin sufficient to inhibit synthesis of PGE-2 and PGF-2 alpha by more than 80%.  相似文献   

7.
8.
Chen LY  Huang YL  Liu MY  Leu SF  Huang BM 《Life sciences》2003,72(17):1983-1995
Amphetamine influences plasma and testicular testosterone levels. However, there is no evidence that amphetamine can directly influence Leydig cell functions. In the present study, a MA-10 mouse Leydig tumor cell line was used to determine whether and how amphetamine affected Leydig cell steroidogenesis. MA-10 cells were treated with different concentrations of amphetamine without or with human chorionic gonadotropin (hCG) and/or enzyme precursors over different time durations. Steroid production, enzyme activities and StAR protein expression were determined. Amphetamine alone had no any effect on MA-10 cell steroidogenesis. However, amphetamine (10(-11)M and 10(-10)M) significantly enhanced hCG-treated progesterone production at 3 hr in MA-10 cells (p < 0.05). Furthermore, amphetamine significantly induced more progesterone production upon treatment with 22R-hydroxycholesterol (p < 0.05), a precursor of P450 side-chain cleavage enzyme (P450scc). However, amphetamine did not induce more progesterone production when treated with pregnenolone (p > 0.05), a precursor of 3beta-hydroxysteroid dehydrogenase. In addition, the expressions of StAR protein and P450scc enzyme were not significantly different between hCG alone and hCG plus amphetamine treatment in MA-10 cells (p > 0.05). These results suggested that amphetamine enhanced hCG-induced progesterone production in MA-10 cells by increasing P450scc activity without influencing StAR protein and P450scc enzyme expression or 3beta-HSD enzyme activity.  相似文献   

9.
10.
There is evidence that certain phytoestrogens can inhibit key steroidogenic enzymes although most studies have been carried out on microsomal or purified enzyme preparations, some using cell lines. This study was designed to test the hypothesis that low doses of phytoestrogens, at concentrations that would be attained through the diet, could inhibit 3beta-hydroxysteroid dehydrogenase (HSD) and/or aromatase in primary cultures of human granulosa-luteal (GL) cells and that this effect was due to a decrease in the expression of these proteins. Based on published evidence, eight compounds were selected for investigation and these included the flavones apigenin and quercetin, the isoflavones genistein, biochanin A and daidzein, the lignans, enterodiol and enterolactone, and the mycotoxin zearalenone. Human GL cells were cultured for 48 h in the presence of these phytoestrogens at concentrations ranging from 0.01 to 100 microM and after addition of fresh media the conversion of pregnenolone to progesterone or androstenedione to oestradiol over a 4h period was measured. Biochanin A was the only phytoestrogen that displayed any dose-dependent inhibition of 3beta-HSD, others showing inhibition at doses >/=10 microM. Apigenin and quercetin only inhibited aromatase/17beta-HSD at high doses as did genistein, biochanin A and daidzein. The lignans had weak inhibitory effects on aromatase/17beta-HSD, whilst zearalenone showed potent inhibition at 0.1 microM. Phytoestrogens did not exert any significant effects on protein expression of 3beta-HSD or aromatase as determined by Western blots. It is concluded that steroidogenic enzymes are inhibited by phytoestrogens in primary cultures of human GL cells but these cells are less sensitive to the effects of phytoestrogens than cell-free systems. This may be due to poor lipid solubility or cellular metabolism. We have also shown for the first time that phytoestrogens do not act by inhibiting the cellular concentration of 3beta-HSD and aromatase even though exposure time would have allowed for changes in gene expression.  相似文献   

11.
Mature Merino ewes in which the left ovary and its vascular pedicle had been autotransplanted to the neck were divided into control (N = 5) and immunized groups (N = 6). The immunized ewes were treated (2 ml s.c.) with Fecundin 1 and 4 weeks before the start of blood sampling. Ovarian and jugular venous blood was collected every 10 min at two stages of the follicular phase (21-27 h and 38-42 h after i.m. injection of 125 micrograms of a prostaglandin (PG) analogue) and during the mid-luteal phase (8 h at 15-min intervals). The ewes were monitored regularly for luteal function and preovulatory LH surges. Hormone concentrations and anti-androstenedione titres were assayed by RIA and ovarian secretion rates of oestradiol-17 beta, progesterone and androstenedione were determined. After the booster immunization, progesterone increased simultaneously with titre in immunized ewes, reaching 30 ng/ml at the time of PG injection when median titre was 1:10,000. All ewes responded to PG with LH surges 42-72 h later: 2 of the immunized ewes then had a second LH surge within 3-4 days at a time when peripheral progesterone values were 2-3 ng/ml. The frequency of steroid and LH pulses was greater in immunized ewes (P less than 0.05) during the luteal phase but not the follicular phase. The secretion rate of androstenedione was 6-10 times greater (19-37 ng/min; P less than 0.001) in immunized ewes at all sampling stages. Progesterone secretion rates were 3 times greater (16 micrograms/min; P less than 0.001) during the luteal phase in immunized ewes. The amplitude of oestradiol pulses was significantly reduced in immunized ewes (4.8 vs 2.1 ng/min at +24 h and 6.5 vs 2.8 ng/min at +40 h in control and immunized ewes, respectively: P less than 0.05) during the follicular phase. However, the mean secretion rate of oestradiol at each phase of the cycle was not significantly different between treatment groups. Analysis of bound and free steroid using polyethylene glycol showed that greater than 98% of peripheral and ovarian venous androstenedione and 86% of peripheral progesterone was bound in immunized ewes but there was no appreciable binding (less than 0.1%) in control ewes. Similarly, 50% of ovarian venous oestradiol was bound in immunized ewes compared to 15% in control ewes. We conclude that immunization against androstenedione increases the secretion rate of androstenedione and progesterone but not of oestradiol.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
On Day 10 of pseudopregnancy, rabbits were given an i.v. injection of hCG (10-20 i.u.) that was sufficient to cause new ovulations and the loss of follicular oestradiol secretion. There was an immediate 3-4-fold rise in serum progesterone which returned to near prestimulation values (approximately 27 ng/ml) within 12 h in the presence of an implant containing oestradiol-17 beta. In the absence of oestradiol, serum progesterone continued to decline to reach low values (approximately 4 ng/ml) within 24 h and the original corpora lutea subsequently regressed. The administration of oestradiol 24 h after injection of hCG, when progesterone secretion was low, arrested any further decline in progesterone and then restored serum progesterone to normal values. This steroidogenic effect of oestradiol in vivo was a function of enhanced luteal steroidogenesis; corpora lutea removed and incubated for 12 h produced progesterone at high, linear rates, whereas the corpora lutea from animals that did not receive oestradiol produced low or insignificant quantities of progesterone in vitro. We conclude that hCG at these doses is compatible with continued responsiveness of the corpora lutea to oestrogen and that hCG produces its luteolytic effect primarily by ovulating follicles, thus stopping the secretion of the luteotrophic hormone, oestradiol.  相似文献   

13.
In two experiments carried out during seasonal anoestrus, Romney Marsh ewes were treated with small-dose (250 ng) multiple injections of GnRH at 2-h intervals with and without progesterone pretreatment. In Exp. 1, 8/8 progesterone-primed ewes ovulated and produced functionally normal corpora lutea compared with 2/9 non-primed ewes. Follicles were recovered from similarly treated animals 18 or 28 h after the start of GnRH treatment (at least 14 h before the estimated time of the LH peak) and assessed in terms of diameter, granulosa cell number, oestradiol, testosterone and progesterone concentrations in the follicular fluid, oestradiol production in vitro and binding of 125I-labelled hCG to granulosa and theca. There were no significant differences in any of these measures in 'ovulatory' follicles recovered from the progesterone-pretreated compared to non-pretreated animals. In Exp. 2, follicles were removed from similar treatment groups just before and 2 h after the start of the LH surge. Unlike 'ovulatory' follicles recovered from the non-pretreated ewes, those recovered from progesterone-pretreated ewes responded to the LH surge by significantly increasing oestradiol secretion (P less than 0.01) and binding of 125I-labelled hCG (P less than 0.05) to granulosa cells. Overall there was also more (P less than 0.05) hCG binding to granulosa and theca cells from progesterone-pretreated animals. Non-ovulatory follicles recovered from progesterone-primed ewes had more (P less than 0.05) binding of 125I-labelled hCG to theca and a higher testosterone concentration in follicular fluid (P less than 0.05) than did those from non-primed ewes. These results suggest that inadequate luteal function after repeated injections of GnRH may be due to a poor response to the LH surge indicative of a deficiency in the final maturational stages of the follicle.  相似文献   

14.
We examined the effects of (a) oestrogen and progesterone on concentrations of luteinizing hormone/human chorionic gonadotrophin (LH/hCG) receptors in uterine smooth muscle in vivo and (b) hCG on spontaneous myometrial contractions in vitro. Ovariectomized gilts received 2 ml corn oil (control; n = 5), 2 mg oestradiol benzoate (n = 6) or 20 mg progesterone (n = 5) for 5 days. Gilts were hysterectomized 8 h after the last injection and longitudinal sections of myometrium were incubated in modified Krebs' solution with 0 or 10 i.u. of hCG (n = 10/gilt) for 4 h at 37 degrees C in 95% O2:5% CO2. After incubation, myometrial sections were placed in a tissue chamber perfused with Krebs' solution and mechanical activity was recorded for 30 min. Cell membrane fractions were prepared from myometrial tissue not used for in-vitro studies and analysed for LH/hCG receptors. Treatment with oestradiol benzoate increased (P less than 0.01) the number of LH/hCG-binding sites compared with gilts receiving corn oil or progesterone. Incubation of myometrium with hCG reduced (P less than 0.01) the frequency and amplitude of spontaneous uterine contractions in gilts treated with oestradiol benzoate. In contrast, hCG had no effect (P greater than 0.05) on the pattern of myometrial contractions in gilts given corn oil or progesterone. These results indicate that oestradiol promotes the synthesis of LH/hCG receptors in pig myometrium and incubation of oestrogen-primed tissue with hCG has a quiescent effect on myometrial contractility.  相似文献   

15.
酪氨酸对人离体滋养层细胞孕酮与hCG分泌的影响   总被引:1,自引:1,他引:0  
杨雪松  杨旭 《生理学报》1989,41(2):209-214
本文观察三种剂量(2×10~(-5)mol/L,2×10~(-4)mol/L和2×10~(-3)mol/L)的酪氮酸对离体培养的滋养层细胞孕酮及hCG分泌的影响,并对其抑制效应的机理作了初步探讨。实验结果表明,三种剂量的酪氨酸均可抑制滋养层细胞孕酮分泌(P<0.01),但是,在孕酮分泌受酪氨酸抑制的同时,未见对hCG分泌发生影响(P>0.05),进一步观察了酪氨酸对滋养层细胞3β-羟甾脱氢酶活性的影响,结果表明,酪氨酸能显著抑制3β-羟甾脱氢酶活性,提示酪氨酸对滋养层细胞孕酮生成的抑制作用与抑制3β-羟甾脱氢酶活性有关。  相似文献   

16.
Steroid production and histological features of ovaries were compared either among normal +/+ mice of 3-12 days of age or among 12-day old mutant mice with various degrees of oocyte depletion. Whole ovaries were cultured in the medium containing [3H]progesterone and hCG or 4-androstene-3,17-dione and FSH; amounts of [3H]androgens or oestrogens released from the ovaries were assayed. FSH-responsive aromatase activity was detectable in ovaries of +/+ mice on day 3 after birth (2.6 +/- 0.4 pmol/2 ovaries/48 h), but the activity producing androgens from progesterone, under stimulation of hCG, was not detectable even on day 6 after birth (less than 0.1 pmol/2 ovaries/48 h). The androgen-producing activity appeared on day 9 after birth (1.16 +/- 0.25 pmol/2 ovaries/48 h), when follicles with more than two layers of granulosa cells developed. The ovaries of 12-day old Sl/Slt mice contained a considerable number of follicles with a single layer of granulosa cells, but did not contain any follicles with more than two layers of granulosa cells. The ovaries of Sl/Slt mice possessed aromatase activity (3.3 +/- 0.4 pmol/2 ovaries/48 h) but, not androgen-producing activity (less than 0.1 pmol/2 ovaries/48 h). The present results suggest that development of follicles with more than two layers of granulosa cells may induce the activity producing androgens from progesterone under stimulation of LH in suckling mouse ovaries, though the FSH-responsive aromatase activity is present even in follicles with a single layer of granulosa cells.  相似文献   

17.
Hypoprolactinaemia was induced by bromocriptine (CB154; 100 mg/day) which decreased circulating prolactin by 40% (P less than 0.06), but did not affect conceptus survival at Day 25 when administered on Days 10-16 when compared to saline:ethanol-treated control gilts. Bromocriptine or vehicle was administered to cyclic gilts on Days 10-11, oestradiol valerate was injected on Day 11 and uterine flushings were collected on Day 12. Total recoverable protein and uteroferrin in uterine flushings were not affected by treatment. However, leucine aminopeptidase activity (P less than 0.02) and total recoverable Ca2+, Na+, K+ and Cl- (P less than 0.05) were decreased in uterine flushings of gilts that received bromocriptine, suggesting that hypoprolactinaemia decreased general secretory activity of the endometrial epithelium and modulated ionic changes, respectively, in the uterine environment of pigs. Subcutaneous administration of pig prolactin (1 mg/12 h) increased (P less than 0.001) serum prolactin 4.5-fold. The interaction between hyperprolactinaemia and progesterone, without oestrogen, on components of uterine flushings were determined using gilts that received progesterone (200 mg/day) and prolactin or saline on Days 4-14 after ovariectomy on Day 4. On Day 15, there were no differences (P greater than 0.05) in any of the uterine secretory components measured. Hyperprolactinaemia (1 mg pig prolactin on Days 6-11) enhanced overall uterine secretory response on Day 12 to oestradiol (5 mg) administered on Day 11 compared to gilts that received 1 ml saline on Days 6-11 of the oestrous cycle. Total recoverable protein and leucine aminopeptidase activity were greater (P less than 0.05) for oestradiol-treated gilts, but effects of prolactin were not significant. Total recoverable glucose (P less than 0.01), PGF-2 alpha (P less than 0.02), uteroferrin (P less than 0.01) and specific activity of uteroferrin (P less than 0.001) were increased by prolactin and oestradiol, but not oestradiol alone. Calcium (P less than 0.05), chloride (P less than 0.05) and potassium (P less than 0.01) were increased in response to oestradiol. These results indicate an interaction between oestradiol and prolactin, but not progesterone and prolactin, which enhances secretion of some products of the pig uterine endometrium.  相似文献   

18.
Medium-sized (4-6 mm) pig follicles were incubated for 10 h and then examined via light microscopy. Treatment with pig FSH resulted in significantly increased concentrations of oestradiol, testosterone, androstenedione and progesterone in the medium. Follicle regulatory protein (FRP) alone (1 micrograms/ml) decreased follicular secretion of oestradiol (56%) and progesterone (53%) but stimulated the secretion of testosterone (226%) and androstenedione (139%). In the presence of 1 ng FSH/ml, the inhibitory effect of FRP on oestradiol secretion was enhanced (74%), progesterone values were unaffected and secretion of testosterone and androstenedione were reduced by 66% and 53%, respectively. All effects of FRP were fully overcome by 1 micrograms FSH/ml. The incidence of atresia, as defined by granulosa cell pycnosis, was similar in all treatment groups (1-3 of 10 follicles per group). The remaining follicles had intact granulosa cells. However, follicles treated with FRP (1 micrograms/ml) + FSH (1 ng/ml) had pycnotic nuclei in the theca interna cells, in the presence of an intact stratum granulosum. External exposure of follicles to FRP may not reflect physiological conditions since, in vivo, thecal pycnosis is never observed before granulosa cell pycnosis. However, the present results indicate that FRP is potentially capable of altering both follicular morphology and steroidogenesis. We suggest that FSH and FRP interact to affect follicular development.  相似文献   

19.
Ovaries were obtained from naturally cyclic pigs on Days 16-17, 18, 19, 20 and 21 of the oestrous cycle and on the basis of observed follicular characteristics were assigned as representative of the early (Group 1), mid- (Groups 2 and 3) or late (after LH; Group 4) follicular phase. Follicular development in cyclic gilts was compared with that in ovaries obtained from late prepubertal gilts 36 (Group 5) or 72 (Group 6) h after treatment with 750 i.u. PMSG alone, or with a combination of 500 i.u. hCG 72 h after PMSG and slaughter 30-40 h later (Group 7). After dissection of all follicles greater than 2 mm diameter, follicular diameter, follicular fluid volume, follicular fluid concentrations of progesterone, oestradiol and testosterone, and the stage of oocyte maturation were determined. Combined PMSG/hCG treatment of immature gilts resulted in a pattern of follicular development different from that in naturally cyclic gilts during the follicular phase. Overall exogenous gonadotrophin treatment also increased (P less than 0.001) the variability in follicular diameter and fluid volume. Comparisons between appropriate groups also established differences in the variability of both morphological (diameter and volume, Group 1 vs Group 5; P less than 0.05) and biochemical development (follicular fluid oestradiol, Group 3 vs Group 6 and Group 4 vs Group 7; both P less than 0.05). Such differences in both morphological and biochemical characteristics between cyclic and PMSG/hCG-treated gilts were particularly evident in the population of larger (greater than 6 mm) follicles. These results indicate that the pattern of follicular development in naturally cyclic and in PMSG/hCG-treated gilts is dissimilar and suggests that the ovaries of gonadotrophin-treated prepubertal gilts are functionally different from the ovaries of mature females.  相似文献   

20.
Granulosa cells from diethylstilboestrol-treated prepubertal rabbits were cultured for 6 days in M199 with FSH (1-100 ng ml(-1)) in uncoated or fibronectin-coated plates with or without androstenedione to define the time course profile of oestradiol and progesterone secretion, and the possible modulator role of androstenedione and fibronectin during FSH-induced rabbit granulosa cell differentiation. Every 48 h, cultures were photographed and samples of medium were collected and assayed by ELISA for oestradiol and progesterone. FSH increased oestradiol secretion in a dose-dependent manner. Androstenedione augmented FSH-stimulated oestradiol secretion, and led to a decrease in secretion of oestradiol with time in culture. FSH stimulated progesterone secretion in a dose-dependent manner. This was increased by androstenedione with 10 ng FSH ml(-1) (0-96 h) and 1 ng FSH ml(-1) (96-144 h). FSH-stimulated (100 ng ml(-1)) progesterone secretion decreased at 48-96 h. Fibronectin prevented this decrease, without affecting oestradiol or progesterone secretion at other time points. FSH caused cell reaggregation at 48 h. In conclusion, this serum-free culture system is appropriate for the study of mechanisms of rabbit granulosa cell differentiation. FSH induced cytodifferentiation and reaggregation of granulosa cells. Androstenedione appeared to act synergistically with FSH to promote steroidogenesis. Fibronectin sustained progesterone secretion during differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号