首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The maturation of the tRNA 3' end is catalyzed by a tRNA 3' processing endoribonuclease named tRNase Z (RNase Z or 3'-tRNase) in eukaryotes, Archaea, and some bacteria. The tRNase Z generally cuts the 3' extra sequence from the precursor tRNA after the discriminator nucleotide. In contrast, Thermotoga maritima tRNase Z cleaves the precursor tRNA precisely after the CCA sequence. In this study, we determined the crystal structure of T. maritima tRNase Z at 2.6-A resolution. The tRNase Z has a four-layer alphabeta/betaalpha sandwich fold, which is classified as a metallo-beta-lactamase fold, and forms a dimer. The active site is located at one edge of the beta-sandwich and is composed of conserved motifs. Based on the structure, we constructed a docking model with the tRNAs that suggests how tRNase Z may recognize the substrate tRNAs.  相似文献   

2.
The large-scale production of oligosaccharides is a daunting task, hampering the study of the role of glycans in vivo and the testing of the efficacy of novel glycan-based drugs. Glycosynthases, mutated glycosidases that synthesize oligosaccharides in high yields, are becoming important chemo-enzymatic tools for the production of oligosaccharides. However, while β-glycosynthase can be produced with a rather well-established technology, examples of α-glycosynthases are thus far limited only to enzymes from glycoside hydrolase 29 (GH29), GH31 and GH95 families. α-L-Fucosynthases from GH29 use convenient glycosyl azide derivatives as a strategic alternative to glycosyl fluoride donors. However, the general applicability of this method to other α-glycosynthases is not trivial and remains to be confirmed. Here, β-D-galactopyranosyl azide was converted to α-galacto-oligosaccharides with good yields and high regioselectivity, catalyzed by a novel α-galactosynthase based on the GH36 α-galactosidase from the hyperthermophilic bacterium Thermotoga maritima. These results open a new avenue to the practical synthesis of biologically interesting α-galacto-oligosaccharides and demonstrate more widespread use of β-glycosyl-azide as donors, confirming their utility to expand the repertoire of glycosynthases.  相似文献   

3.
4.
5.
ABSTRACT

The orientation of the three domains in the bifunctional aspartate kinase-homoserine dehydrogenase (AK-HseDH) homologue found in Thermotoga maritima totally differs from those observed in previously known AK-HseDHs; the domains line up in the order HseDH, AK, and regulatory domain. In the present study, the enzyme produced in Escherichia coli was characterized. The enzyme exhibited substantial activities of both AK and HseDH. L-Threonine inhibits AK activity in a cooperative manner, similar to that of Arabidopsis thaliana AK-HseDH. However, the concentration required to inhibit the activity was much lower (K0.5 = 37 μM) than that needed to inhibit the A. thaliana enzyme (K0.5 = 500 μM). In contrast to A. thaliana AK-HseDH, Hse oxidation of the T. maritima enzyme was almost impervious to inhibition by L-threonine. Amino acid sequence comparison indicates that the distinctive sequence of the regulatory domain in T. maritima AK-HseDH is likely responsible for the unique sensitivity to L-threonine.

Abbreviations: AK: aspartate kinase; HseDH: homoserine dehydrogenase; AK–HseDH: bifunctional aspartate kinase–homoserine dehydrogenase; AsaDH: aspartate–β–semialdehyde dehydrogenase; ACT: aspartate kinases (A), chorismate mutases (C), and prephenate dehydrogenases (TyrA, T).  相似文献   

6.
The molecular structure of the ATP phosphoribosyl transferase from the hyperthermophile Thermotoga maritima is composed of a 220 kDa hetero-octameric complex comprising four catalytic subunits (HisGS) and four regulatory subunits (HisZ). Steady-state kinetics indicate that only the complete octameric complex is active and non-competitively inhibited by the pathway product histidine. The rationale for these findings is provided by the crystal structure revealing a total of eight histidine binding sites that are located within each of the four HisGS-HisZ subunit interfaces formed by the ATP phosphoribosyl transferase complex. While the structure of the catalytic HisGS subunit is related to the catalytic domain of another family of (HisGL)2 ATP phosphoribosyl transferases that is functional in the absence of additional regulatory subunits, the structure of the regulatory HisZ subunit is distantly related to class II aminoacyl-tRNA synthetases. However, neither the mode of the oligomeric subunit arrangement nor the type of histidine binding pockets is found in these structural relatives. Common ancestry of the regulatory HisZ subunit and class II aminoacyl-tRNA synthetase may reflect the balanced need of regulated amounts of a cognate amino acid (histidine) in the translation apparatus, ultimately linking amino acid biosynthesis and protein biosynthesis in terms of function, structure and evolution.  相似文献   

7.
Zein F  Zhang Y  Kang YN  Burns K  Begley TP  Ealick SE 《Biochemistry》2006,45(49):14609-14620
Pyridoxal 5'-phosphate (PLP) is the biologically active form of vitamin B6 and is an important cofactor for several of the enzymes involved in the metabolism of amine-containing natural products such as amino acids and amino sugars. The PLP synthase holoenzyme consists of two subunits: YaaD catalyzes the condensation of ribulose 5-phosphate, glyceraldehyde-3-phosphate, and ammonia, and YaaE catalyzes the production of ammonia from glutamine. Here we describe the structure of the PLP synthase complex (YaaD-YaaE) from Thermotoga maritima at 2.9 A resolution. This complex consists of a core of 12 YaaD monomers with 12 noninteracting YaaE monomers attached to the core. Compared with the previously published structure of PdxS (a YaaD ortholog in Geobacillus stearothermophilus), the N-terminus (1-18), which includes helix alpha0, the beta2-alpha2 loop (46-56), which includes new helix alpha2a, and the C-terminus (270-280) of YaaD are ordered in the complex but disordered in PdxS. A ribulose 5-phosphate is bound to YaaD via an imine with Lys82. Previous studies have demonstrated a similar imine at Lys149 and not at Lys81 (equivalent to Lys150 and Lys82 in T. maritima) for the Bacillus subtilis enzyme suggesting the possibility that two separate sites on YaaD are involved in PLP formation. A phosphate from the crystallization solution is found bound to YaaD and also serves as a marker for a possible second active site. An ammonia channel that connects the active site of YaaE with the ribulose 5-phosphate binding site was identified. This channel is similar to one found in imidazole glycerol phosphate synthase; however, when the beta-barrels of the two complexes are superimposed, the glutaminase domains are rotated by about 180 degrees with respect to each other.  相似文献   

8.
A novel mechanism for acetylcholine to generate diacylglycerol in brain   总被引:4,自引:0,他引:4  
The classical scheme involving inositol phospholipid breakdown by phospholipase C as the sole source of diacylglycerol (DAG) has recently been challenged by evidence that phosphatidylcholine (PC) is an alternative source. In synaptic membranes of canine cerebral cortex, cholinergic agonists caused rapid accumulation of [3H]phosphatidic acid (PA) from [3H]PC within 15 s, whereas [3H]DAG formation showed a transient lag period before becoming elevated and then exceeding the amount of [3H]PA. Additional evidence shows that DAG is produced from PC by the action of phospholipase D to yield PA, which is further dephosphorylated to DAG by PA phosphatase. Our results indicate that this muscarinic acetylcholine receptor-regulated PC phospholipase D-PA phosphatase pathway may be a novel mechanism in cell signal transduction processes for activation of protein kinase C in brain.  相似文献   

9.
Helical histidine phosphotransferase (HPt) domains play a central role in many aspects of bacterial signal transduction. The 0.98 A resolution crystallographic structure of the amino-terminal HPt domain (P1) from the chemotaxis kinase CheA of Thermotoga maritima reveals a remarkable degree of structural heterogeneity within a four-helix bundle. Two of the four helices have alternate main-chain conformations that differ by a 1.3-1.7A shift along the bundle axis. These dual conformers were only resolved with atomic resolution diffraction data and their inclusion significantly improved refinement statistics. Neither conformer optimizes packing within the helical core, consistent with their nearly equal refined occupancies. Altered hydrogen bonding within an inter-helical loop may facilitate transition between conformers. Two discrete structural states rather than a continuum of closely related conformations indicates an energetic barrier to conversion between conformers in the crystal at 100K, although many more states are expected in solution at physiological temperatures. Anisotropic atomic thermal B factors within the two conformers indicate modest overall atomic displacement that is largest perpendicular to the helical bundle and not along the direction of apparent motion. Despite the conformational heterogeneity of P1 in the crystal at low temperature, the protein displays high thermal stability in solution (T(m)=100 degrees C). Addition of a variable C-terminal region that corresponds to a mobile helix in other CheA structures significantly narrows the temperature width of the unfolding transition and may affect domain dynamics. Helices that compose the kinase recognition site and contain the phospho-accepting His45 do not have alternate conformations. In this region, atomic resolution provides detailed structural parameters for a conserved hydrogen-bonding network that tunes the reactivity of His45. A neighboring glutamate (E67), essential for phosphotransferase activity hydrogen bonds directly to His45 N(delta1). E67 generates a negative electrostatic surface surrounding the reactive His that is conserved by most CheA kinases, but absent in related phosphotransferase proteins. The P1 conformations that we observe are likely relevant to other helical or coiled-coil proteins and may be important for generating switches in signaling processes.  相似文献   

10.
The wealth of genomic data available for many organisms has set the stage for the next phase of structure-function analysis. High-throughput structural genomics is currently the method of choice for rapid analysis of protein structure-function relationships on a proteome-wide basis. The Joint Center for Structural Genomics (JCSG), established in 2000 under the NIH/NIGMS Protein Structure Initiative, has developed and implemented an integrated high-throughput structure pipeline and applied it in a 2-tiered approach to mining the proteome of the thermophilic bacterium Thermotoga maritima. In the first tier, the successful application of this integrated pipeline has resulted in the cloning and expression of 73% of the T. maritima proteome (1376 out of 1877 predicted genes), and has identified 465 proteins which produced crystal hits. These 465 proteins were compared with existing structural information and a subset of 269 targets were selected to process towards structure determination in a second tier effort. To date, the JCSG pipeline applied to the Thermotoga maritima proteome has resulted in 55 new structures and has identified 6 novel folds and continues to identify structures with novel features.  相似文献   

11.
12.
The cellular localization and processing of the endo-xylanases (1,4-beta-D-xylan-xylanohydrolase; EC 3.2.1.8) of the hyperthermophile Thermotoga maritima were investigated, in particular with respect to the unusual outer membrane ("toga") of this gram-negative bacterium. XynB (40 kDa) was detected in the periplasmic fraction of T. maritima cells and in the culture supernatant. XynA (120 kDa) was partially released to the surrounding medium, but most XynA remained cell associated. Immunogold labeling of thin sections revealed that cell-bound XynA was localized mainly in the outer membranes of T. maritima cells. Amino-terminal sequencing of purified membrane-bound XynA revealed processing of the signal peptide after the eighth residue, thereby leaving the hydrophobic core of the signal peptide attached to the enzyme. This mode of processing is reminiscent of type IV prepilin signal peptide cleavage. Removal of the entire XynA signal peptide was necessary for release from the cell because enzyme purified from the culture supernatant lacked 44 residues at the N terminus, including the hydrophobic part of the signal peptide. We conclude that toga association of XynA is mediated by residues 9 to 44 of the signal peptide. The biochemical and electron microscopic localization studies together with the amino-terminal processing data indicate that XynA is held at the cell surface of T. maritima via a hydrophobic peptide anchor, which is highly unusual for an outer membrane protein.  相似文献   

13.
Highlights? Thermotoga maritima NusG shows a dynamic intramolecular NTD-CTD interaction ? The NTD-CTD interaction hides the binding surfaces for RNA polymerase, S10, and Rho ? Domain interaction contributes to thermostability ? Thermotoga maritima NusG does not complement a NusG-deficient E. coli strain  相似文献   

14.
We report herein the NMR structure of Tm0979, a structural proteomics target from Thermotoga maritima. The Tm0979 fold consists of four beta/alpha units, which form a central parallel beta-sheet with strand order 1234. The first three helices pack toward one face of the sheet and the fourth helix packs against the other face. The protein forms a dimer by adjacent parallel packing of the fourth helices sandwiched between the two beta-sheets. This fold is very interesting from several points of view. First, it represents the first structure determination for the DsrH family of conserved hypothetical proteins, which are involved in oxidation of intracellular sulfur but have no defined molecular function. Based on structure and sequence analysis, possible functions are discussed. Second, the fold of Tm0979 most closely resembles YchN-like folds; however the proteins that adopt these folds differ in secondary structural elements and quaternary structure. Comparison of these proteins provides insight into possible mechanisms of evolution of quaternary structure through a simple mechanism of hydrophobicity-changing mutations of one or two residues. Third, the Tm0979 fold is found to be similar to flavodoxin-like folds and beta/alpha barrel proteins, and may provide a link between these very abundant folds and putative ancestral half-barrel proteins.  相似文献   

15.
Two-component signal transduction systems, comprised of histidine kinase and its cognate response regulator, are the predominant mechanism by which microorganisms sense and respond to changes in many different environmental conditions. Different Thermotoga maritima histidine kinases have been used as prototypes; among them, the orphan TM0853 has been presented as a structural model of class I histidine kinases. We used phosphotransfer assays to identify TM0468 as the partner response regulator of TM0853. Since full-length TM0853 can be produced as a soluble protein in Escherichia coli, it was used to analyze the union stoichiometry in an intact two-component system for the first time. We demonstrate that TM0853, or its cytoplasmic catalytic portion, form a 1:1 complex with TM0468 with native PAGE. The complex band is unique, even in the presence of an excess of each individual protein, indicating that the union is cooperative. We corroborated these findings by using ultracentrifugation assays. Therefore, we propose that the general mode of interaction in an orthodox two-component system may be the stoichiometric and cooperative complex between a dimeric histidine kinase and two response regulators. Finally, we have been able to produce protein crystals of the complex between the cytoplasmic portion of TM0853 and TM0468 that diffract to 2.8 A Bragg spacing.  相似文献   

16.
tRNA preparations from Chlamydomonas and wheat germ contain small amounts of tRNA 5' halves and corresponding 3' halves. Incubation of cell-free extracts from the two sources with [γ-32P]ATP yielded 5'-32P-labeled tRNA 3' halves which were joined to their corresponding 5' counterparts to form mature tRNA containing 2'-phosphomonoester,3', 5'-phosphodiester bonds. tRNA 3' halves labelled with T4 kinase were purified, sequenced and also joined to their 5' counterparts. It is proposed that these tRNA halves may be intermediates of the tRNA splicing process, and that the RNA kinase and ligase activities observed here are part of the tRNA splicing complex.  相似文献   

17.
Reverse gyrase is an ATP-dependent topoisomerase that is unique to hyperthermophilic archaea and eubacteria. The only reverse gyrase structure determined to date has revealed the arrangement of the N-terminal helicase domain and the C-terminal topoisomerase domain that intimately cooperate to generate the unique function of positive DNA supercoiling. Although the structure has elicited hypotheses as to how supercoiling may be achieved, it lacks structural elements important for supercoiling and the molecular mechanism of positive supercoiling is still not clear. We present five structures of authentic Thermotoga maritima reverse gyrase that reveal a first view of two interacting zinc fingers that are crucial for positive DNA supercoiling. The so-called latch domain, which connects the helicase and the topoisomerase domains is required for their functional cooperation and presents a novel fold. Structural comparison defines mobile regions in parts of the helicase domain, including a helical insert and the latch that are likely important for DNA binding during catalysis. We show that the latch, the helical insert and the zinc fingers contribute to the binding of DNA to reverse gyrase and are uniquely placed within the reverse gyrase structure to bind and guide DNA during strand passage. A possible mechanism for positive supercoiling by reverse gyrases is presented.  相似文献   

18.
19.
20.
Jo H  Lee S  Min K  Ban C 《Analytical biochemistry》2012,421(1):313-320
We have designed multiple detection systems for the DNA strand exchange process. Thermostable Thermotoga maritima recombinase A (TmRecA), a core protein in homologous recombination, and DNAzyme, a catalytic DNA that can cleave a specific DNA sequence, are introduced in this work. In a colorimetric method, gold nanoparticles (AuNPs) modified with complementary DNAs (cDNAs) were assembled by annealing. Aggregated AuNPs were then separated irreversibly by TmRecA and DNAzyme, leading to a distinct color change in the particles from purple to red. For the case of fluorometric detection, fluorescein isothiocyanate (FITC)-labeled DNA as a fluorophore and black hole quencher 1 (BHQ1)-labeled DNA as a quencher were used; successful strand exchange was clearly detected by variations in fluorescence intensity. In addition, alterations in the impedance of a gold electrode with immobilized DNA were employed to monitor the regular exchange of DNA strands. All three methods provided sufficient evidence of efficient strand exchange reactions and have great potential for applications in the monitoring of recombination, discovery of new DNAzymes, detection of DNAzymes, and measurement of other protein activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号