首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The oligonucleotides obtained by digestion of tRNA2Leu from cow mammary gland with T1 RNase were separated by micro-column chromatography on DEAE-cellulose in 7 M urea at pH 7,5 and 3,7, and in addition on Dowex 1 x 2. The digest consisted of 18 individual components, the larger being a tridecanucleotide. Micro-column chromatography of nucleotides on anion-exchanger AG 1 x 8 and nucleosides on Aminex A-6 was used to determine the base composition of the oligonucleotides. The oligonucleotide structure was established using terminal analysis, hydrolysis by pancreatic and U2-RNases and incomplete hydrolysis by snake venom phosphodiesterases. The total primary structure of tRNA2Leu was derived from overlapping fragments isolated after its complete hydrolysis with pancreatic and T1 RNase and using data obtained on S1-nuclease digestion of tRNA. The methods of rapid gel-sequencing were also employed for checking the nucleotide sequence of tRNA2Leu from cow mammary gland.  相似文献   

2.
tRNA-Leu 1, tRNA-Leu 2 and tRNA-Leu 4 were isolated from a lactating cow mammary gland by combination of several chromatographic methods. Chromatography on a Sepharose 4B column with a reverse salt gradient was used as the first step. Individual tRNAsLeu were further purified by RPC-5 column chromatography at pH 4.5 and 7.5. For isolation of tRNA-Leu 2 a RPC-5 column was additionally used at pH 3.3 in the presence of 7 M urea. Using micro-column chromatography of Ti-RNAases digests, it was demonstrated that tRNA-Leu 1 and tRNA-Leu 2+ are similar in their primary structure and differ essentially from tRNA-Leu 4.  相似文献   

3.
RNA labeled with [methyl-3H] methionine and [14C]uridine was isolated from the cytoplasm of adenovirus-infected cells and purified by poly(U)-Sepharose chromatography and hybridization to filters containing immobilized adeovirus DNA. Analysis by dimethyl sulfoxide-sucrose gradient sedimentation suggested that the major mRNA species were methylated. 7-Methylguanosine was identified at the 5'-terminus of the advenovirus-specific RNA and could be removed by periodate oxidation and beta-elimination. Structures of the type m7G(5')ppp(5')Nm containing the unusual nucleoside N6, O2'-dimethyladenosine, and smaller amounts of 2'-O-methyladenosine were isolated by DEAE-cellulose chromatography after P1 nuclease digestion of the RNA. Evidence for some 5'-terminal sequences, m7G(5')ppp(5')m6AmpNm, with additional 2'-O-methylribonucleosides was also obtained. A base-methylated nucleoside, N6-methyladenosine, is located within the RNA chain and is released as a mononucleotide by alkali hydrolysis.  相似文献   

4.
Sequence analysis of 5'-[32P] labeled tRNA and eukaryotic mRNA using an adaptation of a method recently described by Donis-Keller, Maxam and Gilbert for mapping guanines, adenines and pyrimidines from the 5'-end of an RNA is described. In addition, a technique utilizing two-dimensional polyacrylamide gel electrophoresis for identification of pyrimidines within a sequence is described. 5'-[32P] Labeled rabbit beta-globin mRNA and N. crassa mitochondrial initiator tRNA were partially digested with T1- RNase for cleavage at G residues, with U2-RNase for cleavage at A residues, with an extracellular RNase from B. cereus for cleavage at pyrimidine residues and with T2-RNase or with alkali for cleavage at all four residues. The 5'-[32P] labeled partial digestion products were separated according to their size, by electrophoresis in adjacent lanes of a polyacrylamide slab gel and the location of G's, A's and of pyrimidines extending 60-80 nucleotides from the 5'-end of the RNA determined. Two-dimensional polyacrylamide gel electrophoresis was used to separate the 5'-[32P] labeled fragments present in partial alkali digests of a 5'-[32P] labeled mRNA. The mobility shifts corresponding to the difference of a C residue were distinct from those corresponding to a U residue and this formed the basis of a method for distinguishing between the pyrimidines.  相似文献   

5.
The m7(G(5')pppN-pyrophosphatase activity previously detected in HeLa cells has been further characterized. Results from DEAE-cellulose column chromatography and polyacrylamide gel electrophoresis under nondenaturing conditions revealed only one enzyme activity in HeLa cell extracts which was capable of selectively hydrolyzing m7G(5')pppN to yield m7pG + ppN (where N = 2'-O-methylated or unmethylated ribonucleosides or oligonucleotides of up to 8 to 10 nucleosides in length). The majority (approximately 95%) of this activity was found in the cytoplasmic extract but appeared not to be associated with the lysosomal fraction. m7G(5')pppG was hydrolyzed by the partially purified enzyme in the absence of divalent cations at a pH optimum of 7.5 and a temperature optimum of 45 degrees, with a Michaelis constant (Km) of 1.7 micronM. Sedimentation analysis and gel filtration showed the molecular weight of the enzyme as approximately 81,000. Inhibition studies testing the effect of a number of prospective substrates on the rate of m7G(5')pppG hydrolysis have confirmed the importance of the methyl moiety at the N7 position of guanosine for enzyme-substrate interaction. Furthermore, the trimethylated guanosine-containing 5'-terminal structure derived from U-2 RNA was found not to serve as substrate, and 7-methylinosine, unlike 7-methylguanosine, was not an effective inhibitor of m7G(5')pppG hydrolysis. Thus, the 2-amino group of the 7-methylguanosine portion of m7G(5')pppN is also important for substrate interaction with this specific pyrophosphatase.  相似文献   

6.
One of the two major species of brewer's yeast tRNA threonine (tRNA Thr 1) has been purified by countercurrent distribution followed by two chromatographic steps (respectively on a Sepharose 4B and a BD-cellulose column). Complete digestion with pancreatic and T1 RNases and a partial hydrolysis with T1 RNase followed by the isolation and determination of the nucleotide sequences of the resulting fragments permitted the derivation of its primary structure. tRNA Thr 1 is in fact a mixture of two subspecies differing only by a A49-U65 base pair in 50 per cent of the molecules which is replaced by a G49-C65 pair in the other 50 per cent. These two subspecies consist of 76 nucleotide residues including 14 minor nucleotides. They show a characteristic m3C at the 3'terminal end of the anticodon loop, an anticodon I-G-U followed by t6A and C48, uncompletely modified (50 per cent) to m5C within the 5 nucleotides long extra-arm. The minor nucleotides m2G m2 2G are located at positions in which they generally occur in the tRNA structures as does m1A within the T-psi-C loop.  相似文献   

7.
A second major species of leucine tRNA, tRNA Leu UAG (formerly designated tRNA Leu CUA) was purified from baker's yeast in a three-step procedure entailing BD-cellulose chromatography in the presence and absence of Mg2+ and Sephadex G-100 gel filtration. Results of aminoacylation and partial RNase T1 digestion experiments showed that this tRNA retains a native conformation under conditions that denature yeast tRNA Leu m5CAA (tRNA3 Leu). The primary structure of baker's yeast tRNA Leu UAG was elucidated by application of sensitive radioactive isotope derivative ("postlabeling") methods. Complete RNase T1 and A and partial RNase U2 fragments, prepared from non-radioactive tRNA and 5'-half and 3'-half molecules, were separated by two-dimensional polyethyleneimine-cellulose anion-exchange thin-layer chromatography and isolated by a novel micropreparative procedure affording high yields of these compounds in sufficient purity for subsequent tritium derivative analysis. Base composition and sequence of oligonucleotides were analyzed by tritium derivative methods. Molar ratios of the fragments were determined from the radioactivity of 3H-labeled nucleoside trialcohols in combination with base analysis. 2'-O-Methylated guanosine was characterized using the [gamma-32P]ATP/polynucleotide kinase reaction. The analysis of classical complete and partial RNase digests by the tritium derivative methods yielded the complete nucleotide sequence of the tRNA. A total of about 20 A260 units of the RNA was used for analysis, i.e. considerably less material than required for conventional spectrophotometric analysis. A different sequencing approach, consisting of a combination of "readout sequencing" with tritium sequencing of complete RNase T1 and A fragments, was applied to the 3'-half molecule. The 3'-half molecule was labeled with 32P at its 5' terminus, partially degraded with RNase T1, U2, and Phy1 and with alkali, and subjected to polyacrylamide gel electrophoresis. The sequence was read off the gel on the basis of cleavage patterns and size of the fragments. While the readout procedure provided only the positions of A, U, C, and G residues in the chain, additional information from tritium derivative analysis was utilized to define the positions of the modified nucleosides. The readout sequencing procedure was found to require less than 0.01 A260 unit of RNA and the analysis of the complete fragments about 6 A260 units. Interesting structural features of tRNA Leu UAG are (a) the location of unique, leucine tRNA iso-acceptor-specific sequences next to U-8, a constant nucleotide participating in synthetase recognition, (b) the occurrence of 1-methyladenosine in the T loop, a modification not present in the structurally related tRNA Leu m5CAA, and (c) the unusual presence of an unmodified uridine in the first position of the anticodon, which may be related to the unusual coding properties reported for this tRNA.  相似文献   

8.
The previously reported method for the preparation of Kyn 59-RNase T1 and NFK 59-RNase T1 has been improved, and these two proteins have been obtained in high purity. Kyn 59-RNase T1, fully active for the hydrolysis of GpA and GpC, emitted a 35-fold-enhanced fluorescence of kynurenine relative to acetylnurenine amide with an emission maximum at 455 nm upon excitation at 380 nm. The polarity of the environment of Kyn 59 estimated from the emission maximum corresponded to a dielectric constant of 6. Upon excitation at 325 nm, NFK 59-RNase T1, less active than Kyn 59-RNase T1, exhibited a quenched N'-formylkynurenine fluorescence with an emission maximum at 423 nm, from which the value of 12 was obtained as the dielectric constant of the surroundings of residue 59. In both modified proteins, distinct tyrosine fluorescence appeared on excitation at 280 nm. The detection of an energy transfer from tyrosine to residue 59 suggests that the tertiary structure is very similar in Kyn 59-RNase T1 and native RNase T1. With guanidine hydrochloride, Kyn 59-RNase T1 was less stable than the native protein. Carboxymethylation at Glu 58 was shown to stabilize the active site of the modified enzyme. Based on the information collected for Kyn 59-RNase T1, the local environment and possible roles of the sole tryptophan residue in RNase T1 are discussed.  相似文献   

9.
Ribonuclease HI from the psychrotrophic bacterium Shewanella oneidensis MR-1 (So-RNase HI) is much less stable than Escherichia coli RNase HI (Ec-RNase HI) by 22.4 degrees C in T m and 12.5 kJ mol (-1) in Delta G(H 2O), despite their high degrees of structural and functional similarity. To examine whether the stability of So-RNase HI increases to a level similar to that of Ec-RNase HI via introduction of several mutations, the mutations that stabilize So-RNase HI were identified by the suppressor mutation method and combined. So-RNase HI and its variant with a C-terminal four-residue truncation (154-RNase HI) complemented the RNase H-dependent temperature-sensitive (ts) growth phenotype of E. coli strain MIC3001, while 153-RNase HI with a five-residue truncation could not. Analyses of the activity and stability of these truncated proteins suggest that 153-RNase HI is nonfunctional in vivo because of a great decrease in stability. Random mutagenesis of 153-RNase HI using error-prone PCR, followed by screening for the revertants, allowed us to identify six single suppressor mutations that make 153-RNase HI functional in vivo. Four of them markedly increased the stability of the wild-type protein by 3.6-6.7 degrees C in T m and 1.7-5.2 kJ mol (-1) in Delta G(H 2O). The effects of these mutations were nearly additive, and combination of these mutations increased protein stability by 18.7 degrees C in T m and 12.2 kJ mol (-1) in Delta G(H 2O). These results suggest that several residues are not optimal for the stability of So-RNase HI, and their replacement with other residues strikingly increases it to a level similar to that of the mesophilic counterpart.  相似文献   

10.
Endonucleases from Micrococcus luteus that induce single-strand breaks in gamma-irradiated DNA have been separated chromatographycally into two groups. The first group involves two different enzymes: AP-endonuclease II (mol. weight 30 000) and AP, UV-endonuclease I (mol. weight 15 000) that recognize alkali-labile lesions in gamma-irradiated DNA and apurinic sites in DNA heated at 70 degrees C, pH 6.08 AP-endonuclease II in cooperation with DNA polymerase from M. luteus and T4 phage-induced polynucleotide ligase is capable of carrying out in vitro complete excision repair of alkali-labile lesins in gamma-irradiated DNA. The second group involves gamma-endonucleases X and Y that act on alkalistable gamma-ray lesions. gamma-endonucleases X and Y can be separated by chromatography on DEAE-cellulose but possess similar properties. Activity of gamma-endonucleases toward gamma-irradiated DNA is inhibited by only heavily UV-irradiated DNA (15 000 ergs/mm2). The data are consistent with the hypothesis that gamma-endonucleases are specific for thymine glycols (t' and tUV) in UV- and gamma-irradiated DNA.  相似文献   

11.
S1 nuclease hydrolysis and bezoylated naphthoylated DEAE-cellulose (BND-cellulose) chromatography have been used to demonstrate that alkylation of DNA by dimethyl sulfate at neutral pH leads to the production of partially denatured molecules under conditions where no significant depurination occurs. DNA was alkylated with increasing concentrations of the alkylating agent, and subjected to enzymatic degradation and binding to BND cellulose. An increasing degree of DNA hydrolysis and adherence to BND cellulose was seen. On hydroxyapatite chromatography the alkylated DNA still eluted at the position of double-stranded molecules suggesting the presence of partially denatured regions. The presence of salt had a preventive effect on such denaturation.  相似文献   

12.
E. TSAKALIDOU AND G. KALANTZOPOULOS. 1992. An intracellular aminopeptidase from Streptococcus salivarius subsp. thermophilus strain ACA-DC 114, isolated from traditional Greek yoghurt, was purified by chromatography on DEAE-cellulose and Sephadex G-100. The enzyme had a molecular weight of 89 000. It was active over a pH range 4.5-9.5 and had optimum activity on L-lysyl-4-nitroanilide at pH 6.5 and 35°C with K m= 1.80 mmol/l; above 55°C the enzyme activity declined rapidly. The aminopeptidase was capable of degrading substrates by hydrolysis of the N -terminal amino acid; it had very low endopeptidase and no carboxypeptidase activity. The enzyme was strongly inactivated by EDTA. Serine and sulphydryl group reagents had no effect on enzyme activity.  相似文献   

13.
A novel bovine spleen phosphoinositide-specific phospholipase C (PLC) has been identified with respect to immunoreactivity with four independent antibodies against each of the PLC isoenzymes, and purified to near homogeneity by sequential column chromatography. Spleen contains three of the isoenzymes: two different gamma-types [gamma 1 and gamma 2, originally named as PLC-gamma [Rhee, Suh, Ryu & Lee (1989) Science 244, 546-550] and PLC-IV [Emori, Homma, Sorimachi, Kawasaki, Nakanishi, Suzuki & Takenawa (1989) J. Biol. Chem. 264, 21885-21890] respectively] and delta-type of the enzyme, but PLC-gamma 1 is separated from the PLC-gamma 2 pool by the first DEAE-cellulose column chromatography. Subsequently, PLC-delta is dissociated on the third heparin-Sepharose column chromatography. The purified enzyme has a molecular mass of 145 kDa on SDS/polyacrylamide-gel electrophoresis and a specific activity of 12.8 mumol/min per mg with phosphatidylinositol 4,5-bisphosphate as substrate. This enzyme activity is dependent on Ca2+ for hydrolysis of all these phosphoinositides. None of the other phospholipids examined could be its substrate at any concentration of Ca2+. The optimal pH of the enzyme is slightly acidic (pH 5.0-6.5).  相似文献   

14.
15.
Feulgen DNA hydrolysis curves derived from cytofluorometry at various temperatures and HCl concentrations were computer analyzed with least squares fit to Bateman function. By comparing the depurination (k1) and depolymerization (k2) rate constants at different hydrolysis conditions, it was found that the two parameters of temperature and HCl concentration can be expressed as k = AN2 X exp (-B/T), where A and B are constants, N is the HCl concentrations, and T is the absolute temperature. From the analysis of Feulgen hydrolysis curves with 2N HCl at various temperatures, it was calculated that A = 5.3590 X 10(14) and B = 12133.543, for k1, and A = 6.2401 X 10(14) and B = 12181.660, for k2 for mouse 4C hepatocytes fixed with absolute methanol. Computer generated theoretical hydrolysis curves using the above k1 and k2 values were compared with experimental curves at various temperatures and HCl-concentrations. The two types of hydrolysis curves coincided with each other when 1-3 N HCl was used at temperatures between 30-40 degrees C. The peak times of hydrolysis curves at different conditions determined by experimental analysis and theoretical estimations also coincided reasonably well with each other. The physico-chemical phenomena underlying the equation designating k1 and k2 values are discussed.  相似文献   

16.
Alginate with long strictly alternating sequences of mannuronic (M) and guluronic (G) acid residues, F(G) = 0.47 and F(GG) = 0.0, was prepared by incubating mannuronan with the recombinant C-5 epimerase AlgE4. By partial acid hydrolysis of this PolyMG alginate at pH values from 2.8 to 4.5 at 95 degrees C, alpha-L-GulpA-(1-->4)-beta-D-ManpA (G-M) linkages were hydrolyzed far faster than beta-D-ManpA-(1-->4)-alpha-L-GulpA (M-G) linkages in the polymer chain. The ratio of the rates (kG-M/kM-G) decreased with increasing pH. The dominant mechanism for hydrolysis of (1-->4)-linked PolyMG in weak acid was thus proved to be an intramolecular catalysis of glycosidic cleavage of the linkages at C-4 by the undissociated carboxyl groups at C-5 in the respective units. The higher degradation rate of G-M than M-G glycosidic linkages in the polymer chain of MG-alginate at pH 3.5 and 95 degrees C was exploited to make oligomers mainly consisting of M on the nonreducing and G on the reducing end and, thus, a majority of oligomers with an even number of residues. The ratio of the rate constants kG-M/kM-G at this pH was 10.7. The MG-hydrolysate was separated by size exclusion chromatography and the MG oligosaccharide fractions analyzed by electrospray ionization-mass spectrometry together with 1H and 13C NMR spectroscopy. Chemical shifts of MG-oligomers (DP2-DP5) were elucidated by 2D 1H and 13C NMR.  相似文献   

17.
Primary and secondary structure of U2 snRNA   总被引:16,自引:5,他引:11       下载免费PDF全文
With the improved rapid sequencing techniques, the earlier sequence of U2 RNA of Novikoff hepatoma (Shibata et al, J. Biol. Chem. 250, 3909-3920, 1975) was reanalyzed and modified. The improved sequence of U2 RNA is 188 (or 189) nucleotides long and is in register with a characterized U2 RNA pseudogene (Denison et al, PNAS 78, 810-814, 1981) except for an 11 nucleotide sequence (nucleotides 147-157) which is absent from the pseudogene. From these results, a secondary structure of U2 RNA is proposed which is supported by the preferred cleavage sites with T1-RNase, RNase A and S1 nuclease. Isolated U2 RNA was cleaved by T1-RNase preferentially at positions 64 and 164, whereas U2 RNA in U2-snRNP was cleaved only at position 64, indicating that position 164 is protected in U2-snRNP. As with U1 RNA (Epstein et al, PNAS 78, 1562-1566, 1981) the 5'-end of isolated U2 RNA was not preferentially cleaved by T1-RNase.  相似文献   

18.
Affinity chromatography with immobilised triazine dyes was used to separate the main enzymes present in the naringinase complex produced by Aspergillus terreus CECT 2663. One alpha-L-rhamnosidase and two beta-D-glucosidases (beta G1 and beta G2) were separated by a simple two-step procedure involving chromatography with Red HE-3B immobilised on Sepharose 4B first at pH 5.5 and then at pH 4.7. Maximum activity of the beta-D-glucosidases was from pH 4 to 6 and at 65 degrees C. Both glucosidases were active on p -nitrophenol glucoside and prunin with respective Km values of 1.9 mm and 1.6 mm for beta G1 and 2.1 mm and 0.25 mm for beta G2. Only beta G1 hydrolysed cellobiose (Km = 5.7 mm).  相似文献   

19.
J Y Le Deaut  M Ledig  P Mandel 《Biochimie》1976,58(9):1017-1029
A method for isolation of a soluble ATPase from rat liver mitochondria after freeze thaw cycling is described. Two enzymatically active fractions were separated by DEAE-cellulose chromatography (ATPase 1 and ATPase 2). ATPase 1 has been purified 300 fold. ATPase 1 was homogenous as judged by polyacrylamide gel electrophoresis. The optimum pH of the enzyme was 5.8-6.0 and the optimum temperature was 45 degrees C. The enzyme follows Michaelis-Menten kinetics: Km (9 X 10(-4) M), Vmax (23,6 mumoles Pi released X min -1 X mg protein -1). The enzyme hydrolysed nucleoside triphosphates, but was inactive upon nucleoside di and monophosphates, glucose 6-phosphate, phosphoserine, pyrophosphate and glycerol 2-phosphate. In contrast to membrane bound ATPase, cations have no effect on the enzyme activity. Nucleoside di and mono phosphates and glycerol 2 phosphate inhibited competitively the enzyme. The enzyme was not affected by oligomycin, but was stimulated by lactate, 2-mercaptoethanol and dithiothreitol.  相似文献   

20.
THE N-ACETYL-β-d-HEXOSAMINIDASES OF CALF AND HUMAN BRAIN   总被引:1,自引:0,他引:1  
Abstract— Multiple forms of calf brain N -acetyl-β-hexosaminidases (β-2-acetamido-2- deoxy- d -glucoside acetamidodeoxyglucohydrolase EC 3.2.1.30) were separated on starch gel electrophoresis at pH 5.8. The organ specific electrophoretic patterns did not depend on the cell fraction studied. Much of the activity is only separated with difficulty from particulate matter. Two major and one minor component were separated on DEAE-cellulose chromatography at pH 5.8. Each component had both N -acetyl-β-galactosaminidase and N -acetyl-β-glucosaminidase activity. The ratio of these two activities was unaffected by the presence of N -ethylmaleimide or dithiothreitol. The forms were also examined by isoelectric focusing when at least four components were recognized: isoelectric at 4.9, 6.0, 6.3 and 6.8. Interconversion of the 4.9 form to that isoelectric at pH 6.0 was noted during vacuum dialysis. Samples from normal human brain and from cases of Tay-Sachs disease were also examined and the results compared.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号