首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 819 毫秒
1.
Activation of a nicotinic acetylcholine receptor.   总被引:7,自引:2,他引:7       下载免费PDF全文
We studied activation of the nicotinic acetylcholine (ACh) receptor on cells of a mouse clonal muscle cell line (BC3H1). We analyzed single-channel currents through outside-out patches elicited with various concentrations of acetylcholine (ACh), carbamylcholine (Carb) and suberyldicholine (Sub). Our goal is to determine a likely reaction scheme for receptor activation by agonist and to determine values of rate constants for transitions in that scheme. Over a wide range of agonist concentrations the open-time duration histograms are not described by single exponential functions, but are well-described by the sum of two exponentials, a brief-duration and a long-duration component. At high concentration, channel openings occur in groups and these groups contain an excess number of brief openings. We conclude that there are two open states of the ACh receptor with different mean open times and that a single receptor may open to either open state. The concentration dependence of the numbers of brief and long openings indicates that brief openings do not result from the opening of channels of receptors which have only one agonist molecule bound to them. Closed-time duration histograms exhibit a major brief component at low concentrations. We have used the method proposed by Colquhoun and Sakmann (1981) to analyze these brief closings and to extract estimates for the rates of channel opening (beta) and agonist dissociation (k-2). We find that this estimate of beta does not predict our closed-time histograms at high agonist concentration (ACh: 30-300 microM; Carb: 300-1,000 microM). We conclude that brief closings at low agonist concentrations do not result solely from transitions between the doubly-liganded open and the doubly-liganded closed states. Instead, we postulate the existence of a second closed-channel state coupled to the open state.  相似文献   

2.
The experiments described examine single channel currents recorded through Torpedo acetylcholine receptor channels stably expressed by a mouse fibroblast cell line. Closed-duration histograms were constructed from currents elicited by 0.5-300 microM acetylcholine (ACh). The concentration dependence of closed durations is well described by a four-state linear scheme with the addition of open-channel block by ACh. Analysis of closed durations measured at low concentrations gives estimates of the rate of opening of doubly liganded receptors, beta, the rate of dissociation of ACh from doubly liganded receptors, k-2, and the rate of channel closing, alpha. The rate of ACh dissociation from singly liganded receptors, k-1, is then deduced from closed-duration histograms obtained at intermediate ACh concentrations. With k-1, k-2 and beta determined, the rates of ACh association, k+1 and k+2, are estimated from fitting closed-duration histograms obtained over a range of high ACh concentrations. A complete set of rate constants is presented for three experimental conditions: (a) Ca2(+)-free extracellular solution containing 1 mM free Mg2+ at 22 degrees C, (b) Ca2(+)-free solution at 12 degrees C, and (c) extracellular Ca2+ and Mg2+, both at 0.5 mM, at 22 degrees C. For all three conditions the dissociation constant for the first agonist binding site is approximately 100-fold lower than that for the second site. The different affinities are due primarily to different dissociation rates. Both the association and dissociation rates depend strongly on temperature. At 22 degrees C ACh associates at diffusion-limited rates, whereas at 12 degrees C association is 30- to 60-fold slower. Also slowed at 12 degrees C are beta (4-fold), k-2 (3-fold), k-1 (25-fold), and alpha (15-fold). In contrast to the activation rate constants, those for ACh-induced block decrease only twofold between 22 and 12 degrees C. Changing from a Ca2(+)-free to a Ca2(+)-containing extracellular solution does not affect k+1 and k+2, but increases beta (twofold) and decreases k-2, k-1, and alpha (all twofold). Spectral analysis of single channel currents supports the parameter estimates obtained from fitting the open- and closed-duration histograms, and improves resolution of brief channel blockages produced by ACh.  相似文献   

3.
We have measured the concentration and voltage dependence of block by acetylcholine (ACh) of fetal- and adult-type mouse muscle nicotinic receptors, expressed in a fibroblast cell line. Data, obtained at a transmembrane potential of -60 mV and with ACh concentrations of 1 mM and above, are broadly consistent with the occlusion of an open channel with a single ACh+ ion (simple open channel block). The rate of recovery from block is approximately 40,000s-1 and has only a weak voltage dependence. This is in contrast to the strong voltage dependence observed for the degree of block. Deviations from the predictions of the simple model are seen in data collected at positive transmembrane potentials and at negative potentials for ACh concentrations < 1 mM. Less concentration dependence is observed than expected. Of a number of models tested, we demonstrate that two models incorporating both a high and a low affinity blocking site can predict our data.  相似文献   

4.
Using the outside-out patch clamp recording technique together with a rapid solution exchange system, we measured ionic currents through nicotinic acetylcholine (ACh) receptor channels from BC3H-1 cells in response to rapid applications of 0.3-1,000 microM ACh. We used nonstationary fluctuation analysis of ensembles of responses to deduce the number of channels in the patch, the maximum open channel probability as a function of ACh concentration and the time course of a fast desensitization process. We found that: (a) Excised patches from BC3H-1 cells typically contain between 50 and 150 functional ACh receptor ion channels. (b) The open channel probability is proportional to [ACh]1.95 at low concentrations of ACh, is half-maximal at 20 microM ACh and saturates above 100 microM ACh. (c) ACh is a very efficacious agonist; 100 microM ACh opens at least 90% of the available channels. This estimate of efficacy is model-independent. (d) The rate of decay of the agonist-induced current is concentration-dependent. In the presence of 100 microM ACh the current decays with a time constant of 50-100 ms. It decays more slowly in the presence of lower concentrations of agonist but is relatively insensitive to voltage.  相似文献   

5.
The nicotinic acetylcholine (ACh) receptor is responsible for rapid conversion of chemical signals to electrical signals at the neuromuscular junction. Because the receptor and its ion channel are components of a single transmembrane protein, the time between ACh binding and channel opening can be minimized. To determine just how quickly the channel opens, we made rapid (100-400 microseconds) applications of 0.1-10 mM ACh to outside-out, multichannel membrane patches from BC3H-1 cells, while measuring the onset of current flow through the channels at 11 degrees C. Onset time is steeply dependent upon ACh concentration when channel activation is limited by binding of ACh (0.1-1 mM). At +50 mV, the 20-80% onset time reaches a plateau near 110 microseconds above 5 mM ACh as channel opening becomes rate limiting. Thus, we calculate the opening rate, beta = 12/ms, without reference to specific channel activation schemes. At -50 mV, the combination of a rapid, voltage-dependent block of channels by ACh with a finite solution exchange time distorts onset. To determine opening rate at -50 mV, we determine the kinetic parameters of block from "steady-state" current and noise analyses, assume a sequential model of channel activation/block, and numerically simulate current responses to rapid perfusion of ACh. Using this approach, we find beta = 15/ms. In contrast to the channel closing rate, the opening rate is relatively insensitive to voltage.  相似文献   

6.
The effects of the acetylcholinesterase inhibitors physostigmine and tacrine on alpha4beta2 and alpha4beta4 subtypes of neuronal nicotinic acetylcholine (ACh) receptors, expressed in Xenopus laevis oocytes, have been investigated. In voltage-clamp experiments low concentrations of physostigmine and tacrine potentiate ion currents induced by low concentrations of ACh, whereas at high concentrations they inhibit ACh-induced ion currents. These dual effects result in bell-shaped concentration-effect curves. Physostigmine and tacrine, by themselves, do not act as nicotinic receptor againsts. The larger potentiation is observed with 10 microM: physostigmine on alpha4beta4 nicotinic receptors and amounts to 70% at 1 microM: ACh. The mechanism underlying the effects of physostigmine on alpha4beta4 ACh receptors has been investigated in detail. Potentiation of ACh-induced ion current by low concentrations of physostigmine is surmounted at elevated concentrations of ACh, indicating that this is a competitive effect. Conversely, inhibition of ACh-induced ion current by high concentrations of physostigmine is not surmounted at high concentrations of ACh, and this effect appears mainly due to noncompetitive, voltage-dependent ion channel block. Radioligand binding experiments demonstrating displacement of the nicotinic receptor agonist (125)I-epibatidine from its recognition sites on alpha4beta4 ACh receptors by physostigmine confirm that physostigmine is a competitive ligand at these receptors. A two-site equilibrium receptor occupation model, combined with noncompetitive ion channel block, accounts for the dual effects of physostigmine and tacrine on ACh-induced ion currents. It is concluded that these acetylcholinesterase-inhibiting drugs interact with the ACh recognition sites and are coagonists of ACh on alpha4-containing nicotinic ACh receptors.  相似文献   

7.
We describe the functional consequences of mutations in the linker between the second and third transmembrane segments (M2-M3L) of muscle acetylcholine receptors at the single-channel level. Hydrophobic mutations (Ile, Cys, and Phe) placed near the middle of the linker of the alpha subunit (alphaS269) prolong apparent openings elicited by low concentrations of acetylcholine (ACh), whereas hydrophilic mutations (Asp, Lys, and Gln) are without effect. Because the gating kinetics of the alphaS269I receptor (a congenital myasthenic syndrome mutant) in the presence of ACh are too fast, choline was used as the agonist. This revealed an approximately 92-fold increased gating equilibrium constant, which is consistent with an approximately 10-fold decreased EC(50) in the presence of ACh. With choline, this mutation accelerates channel opening approximately 28-fold, slows channel closing approximately 3-fold, but does not affect agonist binding to the closed state. These ratios suggest that, with ACh, alphaS269I acetylcholine receptors open at a rate of approximately 1.4 x 10(6) s(-1) and close at a rate of approximately 760 s(-1). These gating rate constants, together with the measured duration of apparent openings at low ACh concentrations, further suggest that ACh dissociates from the diliganded open receptor at a rate of approximately 140 s(-1). Ile mutations at positions flanking alphaS269 impair, rather than enhance, channel gating. Inserting or deleting one residue from this linker in the alpha subunit increased and decreased, respectively, the apparent open time approximately twofold. Contrary to the alphaS269I mutation, Ile mutations at equivalent positions of the beta, straightepsilon, and delta subunits do not affect apparent open-channel lifetimes. However, in beta and straightepsilon, shifting the mutation one residue to the NH(2)-terminal end enhances channel gating. The overall results indicate that this linker is a control element whose hydrophobicity determines channel gating in a position- and subunit-dependent manner. Characterization of the transition state of the gating reaction suggests that during channel opening the M2-M3L of the alpha subunit moves before the corresponding linkers of the beta and straightepsilon subunits.  相似文献   

8.
C Franke  H Parnas  G Hovav    J Dudel 《Biophysical journal》1993,64(2):339-356
In outside-out patches of mouse-muscle membrane, embryonic-like channels were activated by pulses of acetylcholine (ACh). On increasing the ACh concentration, the rate of desensitization, 1/tau d, increased linearly with the peak open probability, indicating desensitization from the open state. Desensitization had only one time constant tau d at each ACh concentration. Recovery from desensitization was only approximately 10 times slower than desensitization, whereas the probability of steady-state channel opening, declined to < 0.01 with > 10(-6) M ACh. The peak probability of opening in > 10(-4) M ACh pulse was close to 1. A linear reaction scheme was not compatible with these results. The scheme had to be expanded resulting in a circular scheme with two additional ACh binding steps to desensitized channel states. The approximate rate constants of all reaction steps in the circular scheme could be determined using computer simulations. The model predicted that clusters of channel opening had the average duration tau d at the respective ACh concentration. In cell-attached patches on intact muscle fibers, similar average cluster durations were observed at the respective ACh concentration. This indicates that tau d in the intact muscle fibers has similar values as in outside-out patches.  相似文献   

9.
Embryonic muscle cells of the frog Xenopus laevis were isolated and grown in culture and single-channel recordings of potassium inward rectifier and acetylcholine (ACh) receptor currents were obtained from cell-attached membrane patches. Two classes of inward rectifier channels, which differed in conductance, were apparent. With 140 mM potassium chloride in the electrode, one channel class had a conductance of 28.8 ± 3.4 pS (n = 21), and, much more infrequently, a smaller channel class with a conductance of 8.6 ± 3.6 pS (n = 7) was recorded. Both channel classes had relatively long mean channel open times, which decreased with membrane hyperpolarization. The probability of finding a patch of membrane with an inward rectifier channel was high (66%) and many membrane patches contained more than one inward rectifier channel. The open state probability (with no applied potential) was high for both inward rectifier channel classes so that 70% of the time there was a channel open. Seventy-three percent of the membrane patches with ACh receptor channels (n = 11) also had at least one inward rectifier channel present when the patch electrode contained 0.1 μM ACh. Inward rectifier channels were also found at 71% of the sites of high ACh receptor density (n = 14), which were identified with rhodamine-conjugated α-bungarotoxin. The results indicate that the density of inward rectifier channels in this embryonic skeletal muscle membrane was relatively high and includes sites of membrane that have synaptic specializations. © 1996 John Wiley & Sons, Inc.  相似文献   

10.
Acetylcholine (ACh)-receptor ion channels were investigated under the modulatory action of calcium and cyclic AMP in completely isolated Lymnaea stagnalis neurones using the noise analysis technique. Elevation of the intracellular Ca2+ concentration in dialyzed neurones produced a reduction in the amplitude of ACh induced current accompanied by slight decrease in the mean channel open time and a simultaneous 1.5-fold increase in mean channel conductance. Direct introduction of cyclic AMP into neurones or elevation of intracellular cyclic AMP level by application of serotonin or forskolin produced 20-40% reduction in ACh-induced conductance without significant effect on the measured parameters of the ion channels. The inhibitory effects of calcium and cyclic AMP appear to be independent. Our findings indicate that reduction in ACh induced conductance under calcium and cyclic AMP modulation results from an alteration in the channel gating mechanism. Since the efficiency of ion transfer is independent of cyclic AMP, and it even rises with the elevation of calcium concentration, the inhibition of ACh responses may be accounted for by a decrease in the rate constant for channel opening, so that channels activated by acetylcholine remain in a closed state over longer intervals.  相似文献   

11.
The kinetics of acetylcholine (ACh) receptor channels on cultured myotomal muscle cells from Xenopus embryos were studied by analyzing focally recorded membrane currents. The mean open time for receptor channels on embryonic muscle cells grown in dissociated cell cultures showed a time-dependent decrease similar to that seen in vivo. The changes in power density spectra are consistent with the hypothesis that the decrease results from the appearance of a class of ACh receptor with a short mean channel open time (0.7 msec) and a decrease in the proportion of receptors with a long mean channel open time (3 msec). The addition of dissociated neural tube cells to muscle cell cultures resulted in an unexpected increase in mean channel open time for ACh receptors in both synaptic and nonsynaptic regions. These studies demonstrate that ACh receptor function may be altered in cultured muscle cells.  相似文献   

12.
The activation of the nonselective cation channels in mouse pancreatic acinar cells has been assessed at low agonist concentrations using patch-clamp whole cell, cell-attached patch, and isolated inside-out patch recordings. Application of acetylcholine (ACh) (25-1,000 nM) and cholecystokinin (CCK) (2-10 pM) evoked oscillatory responses in both cation and chloride currents measured in whole cell experiments. In cell-attached patch experiments we demonstrate CCK and ACh evoked opening of single 25-pS cation channels in the basolateral membrane. Therefore, at least a component of the whole cell cation current is due to activation of cation channels in the basolateral acinar cell membrane. To further investigate the reported sensitivity of the cation channel to intracellular ATP and calcium we used excised inside-out patches. Micromolar Ca2+ concentrations were required for significant channel activation. Application of ATP and ADP to the intracellular surface of the patch blocked channel opening at concentrations between 0.2 and 4 mM. The nonmetabolizable ATP analogue, 5'-adenylylimidodiphosphate (AMP-PNP, 0.2-2 mM), also effectively blocked channel opening. The subsequent removal of ATP caused a transient increase in channel activity not seen with the removal of ADP or AMP-PNP. Patches isolated into solutions containing 2 mM ATP showed channel activation at micromolar Ca2+ concentrations. Our results show that ATP has two separate effects. The continuous presence of the nucleotide is required for operation of the cation channels and this action seems to depend on ATP hydrolysis. ATP can also close the channel and this effect can be demonstrated in excised inside-out patches when ATP is added to the bath after a period of exposure to an ATP-free solution. This action does not require ATP hydrolysis. Under physiological conditions hormonal stimulation can open the nonselective cation channels and this can be explained by the rise in the intracellular free Ca2+ concentration.  相似文献   

13.
Voltage-clamp experiments have been performed on frog atrial preparations in order to study the mechanism of the inotropic effect of acetylcholine (ACh) at various concentrations. The amplitude of the slow inward current (Is) is reduced even at low ACh concentrations; such low concentrations have little or no effect on potassium permeability. Dose-effect relationships for Is inhibition (Is/Is max) by ACh show a half amplitude dose (K0.5 around 8 X 10(-8) M ACh. The reduction of Is is attributed largely to a decrease of the maximal conductance of the slow channel (gs). Steady-state activation and inactivation parameters are not affected by ACh. Experiments in a Na-free solution (Na replaced by Li ions) or in a Ca-free solution (with EGTA) indicate that the "slow sodium current" is more sensitive to ACh than the "slow Ca current", although these two currents both seem to flow through the slow channel. The decrease of the phasic component of contraction observed in the presence of ACh is very well correlated with the decrease of Is (K0.5 = 8 X 10(-8) M ACh), while the increase of the tonic tension may be related to the outward potassium current induced by high concentrations of ACh. The significant difference between the half amplitude dose (K0.5) observed in the dose effect curves with ACh for Is inhibition (K0.5 = 8 X 10(-8) M) and for ACh-induced extra-current (K0.5 - 10(-6) M) may indicate the presence of two muscarinic receptors.  相似文献   

14.
15.
Guanine nucleotide binding (G) proteins are heterotrimers that couple a wide range of receptors to ionic channels. The coupling may be indirect, via cytoplasmic agents, or direct, as has been shown for two K+ channels and two Ca2+ channels. One example of direct G protein gating is the atrial muscarinic K+ channel K+[ACh], an inwardly rectifying K+ channel with a slope conductance of 40 pS in symmetrical isotonic K+ solutions and a mean open lifetime of 1.4 ms at potentials between -40 and -100 mV. Another is the clonal GH3 muscarinic or somatostatin K+ channel, also inwardly rectifying but with a slope conductance of 55 pS. A G protein, Gk, purified from human red blood cells (hRBC) activates K+ [ACh] channels at subpicomolar concentrations; its alpha subunit is equipotent. Except for being irreversible, their effects on gating precisely mimic physiological gating produced by muscarinic agonists. The alpha k effects are general and are similar in atria from adult guinea pig, neonatal rat, and chick embryo. The hydrophilic beta gamma from transducin has no effect while hydrophobic beta gamma from brain, hRBCs, or retina has effects at nanomolar concentrations which in our hands cannot be dissociated from detergent effects. An anti-alpha k monoclonal antibody blocks muscarinic activation, supporting the concept that the physiological mediator is the alpha subunit not the beta gamma dimer. The techniques of molecular biology are now being used to specify G protein gating. A "bacterial" alpha i-3 expressed in Escherichia coli using a pT7 expression system mimics the gating produced by hRBC alpha k.  相似文献   

16.
Some properties of acetylcholine receptors in human cultured myotubes   总被引:1,自引:0,他引:1  
The distribution and single channel properties of acetylcholine (ACh) receptors in human myotubes grown in tissue culture have been examined. Radioautography of myotubes labelled with [125I]alpha-bungarotoxin showed that ACh receptors are distributed uniformly over the myotube surface at a density of 3.9 +/- 0.5 receptors per square micrometre. Accumulations of ACh receptors (hot spots) were found rarely. The conductance and kinetics of ACh-activated channels were investigated with the patch-clamp technique. Cell-attached membrane patches were used in all experiments. A single channel conductance in the range 40-45 pS was calculated. No sublevels of conductance (substates) of the activated channel were observed. The distribution of channel open-times varied with ACh concentration. With 100 nM ACh, the distribution was best fitted by the sum of two exponentials, whereas with 1 microM ACh a single exponential could be fitted. The mean channel open-time at the myotube resting potential (ca. -70 mV, 22 degrees C) was 8.2 ms. The distribution of channel closed-times was complex at all concentrations of ACh studied (100 nM to 10 microM). With desensitizing doses of ACh (10 microM), channel openings occurred in obvious bursts; each burst usually appeared as part of a 'cluster' of bursts. Both burst duration and mean interval between bursts increased with membrane hyperpolarization. Individual channel open-times and burst durations showed similar voltage dependence (e-fold increase per 80 mV hyperpolarization), whereas both the channel closed-times within a burst and the number of openings per burst were independent of membrane potential.  相似文献   

17.
To test our present quantitative knowledge of nicotinic transmission, we reconstruct the postsynaptic conductance change that results after a presynaptic nerve terminal liberates a quantum of acetylcholine (ACh) into the synaptic cleft. The theory assumes that ACh appears suddenly in the cleft and that is subsequent fate is determined by radial diffusion, by enzymatic hydrolysis, and by binding to receptors. Each receptor has one channel and two ACh binding sites; the channel opens when both sites are occupied and the rate-limiting step id the binding and dissociation of the second ACh molecule. The calculations reproduce the experimentally measured growth phase (200 microseconds), peak number of open channels (2,000), and exponential decay phase. The time constant of the decay phase exceeds the channel duration by approximately equal to 20%. The normal event is highly localized: at the peak, two-thirds of the open channels are within an area of 0.15 micrometer 2. This represents 75% of the available channels within this area. The model also simulates voltage and temperature dependence and effects of inactivating esterase and receptors. The calculations show that in the absence of esterase, transmitter is buffered by binding to receptors and the postsynaptic response can be potentiated.  相似文献   

18.
Large conductance, Ca(2+)- and voltage-activated K(+) (BK) channels are exquisitely regulated to suit their diverse roles in a large variety of physiological processes. BK channels are composed of pore-forming alpha subunits and a family of tissue-specific accessory beta subunits. The smooth muscle-specific beta1 subunit has an essential role in regulating smooth muscle contraction and modulates BK channel steady-state open probability and gating kinetics. Effects of beta1 on channel's gating energetics are not completely understood. One of the difficulties is that it has not yet been possible to measure the effects of beta1 on channel's intrinsic closed-to-open transition (in the absence of voltage sensor activation and Ca(2+) binding) due to the very low open probability in the presence of beta1. In this study, we used a mutation of the alpha subunit (F315Y) that increases channel openings by greater than four orders of magnitude to directly compare channels' intrinsic open probabilities in the presence and absence of the beta1 subunit. Effects of beta1 on steady-state open probabilities of both wild-type alpha and the F315Y mutation were analyzed using the dual allosteric HA model. We found that mouse beta1 has two major effects on channel's gating energetics. beta1 reduces the intrinsic closed-to-open equilibrium that underlies the inhibition of BK channel opening seen in submicromolar Ca(2+). Further, P(O) measurements at limiting slope allow us to infer that beta1 shifts open channel voltage sensor activation to negative membrane potentials, which contributes to enhanced channel opening seen at micromolar Ca(2+) concentrations. Using the F315Y alpha subunit with deletion mutants of beta1, we also demonstrate that the small N- and C-terminal intracellular domains of beta1 play important roles in altering channel's intrinsic opening and voltage sensor activation. In summary, these results demonstrate that beta1 has distinct effects on BK channel intrinsic gating and voltage sensor activation that can be functionally uncoupled by mutations in the intracellular domains.  相似文献   

19.
The properties of single acetylcholine-activated ion channels in developing rat myoblasts and myotubes in tissue culture have been investigated using the gigaohm seal patch clamp technique. Two classes of ACh-activated channels were identified. The major class of channels (accounting for >95% of all channel openings) has a conductance of 35 pS and a mean open time of 15 msec (at room temperature and ?80 mV). The minor class of channels has a larger conductance (55 pS) and a briefer mean open time (2–3 msec). Functional ACh-activated channels are present in undifferentiated mononucleated myoblasts 1–2 days in culture, although the channel density on such cells is low. Over the next week in culture, as the myoblasts fuse to form multinucleate myotubes, there is a marked increase in channel density and an increase in the proportion of large conductance channels. No significant change, however, occurs in channel conductance or open time (within a given class of channels) during this period. At high concentrations of ACh, channels desensitize and channel openings occur in groups, similar to what has been previously described in adult muscle. The rate of channel opening within a group of openings increases with increasing agonist concentration while mean open time is independent of agonist concentration, as expected from simple models of drug action. During a group of openings, the channel is open for half the time (i.e., channel opening rate is equal to channel closing rate) at a concentration of approximately 6 μm ACh.  相似文献   

20.
Substance P (SP) is present in avian sympathetic ganglia and accelerates the decay rate of acetylcholine (ACh)-evoked macroscopic currents in sympathetic neurons. We demonstrate here that SP modulates ACh-elicited single channels in a manner consistent with an enhancement of ACh receptor (AChR) desensitization. Furthermore, since AChR channel function was monitored in cell-attached patches with SP applied to the extra-patch membrane, the peptide must act via a second messenger mechanism. SP specifically decreases the net ACh-activated single-channel current across the patch membrane by decreasing both channel opening frequency and mean open time kinetics. These experiments demonstrate that a peptide can modulate neuronal AChR function by a second messenger mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号