首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Patterns of spread of Bean yellow mosaic virus (necrotic type, BYMV‐N) and Cucumber mosaic virus (CMV) were examined in stands of narrow‐leafed lupin (Lupinus angustifolius) where naturally occurring aphid vectors moved them from external or internal primary virus sources. The lupin stands were: commercial crops near BYMV‐infected clover pasture with or without an intervening non‐host barrier crop; a large rectangular block with BYMV‐N and CMV sources on opposite sides and a narrow, non‐host barrier crop facing the BYMV‐N source; and a plot within which seed‐infected lupin plants acted as internal CMV sources. When BYMV‐N spread into commercial crops in the absence of a non‐host barrier, there was a steep decline in its incidence with distance from the crop edge. However, when a 20 m‐wide perimeter barrier of oats intervened between the two, there was only a shallow decline. When CMV and BYMV‐N spread from opposite directions into a block with a 0.25 m‐wide oat barrier between it and the BYMV‐N source, the BYMV‐N incidence gradient was shallow but in the opposite direction the CMV gradient was steep. When CMV spread from primary sources within a plot, infection was concentrated in large internal patches. Spread of BYMV‐N was more diffuse with more isolated symptomatic plants and small clusters than occurred with CMV, spread of which was more comprehensive, reacting the near monocyclic and polycyclic patterns of spread with BYMV‐N with CMV respectively. Spread of both viruses was greater along than across rows, especially with CMV. With BYMV‐N, three different phased cycles of secondary spread were evident in the individual symptomatic plants within the small clusters that formed away from the edges of lupin stands. These findings help validate inclusion of perimeter non‐host barriers within an integrated disease management strategy for BYMV‐N in lupin.  相似文献   

2.
Samples collected in 1994 and 1995 from commercial crops of chickpeas and lentils growing in the agricultural region of south-west Western Australia were tested for infection with alfalfa mosaic (AMV) and cucumber mosaic (CMV) viruses, and for members of the family Potyviridae using enzyme-linked immunosorbent assay (ELISA). In 1994 no virus was detected in the 21 chickpea crops tested but in 1995, out of 42 crops, AMV was found in two and CMV in seven. With lentils, AMV and/or CMV was found in three out of 14 crops in 1994 and 4 out of 13 in 1995, both viruses being detected in two crops in each year. Similar tests on samples from chickpea and lentil crops and plots growing at experimental sites, revealed more frequent infection with both viruses. No potyvirus infection was found in chickpeas or lentils in agricultural areas either in commercial crops or at experimental sites. However, bean yellow mosaic virus (BYMV) was detected along with AMV and CMV in irrigated plots of chickpeas and lentils at a site in Perth. When samples of seed from infected crops or plots of chickpeas and lentils were germinated and leaves or roots of seedlings tested for virus infection by ELISA, AMV and CMV were found to be seed-borne in both while BYMV was seed-borne in lentils. The rates of transmission found through seed of chickpea to seedlings were 0.1–1% with AMV and 0.1–2% with CMV. Seed transmission rates with lentil were 0.1–5% for AMV, 0.1–1% for CMV and 0.8% for BYMV. Individual seed samples of lentil and chickpea sometimes contained both AMV and CMV. With both species, infection with AMV and CMV was sometimes found in commercial seed stocks or seed stocks from multiplication crops of advanced selections nearing release as new cultivars. Seed-borne virus infection has important practical implications, as virus sources can be re-introduced every year to chickpea and lentil crops or plots through sowing infected seed stocks leading to spread of infection by aphid vectors, losses in grain yield and further contamination of seed stocks.  相似文献   

3.
Two field experiments examined the effect of straw spread on the soil surface on the incidence of bean yellow mosaic potyvirus (BYMV) in plots of narrow-leafed lupin (Lupinus angustifolius) sown at narrow (17.5 cm) vs wide (35 cm) row spacing and low (25–30 kg/ha) vs medium (50–60 kg/ha) seeding rates. Virus ingress was by vector aphids flying from adjacent pastures dominated by subterranean clover. In Expt 1, in which BYMV infection was extensive, straw greatly decreased the rate and amount of virus spread regardless of row spacing or plant density, decreasing infection more than 70% by the final assessment date. This effect of straw was attributed to decreased landing rates of incoming vector alates. In the plots without added straw, narrow row spacing decreased BYMV % infection by 38% by the last assessment date. Sowing at the medium seeding rate also decreased infection. The effect of wide row spacing seemed due to delayed canopy closure between rows which is likely to have increased the landing of aphids while the effect of medium seeding rate was attributed partly to the dilution effect of greater plant numbers and partly to the effects of partial canopy development in decreasing landing rates. In Expt 2, in which the incidence of BYMV infection was low, added straw again decreased BYMV spread, but by only 25–27% at final assessment; there were no effects of row spacing or seeding rate. In both experiments, an additional “reference” treatment was included which had a high (90–100 kg/ha) seeding rate, narrow rows and no straw. The dense canopy it developed also decreased BYMV incidence but less than in the plots with added straw in Expt 1. In Expt 1, adding straw and the resulting decrease in plants killed by BYMV, were associated with an overall increase in lupin grain yield of 20%. The greater plant densities resulting from the medium seeding rate also increased grain yield but row spacing did not affect it significantly. These results indicate that retaining stubble on the soil surface at seeding will assist in management of BYMV infection in lupin crops but that wide row spacing in the absence of retained stubble is undesirable.  相似文献   

4.
Two viruses occur widely in lupins in Britain. Alfalfa mosaic virus (AMV), of which two strains were isolated, was found mainly in named Russell varieties. Lupin mottle virus (LMV), a previously undescribed strain of the bean yellow mosaic virus (BYMV) common pea mosaic virus (CPMV) complex, was found more commonly in seedling lupins. Cucumber mosaic virus (CMV) was isolated once. The AMV strains were differentiated by their reaction in Phaseolus vulgaris; they were serologically closely related. Both AMV and LMV were aphid transmitted but not transmitted in lupin seed. LMV was distantly serologically related to both BYMV and CPMV. It cross-protected against BYMV but not against CPMV and it differed from both these viruses in some host reactions. The CMV isolate from lupins was similar to type CMV. It was transmitted both mechanically and by aphid, easily from cucumber to cucumber, but with difficulty from cucumber to lupin.  相似文献   

5.
In studies of virus control measures, field experiments in 1987–1991 investigated the effects of cereal and fallow borders, admixture with cereals and plant density on spread of bean yellow mosaic potyvirus (BYMV) from pastures dominated by subterranean clover (Trifolium subterraneum) into plots of narrow-leafed lupins (Lupinus angustifolius). Virus spread was mainly monocyclic because BYMV killed infected lupin plants and between systemic movement and death there was only a brief period for BYMV acquisition and transmission to other plants by vector aphids. In plots with cereal borders, the rate and extent of BYMV spread into the lupins was decreased; at final assessment the numbers of infected plants were 43–60% less than in plots with fallow borders. Admixture with cereals also decreased the rate and extent of BYMV spread into lupin plots, numbers of infected plants being decreased by 76–96% at the time of final assessment. When lupins were sown at different seeding rates to generate a range of plant densities and weeds were removed, high densities decreased BYMV infection. The higher incidences of BYMV infection in sparse stands were attributed partly to smaller plant numbers and partly to incoming viruliferous vector aphids being more attracted to plants with bare earth around them, than to a plant canopy. BYMV infection decreased grain yield of samples from infected lupin plants by 94–100%. In plots with 34% infection and sparse stands, grain yield was decreased by about one third. Plotted progress curves for the accumulated numbers of alate aphids of the BYMV vector species Acyrthosiphon kondoi and Myzus persicae resembled those for numbers of BYMV infected plants in 1990, but in 1991 only the curve plotted for M. persicae did so. There was a 2 week delay between the curves for aphid numbers and virus counts which reflected the time taken for obvious systemic necrotic symptoms to develop in lupins.  相似文献   

6.
After evaluation of the responses of bean and broad bean common cultivars against an isolate of Cucumber mosaic virus (CMV-K) and Bean yellow mosaic virus (BYMV-K), interaction of isolates was statistically studied on co-infected plants of bean cv. Bountiful and broad bean cv. Lahijan at two trials. Based on viral relative concentration determined by quantitative enzyme-linked immunosorbent assay, BYMV interacts synergistically with CMV in bean at 14 days post inoculation, while in co-infection with BYMV, CMV interacts antagonistically in both host plants at least in one of the two trials. This suggests that CMV/BYMV interaction is dependent on host species and developmental stage of plant. Co-infection like single infection with CMV in bean plants led to significantly decrease in plants’ height and fresh weight than BYMV singly infected and healthy plants, while viral infection of broad bean plants did not significantly affect growth parameters. Decline effect of viral infection (especially co-infection) on chlorophyll and carotenoids value of bean plants was greater than those of broad bean. Viral infection (singly or doubly) caused irregular changes in nutrient elements values of both hosts compared with healthy ones.  相似文献   

7.
In Western Australia, infection with cucumber mosaic virus (CMV) was widespread in all three subspecies of subterranean clover (Trifolium subterraneum) growing in plots belonging to the Australian National Subterranean Clover Improvement Programme. Seed-borne CMV was detected in seed harvested in 1984–1986 of 18/25 cultivars from two collections of registered cultivars; seed transmission rates ranged up to 8.8%. Seed samples from CMV-inoculated plants of 11 cultivars transmitted the virus to 0.5–8.7% of seedlings. Seed transmission rates greater than 5% were obtained only with cvs Enfield, Green Range and Nangeela. CMV was not detected in seed harvested in 1975–1981 from one of the registered cultivar collections, in 17 commercial seed stocks from 1986 or in a survey of subterranean clover pastures.
Symptoms in subterranean clover naturally infected with CMV included mottle, leaflet downcurling and dwarfing but severity varied with cultivar and selection. CMV isolates from different sources varied in virulence when inoculated to subterranean clover; two (both from subterranean clover) were severe, two moderate and three (including one from subterranean clover) mild. In pot tests, CMV decreased herbage production and root growth (dry wts) of cv. Green Range by 49% and 59% respectively. In spaced-plants growing in plots, CMV decreased herbage production and root growth of cvs Green Range and Northam by 59–630 and seed production of cv. Green Range by 45%. In rows sown with infected seed, aphid spread increased infection levels to 75% in cv. Green Range and 44% in cv. Esperance and losses in herbage production of 42% and 29% respectively were recorded.
CMV isolated from subterranean clover included isolates from both serogroups.  相似文献   

8.
Spatial patterns of spread were compared between strains of Bean yellow mosaic virus (BYMV) that differ in causing systemic necrotic (hypersensitive) or non‐necrotic symptoms in narrow‐leafed lupin (Lupinus angustifolius). Both types of BYMV were spread naturally by aphids from adjacent infected pasture into a large lupin block (‘natural spread site’), or from clover plants introduced as virus sources into two field experiments with lupin. Cumulative spatial data for plants with disease symptoms from a range of times in the growing period were assessed using Spatial Analysis by Distance IndicEs (SADIE). At the‘natural spread site’, with non‐necrotic BYMV, the extent of clustering of plants with symptoms increased gradually over time, while with necrotic BYMV there was less clustering and no increase over time. In both experiments, for the type of BYMV that was introduced into a plot, there was a gradual increase in clustering, but with this being greater with non‐necrotic BYMV. In the second experiment, there was also significant clustering of plants with symptoms of non‐necrotic BYMV in plots without introduced non‐necrotic foci but not for necrotic BYMV in plots without introduced necrotic foci. When clustering data for plants with newly recorded symptoms was tested for spatial association between successive assessment dates, association was positive for both BYMV types though stronger for the non‐necrotic type, declining as the temporal lag increased. Generally, association was strongest for assessments 2–3 wk apart, corresponding approximately to the period for BYMV to move systemically in plants and for obvious symptoms to appear in shoot tips. Contour maps for local association between dates showed that the strongest spatial associations were from coincidence of infection gaps rather than infection patches. The combination of information from clustering and association analysis showed that spread of non‐necrotic BYMV is less diffuse, with considerably more localised infection surrounding the infection sources. This work demonstrates how spatial virus spread can be diminished when hypersensitive (necrotic) resistance is deployed, and the limitations associated with employing hypersensitivity that is strain specific.  相似文献   

9.
Four field trials were done with narrow-leafed lupins (Lupinus angustifolius) in 1988 - 1989, to examine the effect of sowing seed with 5% and 0.5% cucumber mosaic virus (CMV) infection on subsequent virus spread, grain yield and percentage of infection in harvested seed. A proportion of the CM V-infected seed failed to produce established plants and thus, plots sown with 5% and 0.5% infected seed contained 1.5-2.9% and 0.2-0.3% of seed-infected plants respectively. The rate of virus spread by aphids was faster and resulted in more extensive infection at maturity in plots sown with 5% infected seed than with 0.5% infected seed. In three trials, sowing 5% infected seed resulted in yield losses of 34 - 53% and CMV infection in the seed harvested of 6 - 13%. The spread of CMV infection resulting from sowing 0.5% infected seed did not significantly decrease yield. However, late CMV spread in these plots caused > 1% seed infection. In the fourth trial, which was badly affected by drought, CMV spread only slowly, there was no significant effect of CMV on grain yield and the percentage of infected seed harvested was 3–5 times less than that in the seed sown. When CMV-infected seed was sown at different depths, target depths of 8 and 11 cm decreased the incidence of seed-infected plants by c. 15% and c. 50% respectively compared with sowing at 5 cm. However, in glasshouse tests, treatment with the pre-emergence herbicide simazine failed to selectively cull out seed-infected plants. The field trials were colonised by green peach (Myzus persicae), blue-green (Acyrthosiphon kondoi) and cowpea (Aphis craccivora) aphids. When the abilities of these aphid species and of the turnip aphid (Lipaphis erysimi) in transmitting CMV from lupins to lupins were examined in glasshouse tests, short acquisition access times favoured transmission. With 5–10 min acquisition access times, overall transmission efficiencies were 10.8%, 9.4%, 6.1% and 3.9% for the green peach, cowpea, blue-green and turnip aphids respectively.  相似文献   

10.
The effect of the insecticides malathion, demeton-S-methyl and disulfoton, and a barley barrier row on the rate and pattern of spread of bean yellow mosaic potyvirus (BYMV) and subterranean clover red leaf luteovirus (SCRLV) in Vicia faba was investigated in field plots with artificially introduced sources of viruses and vectors. The systemic insecticide treatments reduced aphid populations in the plots and this was associated with reduced spread of SCRLV, but not of BYMV. The barley barrier did not affect aphid populations in plots; however, it reduced the spread of BYMV to rows 1 · 1 m from the source but had only a minor effect on the spread of SCRLV. Apterae rather than alates of Aulacorthum solani were implicated in the spread of SCRLV. Spread of BYMV was attributed mainly to alate migrants of Myzus persicae and Macrosiphum euphorbiae, but other aphid species and morphs which occurred in high populations at the times of most rapid virus spread may also have had an active role as vectors of BYMV.  相似文献   

11.
Spread of necrotic and non‐necrotic strains of Bean yellow mosaic virus (BYMV) was compared when aphid vectors moved both types from external or internal virus sources to plots of Lupinus spp. (lupin). Regardless of whether virus sources were internal or external, removed or left in place, and spread was within plots with homologous sources or across buffers to plots containing the opposite type of virus source, non‐necrotic BYMV always spread faster than necrotic BYMV in plots of L. angustifolius (narrow‐leafed lupin). When necrotic BYMV spread from external sources into plots sown with two L. angustifolius genotypes differing in their necrosis responses to different BYMV strain groups and one genotype of L. luteus (yellow lupin) giving only non‐necrotic responses, differing symptom reactions in the two L. angustifolius genotypes revealed presence of two distinct necrotic BYMV strain groups and overall virus spread was greater in this species than in L. luteus. Spread of non‐necrotic BYMV in L. angustifolius was always polycyclic in nature. However, when it came initially from external sources, spread of necrotic BYMV was largely monocyclic. This work demonstrates how temporal virus spread can be diminished when hypersensitive (necrotic) resistance is deployed and the limitations associated with employing hypersensitivity that is strain specific.  相似文献   

12.
Experiments were conducted over a 4-yr period that examined the effect reflective, black, and no-mulch had on aphid populations, incidence of virus infected pumpkin plants, and yield of pumpkin. Three different planting dates and their effect on viral infection and yield were also investigated. The use of reflective mulches significantly reduced the number of alates landing in these rows compared with black- or no-mulch rows. The reduction in aphid numbers resulted in a reduction in the percent of plants infected with virus. Approximately 10 times more plants were infected with virus in the black and no-mulch plots than in the reflective mulch plots in mid- to late July. However, by the end of August, all treatments had near 100% of plants infected with virus. This delay in viral infection in reflective mulch plots resulted in a 45 and 120% increase in pumpkin yield compared with black mulch and no-mulch plots, respectively. First plantings always had greater yields than later plantings. The interaction between mulch type and planting time was significant. Reflective mulches increased yields overall, but significantly increased yields compared with black or no-mulch in second and third plantings. The use of reflective mulch combined with timely planting is a cost effective way of delaying virus problems and increasing pumpkin yields in midwestern United States.  相似文献   

13.
Field trials were done in 1988 - 89 at two sites to examine the effects of sowing seed stocks in which a low proportion (1.6–7.0%) of the seed was carrying cucumber mosaic virus (CMV) infection (= infected seed) and the subsequent CM V spread that results, on the productivity of swards of subterranean clover cvs Esperance, Green Range and Karridale. Except in irrigated plots of cv. Green Range, a variable proportion of the CMV-infected seedlings always failed to establish, so sowing infected seed normally resulted in plots containing fewer or far fewer seed-infected plants than expected. The rate of virus spread by aphids was faster and resulted in more extensive infection at maturity when the plots contained more seed-infected source plants. In two irrigated trials at South Perth, in which healthy and infected seed of cvs Esperance and Green Range was sown, CMV spread was extensive. When the plots were left undefoliated, herbage dry wt yields were decreased by 12 – 30% and seed yields by 53 – 64% due to infection. When they were mown, the herbage dry wt losses recorded were 17 – 24%. In three trials at Mt Barker sown with healthy and infected seed, extensive spread of CMV occurred with cv. Green Range but not with cvs Esperance and Karridale. With cv. Green Range, losses of 25 – 28% in herbage dry wt were recorded inside CMV-affected patches in mown or grazed plots, while losses were up to 13% when herbage was sampled at random. Seed yield losses were 40–42% and 53% in infected mown and undefoliated cv. Green Range plots, respectively. In the mown or grazed plots of cvs Esperance and Karridale, herbage dry wt losses recorded were up to 7% while seed yield losses were 9 – 16% in mown and 9% in undefoliated plots. The mean wt/seed of seed harvested from mown plots of cvs Green Range and Karridale sown with infected seed was 8–12% less than that of seed from mown control plots. CMV was detected in seed harvested from undefoliated cv. Green Range plots and mown plots of cvs Green Range and Karridale sown with infected seed but levels of seed infection with the mown plots were 3–5 times less than in the seed sown. Field trials were done at two sites in 1987 – 90 to examine the persistence of CMV in subterranean clover swards. CMV infection was established in 1987 and the plots were grazed in subsequent years. At Badgingarra, infection gradually decreased with little CMV being recovered by 1990. At Mt Barker, recovery of CMV was relatively poor in 1988 and even poorer in 1989, but there was some resurgence of CMV infection in 1990.  相似文献   

14.
Many surveys were conducted during 2003–2005 to study the identity, prevalence and fluctuation of bean infecting viruses in northwestern Iran. In total, 649 bean samples with virus- like symptoms were collected and analysed by double antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) and tissue-print immunoassay to detect infectious viruses. Serological tests revealed the presence of Bean common mosaic virus (BCMV), Bean common mosaic necrosis virus (BCMNV), Bean yellow mosaic virus (BYMV), Cucumber mosaic virus (CMV), Alfalfa mosaic virus (AMV), Bean leaf roll virus (BLRV), Bean pod mottle virus (BPMV) and Southern bean mosaic virus (SBMV), with some co-infection occurred, with prevalence of BCMV, BCMNV and BYMV (17–29% infection rate). The incidence of viruses showed variation in over 3 years of research including more than double increase in CMV from 2004 to 2005 and obvious one-third decrease in AMV from 2003 to 2005. SBMV and BPMV were detected sporadically in the fields and the response of some differential test plants was analysed by mechanical inoculation. Western immunoblotting analysis of SBMV infected bean leaf total proteins using SBMV-specific polyclonal antibody revealed viral CP with molecular mass of 28.5 kDa which confirmed the presence of SBMV as a new threat for bean production.  相似文献   

15.
Silver coloured plastic mulches and weekly insecticide sprays were examined individually and in combination for efficacy in reducing spread of tulip breaking potyvirus (TBV) in tulip, and these plus mineral oil treatments, alone and in combination with insecticide and mulch, were evaluated for their effect on iris mild mosaic potyvirus (IMMV) spread in bulbous iris. In the iris trial, significant reductions in virus spread were noted for all treatments, with the combined treatment of mulch and insecticide giving the best virus control. However, with little virus spread there were no significant treatment effects on TBV spread in tulips. Reduced numbers of aphid vectors were trapped over unsprayed mulched than non-mulched plots. Mulch treatments had no effect on stem length or harvested bulb weight while the insecticide treatment (tulips only) and treatments incorporating mineral oil significantly reduced both stem length and bulb weight. This work suggests that enhanced virus management in flowerbulb production may be achieved by incorporating reflective mulches in current virus control strategies.  相似文献   

16.
The spread of cucumber mosaic virus (CMV) was followed during three years in field plots of bell pepper varieties Yolo Wonder (susceptible) and Milord and Vania (partially resistant to CMV movement within plants). During the three test years, CMV spread was delayed 4 to 6 weeks in var. Milord and in var. Vania as compared to var. Yolo Wonder. Final CMV incidence and the apparent infection rate, the latter calculated from Van der Plank logistic analyses, were lower in var. Milord and in var. Vania than in var. Yolo Wonder. The resistance of var. Milord and var. Vania, expressed as a delay of spread and a reduced CMV incidence over the past three years, provides practical disease control.  相似文献   

17.
Plants from 2nd to 6th year leys of the legume goat's rue (Galega orientalis Lam.) were tested for infection with bean yellow mosaic (BYMV), bean common mosaic (BCMV), alfalfa mosaic (AMV), broad bean stain (BBSV), red clover mottle (RCMV) and cucumber mosaic (CMV) viruses by enzyme-linked immunosorbent assay (ELISA), electron microscopy, and by sap-inoculation to various test plant species. No virus infections were observed in goat's rue in the field. Glasshouse-grown seedlings of goat's rue were inoculated with the above viruses. No virus was detected in the inoculated plants. The results suggest that goat's rue is extremely resistant to the above six viruses which are important in other forage legumes.  相似文献   

18.
Mixed infection of Cucumber mosaic virus (CMV) and Turnip mosaic virus (TuMV) induced more severe symptoms on Nicotiana benthamiana than single infection. To dissect the relationships between spatial infection patterns and the 2b protein (2b) of CMV in single or mixed infections, the CMV vectors expressing enhanced green fluorescent or Discosoma sp. red fluorescent proteins (EGFP [EG] or DsRed2 [Ds], respectively were constructed from the same wild-type CMV-Y and used for inoculation onto N. benthamiana. CMV2-A1 vector (C2-A1 [A1]) has a functional 2b while CMV-H1 vector (C2-H1 [H1]) is 2b deficient. As we expected from the 2b function as an RNA silencing suppressor (RSS), in a single infection, A1Ds retained a high level of accumulation at initial infection sites and showed extensive fluorescence in upper, noninoculated leaves, whereas H1Ds disappeared rapidly at initial infection sites and could not spread efficiently in upper, noninoculated leaf tissues. In various mixed infections, we found two phenomena providing novel insights into the relationships among RSS, viral synergism, and interference. First, H1Ds could not spread efficiently from vasculature into nonvascular tissues with or without TuMV, suggesting that RNA silencing was not involved in CMV unloading from vasculature. These results indicated that 2b could promote CMV to unload from vasculature into nonvascular tissues, and that this 2b function might be independent of its RSS activity. Second, we detected spatial interference (local interference) between A1Ds and A1EG in mixed infection with TuMV, between A1Ds (or H1Ds) and TuMV, and between H1Ds and H1EG. This observation suggested that local interference between two viruses was established even in the synergism between CMV and TuMV and, again, RNA silencing did not seem to contribute greatly to this phenomenon.  相似文献   

19.
The relationships between bean yellow mosaic (BYMV), bean common mosaic (BCMV), clover yellow vein (CYVV), lettuce mosaic (LMV), potato virus Y (PVY), turnip mosaic (TuMV) and celery mosaic (CeMV) viruses were studied in homologous and heterologous reactions, using simple and relatively rapid electron microscope serology decoration tests. The degree of relationship between these viruses was assessed by the intensity of antibody coating when the viruses were decorated by heterologous antibodies. A close relationship was observed between BYMV and CYVV, and between BYMV and LMV but not between CYVV and LMV. CeMV was quite closely related to BYMV and CYVV. Antibodies to BCMV and BYMV intensely decorated different strains of their own virus, but decoration was negligible in cross reactions.  相似文献   

20.
Patterns of spread of two aphid borne viruses, the non-persistently transmitted bean yellow mosaic virus (BYMV) and the persistently transmitted subterranean clover red leaf virus (SCRLV), were compared simultaneously in field plots of Vicia faba minor grown in a Mediterranean climate (winter-spring growing season, and dry summer). Spread from a primary source was mapped following the artificial introduction of virus alone, or virus with vector, at the centre of the plots. BYMV spread rapidly from the virus source whether or not vectors were introduced with the virus. By contrast, SCRLV spread from the source only when plants were also artificially infested with the vector Aulacorthum solani. An attempt was made to evaluate the importance of secondary spread of both viruses by assessing the degree of clumping of infected plants that occurred outside the primary sites of virus introduction. BYMV-infected plants were clumped in each treatment irrespective of whether the virus was introduced alone or with vector, as well as in control plots. Clumping of SCRLV occurred only when the vectors were introduced on virus source plants at the beginning of the experiment. Times of spread were determined both by exposing trap plants at 4-weekly intervals throughout the 30 month trial period, and by analysing the rates of spread in experimental plots between June and November in one growing season. Both viruses spread in the spring when vectors were flying, but negligible spread of the viruses was observed in the autumn despite aphid flight activity. Times of flight of the four main aphid vector species were continuously monitored with yellow water traps. A major spring and a minor autumn flight peak were observed for Aphis craccivora, Macrosiphum euphorbiae, Aulacorthum solani and Myzus persicae. Aphid flights occurred predominantly in weeks when the mean temperature was in the range 13–17°C. Rainfall above 7 mm per week appeared to affect flights only when mean weekly temperatures were outside the range 13–17°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号