首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to construct a chicken (Gallus gallus) cytogenetic map, we isolated 134 genomic DNA clones as new cytogenetic markers from a chicken cosmid DNA library, and mapped these clones to chicken chromosomes by fluorescence in situ hybridization. Forty-five and 89 out of 134 clones were localized to macrochromosomes and microchromosomes, respectively. The 45 clones, which localized to chicken macrochromosomes (Chromosomes 1-8 and the Z chromosome) were used for comparative mapping of Japanese quail (Coturnix japonica). The chromosome locations of the DNA clones and their gene orders in Japanese quail were quite similar to those of chicken, while Japanese quail differed from chicken in chromosomes 1, 2, 4 and 8. We specified the breakpoints of pericentric inversions in chromosomes 1 and 2 by adding mapping data of 13 functional genes using chicken cDNA clones. The presence of a pericentric inversion was also confirmed in chromosome 8. We speculate that more than two rearrangements are contained in the centromeric region of chromosome 4. All 30 clones that mapped to chicken microchromosomes also localized to Japanese quail microchromosomes, suggesting that chromosome homology is highly conserved between chicken and Japanese quail and that few chromosome rearrangements occurred in the evolution of the two species.  相似文献   

2.
Karyotype evolution in one of the most diverse and species‐rich group of insects, moths and butterflies (Lepidoptera), has interesting features that remain to be resolved. Recent studies showed that fluorescence in situ hybridization using bacterial artificial chromosome clones (BAC‐FISH) is an efficient cytogenetic method for identification and gene mapping of lepidopteran chromosomes. Using comparative mapping by BAC‐FISH, extensive synteny of genes was revealed between chromosomes of different lepidopteran species based on Bombyx mori genomic information. However, this comparative mapping has been done only in representatives of advanced groups of Lepidoptera. Here we constructed a BAC library of Endoclita excrescens, which belongs to the primitive lepidopteran family Hepialidae. High molecular weight DNA for the library construction was prepared from the pupae by using a rapid nuclear isolation method known in plants. The BAC clones of E. excrescens contain 66.6 kb inserts on average. The successful application of BAC‐FISH showed that the BAC library of E. excrescens is a useful tool for comparative gene mapping on chromosomes of this species.  相似文献   

3.
A bacterial artificial chromosome (BAC) library of banana (Musa acuminata) was used to select BAC clones that carry low amounts of repetitive DNA sequences and could be suitable as probes for fluorescence in situ hybridization (FISH) on mitotic metaphase chromosomes. Out of eighty randomly selected BAC clones, only one clone gave a single-locus signal on chromosomes of M. acuminata cv. Calcutta 4. The clone localized on a chromosome pair that carries a cluster of 5S rRNA genes. The remaining BAC clones gave dispersed FISH signals throughout the genome and/or failed to produce any signal. In order to avoid the excessive hybridization of repetitive DNA sequences, we subcloned nineteen BAC clones and selected their ‘low-copy’ subclones. Out of them, one subclone gave specific signal in secondary constriction on one chromosome pair; three subclones were localized into centromeric and peri-centromeric regions of all chromosomes. Other subclones were either localized throughout the banana genome or their use did not result in visible FISH signals. The nucleotide sequence analysis revealed that subclones, which localized on different regions of all chromosomes, contained short fragments of various repetitive DNA sequences. The chromosome-specific BAC clone identified in this work increases the number of useful cytogenetic markers for Musa.  相似文献   

4.
To study pseudoautosomal and bordering regions in the avian Z and W chromosomes, we used seven BAC clones from genomic libraries as DNA probes of fragments of different gametologs of the ATP5A1 gene located close to the proximal border of the pseudoautosomal region (PAR) of sex chromosomes of domestic chicken and Japanese quail. Localization of BAC clones TAM31-b100C09, TAM31-b99N01, TAM31-b27P16, and TAM31-b95L18 in the short arm of Z chromosomes of domestic chicken and Japanese quail (region Zp23-p22) and localization of the BAC clones CHORI-261-CH46G16, CHORI-261-CH33F10, and CHORI-261-CH64F22 on W chromosomes of these species and in the short arm of Z chromosomes (region Zp23-p22) were determined by fluorescence in situ hybridization with the use of W-specific probes. The difference in the localization of the BAC clones on the Z and W chromosomes is probably explained by divergence of the nucleotide sequences of different sex chromosomes located beyond the pseudoautosomal region.  相似文献   

5.
BAC (bacterial artificial chromosome) clones from the genomic BAC library of the narrow-leafed lupin (Lupinus angustifolius) were used for cytogenetic mapping of mitotic metaphase chromosomes of that species by the BAC-FISH technique. Location of the clones, together with cytogenetic markers localised earlier by FISH (fluorescencein situ hybridisation) and PRINS (primedin situ DNA labelling), was combined with computer-aided chromosome measurements, to construct the first idiogram of the narrow-leafed lupin. The chromosomes are meta- or submetacentric; the mean absolute chromosome lengths range from 1.9 μm to 3.8 μm, and mean relative lengths from 1.6% to 3.3%. Data concerning linkage of resistance to 2 fungal pathogens as well as assignment of the second linkage group to the appropriate chromosome are given for the first time.  相似文献   

6.
Previous studies in the chicken have identified a single microchromosome (GGA16) containing the ribosomal DNA (rDNA) and two genetically unlinked MHC regions, MHC-B and MHC-Y. Chicken DNA sequence from these loci was used to develop PCR primers for amplification of homologous fragments from the turkey (Meleagris gallopavo). PCR products were sequenced and overgo probes were designed to screen the CHORI 260 turkey BAC library. BAC clones corresponding to the turkey rDNA, MHC-B and MHC-Y were identified. BAC end and subclone sequencing confirmed identity and homology of the turkey BAC clones to the respective chicken loci. Based on subclone sequences, single-nucleotide polymorphisms (SNPs) segregating within the UMN/NTBF mapping population were identified and genotyped. Analysis of SNP genotypes found the B and Y to be genetically unlinked in the turkey. Silver staining of metaphase chromosomes identified a single pair of microchromosomes with nucleolar organizer regions (NORs). Physical locations of the rDNA and MHC loci were determined by fluorescence in situ hybridization (FISH) of the BAC clones to metaphase chromosomes. FISH clearly positioned the rDNA distal to the Y locus on the q-arm of the MHC chromosome and the MHC-B on the p-arm. An internal telomere array on the MHC chromosome separates the B and Y loci.  相似文献   

7.
Radiation mapping of nine genes (H3F3B, HLR1, MYL4,STAT5B, THRA1, TOP2A, MCP1, NF1, and MPO) to porcine chromosome 12 was carried out. Also, subchromosomal location of the NF1 gene along with the two loci containing the DNA sequences homologous to the DNA of the two human BAC clones was determined. The NF1 position was ascertained via microdissection of chromosome 12 with subsequent PCR amplification of the gene fragment with specific primers. BAC clones were mapped using FISH. Comparative analysis of the gene order in porcine chromosome 12 and in the homologous human chromosome 17 was performed. It was demonstrated that the gene orders in these chromosomes differed relative to the position of the MPO gene.  相似文献   

8.
为了构建用于镜鲤(Cyprinus carpio var. specularis)特定基因组序列染色体定位的实验体系, 在细菌人工染色体(Bacterial Artificial Chromosome, BAC)文库筛选池中对已知短序列基因组片段进行PCR扩增, 筛选出包含目标序列的BAC克隆, 提取BAC质粒进行缺刻平移标记制备探针, 开展荧光原位杂交(Fluorescence in situ hybridization, FISH)实验。通过对染色体片前处理、BAC质粒探针制备、C0t-1 DNA封闭基因组重复序列、预杂交、荧光染料选择、信号放大等一系列实验条件和方法的探索优化, 成功实现了目标序列在镜鲤有丝分裂中期染色体上的定位。定位对象既包括在染色体上有单一位点的序列, 如斑马鱼微卫星标记Z6884和Z4268, 也包括在染色体上有多个位点的重复序列, 如黄河鲤性别相关标记CCmf1。来自斑马鱼同一条染色体上的两个微卫星标记被分别定位于镜鲤不同染色体上, 为鲤鱼染色体数目加倍的进化假设提供了一项直接实验证据, 同时将现有遗传连锁图谱与染色体对应起来, 可作为染色体识别和细胞遗传学图谱构建的依据。黄河鲤性别相关重复序列被定位于不少于四条染色体上, 为性别决定相关基因的筛查提供了研究线索。这一BAC-FISH实验体系将成为鲤细胞遗传学图谱构建、基因组进化和比较基因组学研究中的重要研究工具。    相似文献   

9.
Chromosome-specific paints from macrochromosomes 1-9 and Z of the chicken were hybridised to metaphases of the red-legged partridge and revealed no inter-chromosomal rearrangements. The results from chromosome painting are similar to previous studies on the Japanese quail but different from findings in guinea fowl and several species of pheasant. The difference in centromere position in chicken and partridge chromosome 4, previously assumed to be the result of an inversion, was confirmed. However, FISH mapping of BAC clones from chicken chromosome 4 revealed that the order of loci was the same in both species, indicating the occurrence of a neocentromere during divergence.  相似文献   

10.
A chicken Z-linked BAC probe containing the aldolase B gene was used for fluorescence in-situ hybridization (FISH) mapping in four different avian species. The biotinylated BAC clone showed distinct unique hybridization sites on the structurally different Z chromosomes. This result, together with previous data, lends credence to the notion that, despite undergoing structural rearrangements, the gene content of the avian Z chromosome remained conserved during evolution. Our study also demonstrates the feasibility of using large genomic clones for comparative mapping of Z-linked genes in birds.  相似文献   

11.
We conducted comparative chromosome painting and chromosome mapping with chicken DNA probes against the blue-breasted quail (Coturnix chinensis, CCH) and California quail (Callipepla californica, CCA), which are classified into the Old World quail and the New World quail, respectively. Each chicken probe of chromosomes 1-9 and Z painted a pair of chromosomes in the blue-breasted quail. In California quail, chicken chromosome 2 probe painted chromosomes 3 and 6, and chicken chromosome 4 probe painted chromosomes 4 and a pair of microchromosomes. Comparison of the cytogenetic maps of the two quail species with those of chicken and Japanese quail revealed that there are several intrachromosomal rearrangements, pericentric and/or paracentric inversions, in chromosomes 1, 2 and 4 between chicken and the Old World quail. In addition, a pericentric inversion was found in chromosome 8 between chicken and the three quail species. Ordering of the Z-linked DNA clones revealed the presence of multiple rearrangements in the Z chromosomes of the three quail species. Comparing these results with the molecular phylogeny of Galliformes species, it was also cytogenetically supported that the New World quail is classified into a different clade from the lineage containing chicken and the Old World quail.  相似文献   

12.
Silene latifolia is a key plant model in the study of sex determination and sex chromosome evolution. Current studies have been based on genetic mapping of the sequences linked to sex chromosomes with analysis of their characters and relative positions on the X and Y chromosomes. Until recently, very few DNA sequences have been physically mapped to the sex chromosomes of S. latifolia. We have carried out multicolor fluorescent in situ hybridization (FISH) analysis of S. latifolia chromosomes based on the presence and intensity of FISH signals on individual chromosomes. We have generated new markers by constructing and screening a sample bacterial artificial chromosome (BAC) library for appropriate FISH probes. Five newly isolated BAC clones yielded discrete signals on the chromosomes: two were specific for one autosome pair and three hybridized preferentially to the sex chromosomes. We present the FISH hybridization patterns of these five BAC inserts together with previously described repetitive sequences (X-43.1, 25S rDNA and 5S rDNA) and use them to analyze the S. latifolia karyotype. The autosomes of S. latifolia are difficult to distinguish based on their relative arm lengths. Using one BAC insert and the three repetitive sequences, we have constructed a standard FISH karyotype that can be used to distinguish all autosome pairs. We also analyze the hybridization patterns of these sequences on the sex chromosomes and discuss the utility of the karyotype mapping strategy presented to study sex chromosome evolution and Y chromosome degeneration.Communicated by J.S. Heslop-Harrison  相似文献   

13.
Karyotypes of chicken (Gallus gallus domesticus; 2n = 78) and mallard duck (Anas platyrhynchos; 2n = 80) share the typical organization of avian karyotypes including a few macrochromosome pairs, numerous indistinguishable microchromosomes, and Z and W sex chromosomes. Previous banding studies revealed great similarities between chickens and ducks, but it was not possible to use comparative banding for the microchromosomes. In order to establish precise chromosome correspondences between these two species, particularly for microchromosomes, we hybridized 57 BAC clones previously assigned to the chicken genome to duck metaphase spreads. Although most of the clones showed similar localizations, we found a few intrachromosomal rearrangements of the macrochromosomes and an additional microchromosome pair in ducks. BAC clones specific for chicken microchromosomes were localized to separate duck microchromosomes and clones mapping to the same chicken microchromosome hybridized to the same duck microchromosome, demonstrating a high conservation of synteny. These results demonstrate that the evolution of karyotypes in avian species is the result of fusion and/or fission processes and not translocations.  相似文献   

14.
Chinese hamster ovary (CHO) cell lines are widely used for scientific research and biotechnology. A CHO genomic bacterial artificial chromosome (BAC) library was constructed from a mouse dihydrofolate reductase (DHFR) gene‐amplified CHO DR1000L‐4N cell line for genome‐wide analysis of CHO cell lines. The CHO BAC library consisted of 122,281 clones and was expected to cover the entire CHO genome five times. A CHO chromosomal map was constructed by fluorescence in situ hybridization (FISH) imaging using BAC clones as hybridization probes (BAC‐FISH). Thirteen BAC‐FISH marker clones were necessary to identify all the 20 individual chromosomes in a DHFR‐deficient CHO DG44 cell line because of the aneuploidy of the cell line. To determine the genomic structure of the exogenous Dhfr amplicon, a 165‐kb DNA region containing exogenous Dhfr was cloned from the BAC library using high‐density replica (HDR) filters and Southern blot analysis. The nucleotide sequence analysis revealed a novel genomic structure in which the vector sequence containing Dhfr was sandwiched by long inverted sequences of the CHO genome. Biotechnol. Bioeng. 2009; 104: 986–994. © 2009 Wiley Periodicals, Inc.  相似文献   

15.
Zhang P  Li W  Fellers J  Friebe B  Gill BS 《Chromosoma》2004,112(6):288-299
Fluorescence in situ hybridization (FISH) has been widely used in the physical mapping of genes and chromosome landmarks in plants and animals. Bacterial artificial chromosomes (BACs) contain large inserts making them amenable for FISH mapping. We used BAC-FISH to study genome organization and evolution in hexaploid wheat and its relatives. We selected 56 restriction fragment length polymorphism (RFLP) locus-specific BAC clones from libraries of Aegilops tauschii (the D-genome donor of hexaploid wheat) and A-genome diploid Triticum monococcum. Different types of repetitive sequences were identified using BAC-FISH. Two BAC clones gave FISH patterns similar to the repetitive DNA family pSc119; one BAC clone gave a FISH pattern similar to the repetitive DNA family pAs1. In addition, we identified several novel classes of repetitive sequences: one BAC clone hybridized to the centromeric regions of wheat and other cereal species, except rice; one BAC clone hybridized to all subtelomeric chromosome regions in wheat, rye, barley and oat; one BAC clone contained a localized tandem repeat and hybridized to five D-genome chromosome pairs in wheat; and four BAC clones hybridized only to a proximal region in the long arm of chromosome 4A of hexaploid wheat. These repeats are valuable markers for defined chromosome regions and can also be used for chromosome identification. Sequencing results revealed that all these repeats are transposable elements (TEs), indicating the important role of TEs, especially retrotransposons, in genome evolution of wheat.Communicated by P.B. Moens  相似文献   

16.
We constructed a bacterial artificial chromosome (BAC) library, designated as KBrH, from high molecular weight genomic DNA of Brassica rapa ssp. pekinensis (Chinese cabbage). This library, which was constructed using HindIII-cleaved genomic DNA, consists of 56,592 clones with average insert size of 115 kbp. Using a partially duplicated DNA sequence of Arabidopsis, represented by 19 and 9 predicted genes on chromosome 4 and 5, respectively, and BAC clones from the KBrH library, we studied conservation and microsynteny corresponding to the Arabidopsis regions in B. rapa ssp. pekinensis. The BAC contigs assembled according to the Arabidopsis homoeologues revealed triplication and rearrangements in the Chinese cabbage. In general, collinearity of genes in the paralogous segments was maintained, but gene contents were highly variable with interstitial losses. We also used representative BAC clones, from the assembled contigs, as probes and hybridized them on mitotic (metaphase) and/or meiotic (leptotene/pachytene/metaphase I) chromosomes of Chinese cabbage using bicolor fluorescence in situ hybridization. The hybridization pattern physically identified the paralogous segments of the Arabidopsis homoeologues on B. rapa ssp. pekinensis chromosomes. The homoeologous segments corresponding to chromosome 4 of Arabidopsis were located on chromosomes 2, 8 and 7, whereas those of chromosome 5 were present on chromosomes 6, 1 and 4 of B. rapa ssp. pekinensis.  相似文献   

17.
Cheng Z  Presting GG  Buell CR  Wing RA  Jiang J 《Genetics》2001,157(4):1749-1757
Large-scale physical mapping has been a major challenge for plant geneticists due to the lack of techniques that are widely affordable and can be applied to different species. Here we present a physical map of rice chromosome 10 developed by fluorescence in situ hybridization (FISH) mapping of bacterial artificial chromosome (BAC) clones on meiotic pachytene chromosomes. This physical map is fully integrated with a genetic linkage map of rice chromosome 10 because each BAC clone is anchored by a genetically mapped restriction fragment length polymorphism marker. The pachytene chromosome-based FISH mapping shows a superior resolving power compared to the somatic metaphase chromosome-based methods. The telomere-centromere orientation of DNA clones separated by 40 kb can be resolved on early pachytene chromosomes. Genetic recombination is generally evenly distributed along rice chromosome 10. However, the highly heterochromatic short arm shows a lower recombination frequency than the largely euchromatic long arm. Suppression of recombination was found in the centromeric region, but the affected region is far smaller than those reported in wheat and barley. Our FISH mapping effort also revealed the precise genetic position of the centromere on chromosome 10.  相似文献   

18.
Integration of the FISH pachytene and genetic maps of Medicago truncatula   总被引:6,自引:0,他引:6  
A molecular cytogenetic map of Medicago truncatula (2n = 2x = 16) was constructed on the basis of a pachytene DAPI karyogram. Chromosomes at this meiotic prophase stage are 20 times longer than at mitotic metaphase, and display a well differentiated pattern of brightly fluorescing heterochromatin segments. We describe here a pachytene karyogram in which all chromosomes can be identified based on chromosome length, centromere position, heterochromatin patterns, and the positions of three repetitive sequences (5S rDNA, 45S rDNA and the MtR1 tandem repeat), visualized by fluorescence in situ hybridization (FISH). We determined the correlation between genetic linkage groups and chromosomes by FISH mapping of bacterial artificial chromosome (BAC) clones, with two to five BACs per linkage group. In the cytogenetic map, chromosomes were numbered according to their corresponding linkage groups. We determined the relative positions of the 20 BACs and three repetitive sequences on the pachytene chromosomes, and compared the genetic and cytological distances between markers. The mapping resolution was determined in a euchromatic part of chromosome 5 by comparing the cytological distances between FISH signals of clones of a BAC contig with their corresponding physical distance, and showed that resolution in this region is about 60 kb. The establishment of this FISH pachytene karyotype, with a far better mapping resolution and detection sensitivity compared to those in the highly condensed mitotic metaphase complements, has created the basis for the integration of molecular, genetic and cytogenetic maps in M. truncatula.  相似文献   

19.
  • Sesame (Sesamum indicum L.; Pedaliaceae) is a commercially valuable oilseed crop with high oil content. Its small genome size favours the genomic analysis of key biological processes, such as oil synthesis and metabolism. However, the 13 chromosome pairs of sesame have not been characterised because of technological limitations and their small size.
  • We constructed a BAC library comprising 57,600 BAC clones for sesame. The estimated genome coverage of the sesame BAC library was 13.8×. The successive double colour fluorescence in situ hybridisation (FISH) with bacterial artificial chromosomes (BACs) for sesame was established in this study.
  • Subsequently, the 13 sesame chromosome pairs were individually differentiated using 17 specific BACs for the first time. The schematic of the sesame chromosome set was drawn according to the chromosome relative length and relative position of the BAC signal. The cytogenetic characteristics of sesame chromosomes were also explored.
  • The results provide the technical background required for further cytogenetic map construction, genome assembly and localisation of the DNA sequence in sesame.
  相似文献   

20.
To improve resolution of physical mapping on Brassica chromosomes, we have chosen the pachytene stage of meiosis where incompletely condensed bivalents are much longer than their counterparts at mitotic metaphase. Mapping with 5S and 45S rDNA sequences demonstrated the advantage of pachytene chromosomes in efficient physical mapping and confirmed the presence of a novel 5S rDNA locus in Brassica oleracea, initially identified by genetic mapping using restriction fragment length polymorphism (RFLP). Fluorescence in situ hybridization (FISH) analysis visualized the presence of the third 5S rDNA locus on the long arm of chromosome C2 and confirmed the earlier reports of two 45S rDNA loci in the B. oleracea genome. FISH mapping of low-copy sequences from the Arabidopsis thaliana bacterial artificial chromosome (BAC) clones on the B. oleracea chromosomes confirmed the expectation of efficient and precise physical mapping of meiotic bivalents based on data available from A. thaliana and indicated conserved organization of these two BAC sequences on two B. oleracea chromosomes. Based on the heterologous in situ hybridization with BACs and their mapping applied to long pachytene bivalents, a new approach in comparative analysis of Brassica and A. thaliana genomes is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号