首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The effect of 10-hydroxy-trans-2-decenoic acid (10H2DA), a major fatty acid component of royal jelly, was investigated on LPS-induced cytokine production in murine macrophage cell line, RAW264 cells. 10H2DA inhibited LPS-induced IL-6 production dose-dependently, but did not inhibit TNF-α production. 10H2DA inhibited LPS-induced NF-κB activation in a dose-dependent fashion. In addition, NF-κB activation induced by over-expression of either MyD88 or Toll/IL-1?receptor domain-containing adaptor inducing IFN-β (TRIF) was also inhibited by 10H2DA. Degradation of IκB-α and phosphorylation of IκB kinase-α were not inhibited by 10H2DA. On the other hand, reduction of LPS-induced IκB-ζ expression was discovered. Production of lipocalin-2 and granulocyte colony-stimulating factor (G-CSF), which is dependent on IκB-ζ, was also inhibited by 10H2DA, whereas that of IκB-ζ-independent cytokines/chemokines, such as IFN-β, murine monocyte chemotactic protein-1 (JE), macrophage inflammatory protein (MIP)-1α and MIP-2, was not. Together, 10H2DA specifically inhibited LPS-induced IκB-ζ expression, followed by inhibition of IκB-ζ-dependent gene production. These results suggest that 10H2DA is one of the components of royal jelly to show anti-inflammatory effects and could be a therapeutic drug candidate for inflammatory and autoimmune diseases associated with IκB-ζ and IL-6 production.  相似文献   

3.
4.
We recently reported that diacylglycerol kinase (DGK) α enhanced tumor necrosis factor-α (TNF-α)-induced activation of nuclear factor-κB (NF-κB). However, the signaling pathway between DGKα and NF-κB remains unclear. Here, we found that small interfering RNA-mediated knockdown of DGKα strongly attenuated protein kinase C (PKC) ζ-dependent phosphorylation of a large subunit of NF-κB, p65/RelA, at Ser311 but not PKCζ-independent phosphorylation at Ser468 or Ser536. Moreover, knockdown and overexpression of PKCζ suppressed and synergistically enhanced DGKα-mediated NF-κB activation, respectively. These results strongly suggest that DGKα positively regulates TNF-α-dependent NF-κB activation via the PKCζ-mediated Ser311 phosphorylation of p65/RelA.  相似文献   

5.
Mutations of the gene encoding sequestosome1 (SQSTM1/p62), clustering in or near the UBA domain, have been described in Paget's disease of bone (PDB); among these the P392L substitution is the most prevalent. Protein p62 mediates several cell functions, including the control of NF-κB signaling, and autophagy. This scaffolding protein interacts with atypical PKCζ in the RANKL-induced signaling complex. We have previously shown that osteoclasts (OCs) overexpressing the p62P392L variant were in a constitutively activated state, presenting activated kinase p-PKCζ/λ and activated NF-κB prior to RANKL stimulation. In the present study, we investigated the relationships between PKCζ and NF-κB activation in human OCs transfected with p62 variants. We showed that PKCζ and p-PKCζ/λ co-localize with p62, and that PKCζ is involved in the RANKL-induced NF-κB activation and in the RANKL-independent activation of NF-κB observed in p62P392L-transfected cells. We also observed a basal and RANKL-induced increase in IκBα levels in the presence of the p62P392L mutation that contrasted with the NF-κB activation. In this study we propose that PKCζ plays a role in the activation of NF-κB by acting as a p65 (RelA) kinase at Ser536, independently of IκBα; this alternative pathway could be used preferentially in the presence of the p62P392L mutation, which may hinder the ubiquitin–proteasome pathway. Overall, our results highlight the importance of p62-associated PKCζ in the overactive state of pagetic OCs and in the activation of NF-κB, particularly in the presence of the p62P392L mutation.  相似文献   

6.
Chemokines are important mediators of cell migration, and thymus and activation-regulated chemokine (TARC/CCL17) and macrophage-derived chemokine (MDC/CCL22) are well-known typical inflammatory chemokines involved in atopic dermatitis (AD). (+)-Nootkatone is the major component of Cyperus rotundus. (+)-Nootkatone has antiallergic, anti-inflammatory, and antiplatelet activities. The purpose of this study was to investigate the effect of (+)-nootkatone on tumor necrosis factor α (TNF-α)/interferon γ (IFN-γ)-induced expression of Th2 chemokines in HaCaT cells. We found that (+)-nootkatone inhibited the TNF-α/IFN-γ-induced expression of TARC/CCL17 and MDC/CCL22 mRNA in HaCaT cells. It also significantly inhibited TNF-α/IFN-γ-induced activation of nuclear factor kappa B (NF-κB), p38 mitogen-activated protein kinase (MAPK), and protein kinase Cζ (PKCζ). Furthermore, we showed that PKCζ and p38 MAPK contributed to the inhibition of TNF-α/IFN-γ-induced TARC/CCL17 and MDC/CCL22 expression by blocking IκBα degradation in HaCaT cells. Taken together, these results suggest that (+)-nootkatone may suppress TNF-α/IFN-γ-induced TARC/CCL17 and MDC/CCL22 expression in HaCaT cells by inhibiting of PKCζ and p38 MAPK signaling pathways that lead to activation of NF-κB. We propose that (+)-nootkatone may be a useful therapeutic candidate for inflammatory skin diseases such as AD.  相似文献   

7.
8.
In order to discover the variation of microRNAs and genes associated with NF-κB signaling pathway between the healthy and the mastitis Chinese Holstein cows, Illumina Deep Sequencing and qRT-PCR are applied to detect 25 kinds of miRNAs (miR-16, miR-125b, miR-15, miR-29a, miR-23b, miR-146, miR-301a, miR-181b, let-7, miR-30b, miR-21, miR-223, miR-27b, miR-10a, miR-143, etc.) expression levels in blood samples and 14 genes (RelA, RelB, Rel, p105, p100, IκBα, IκBβ, IκBδ, IκBε, IκBζ, Bcl-3, IKKα, IKKβ, IKKγ/NEMO) relative expression levels in nine tissues. The total number of miRNAs is declining, and RelA, Rel, p105, p100, IκBα, IκBβ, IκBδ, IκBζ, Bcl-3, and IKKα expressions are rising in mastitis individuals. So, we suppose that NF-κB pathway is active in mastitis individuals as a result of the decrease inhibition of miRNAs. While in healthy ones, the NF-κB pathway is inactive, because of the miRNAs enhanced inhibition action. However, the specific regulatory mechanism of miRNAs on NF-κB pathway in mastitis Holstein cows needs further investigation. Moreover, due to obvious expression differences, some miRNAs, especially miR-16 and miR-223, may be used as new markers for the dairy mastitis prognosing.  相似文献   

9.
10.
Song ZB  Bao YL  Zhang Y  Mi XG  Wu P  Wu Y  Yu CL  Sun Y  Zheng LH  Huang YX  Liu B  Li YX 《The Biochemical journal》2011,436(2):457-467
TSP50 (testes-specific protease 50) is a testis-specific expression protein, which is expressed abnormally at high levels in breast cancer tissues. This makes it an attractive molecular marker and a potential target for diagnosis and therapy; however, the biological function of TSP50 is still unclear. In the present study, we show that overexpression of TSP50 in CHO (Chinese-hamster ovary) cells markedly increased cell proliferation and colony formation. Mechanistic studies have revealed that TSP50 can enhance the level of TNFα (tumour necrosis factor α)- and PMA-induced NF-κB (nuclear factor κB)-responsive reporter activity, IκB (inhibitor of NF-κB) α degradation and p65 nuclear translocation. In addition, the knockdown of endogenous TSP50 in MDA-MB-231 cells greatly inhibited NF-κB activity. Co-immunoprecipitation studies demonstrated an interaction of TSP50 with the NF-κB-IκBα complex, but not with the IKK (IκB kinase) α/β-IKKγ complex, which suggested that TSP50, as a novel type of protease, promoted the degradation of IκBα proteins by binding to the NF-κB-IκBα complex. Our results also revealed that TSP50 can enhance the expression of NF-κB target genes involved in cell proliferation. Furthermore, overexpression of a dominant-negative IκB mutant that is resistant to proteasome-mediated degradation significantly reversed TSP50-induced cell proliferation, colony formation and tumour formation in nude mice. Taken together, the results of the present study suggest that TSP50 promotes cell proliferation, at least partially, through activation of the NF-κB signalling pathway.  相似文献   

11.
The atypical PKC isoforms(ζandι)play essential roles in regulating various cellular processes.Both the hetero-interaction between PKCζand p62 through their N-terminal PB1 domains and the homo-oligomerization of p62 via its PB1 domain are critical for the activation of NF-B signaling;however,the molecular mechanisms concerning the formation and regulation of these homotypic complexes remain unclear.Here we determined the crystal structure of PKCζ-PB1 in complex with a monomeric p62-PB1 mutant,where the massive electrostatic interactions between the acidic OPCA motif of PKCζ-PB1 and the basic surface of p62-PB1,as well as additional hydrogen bonds,ensure the formation of a stable and specific complex.The PKCζ-p62 interaction is interfered with the modification of a specific Cys of PKCζby the antiarthritis drug aurothiomalate,though all four cysteine residues in the PKCζ-PB1 domain can be modified in in vitro assay.In addition,detailed structural and biochemical analyses demonstrate that the PB1 domains of aPKCs belong to the type I group,which can depolymerize the high-molecular-weight p62 aggregates into homo-oligomers of lower order.These data together unravel the molecular mechanisms of the homo-or hetero-interactions between p62 and PKCζand provide the basis for designing inhibitors of NF-B signaling.  相似文献   

12.
13.
14.
The DNA binding activity of NF-κB is critical for VCAM-1 expression during inflammation. DNA-dependent protein kinase (DNA-PK) is thought to be involved in NF-κB activation. Here we show that DNA-PK is required for VCAM-1 expression in response to TNF. The phosphorylation and subsequent degradation of I-κBα as well as the serine 536 phosphorylation and nuclear translocation of p65 NF-κB were insufficient for VCAM-1 expression in response to TNF. The requirement for p50 NF-κB in TNF-induced VCAM-1 expression may be associated with its interaction with and phosphorylation by DNA-PK, which appears to be dominant over the requirement for p65 NF-κB activation. p50 NF-κB binding to its consensus sequence increased its susceptibility to phosphorylation by DNA-PK. Additionally, DNA-PK activity appeared to increase the association between p50/p50 and p50/p65 NF-κB dimers upon binding to DNA and after binding of p50 NF-κB to the VCAM-1 promoter. Analyses of the p50 NF-κB protein sequence revealed that both serine 20 and serine 227 at the amino terminus of the protein are putative sites for phosphorylation by DNA-PK. Mutation of serine 20 completely eliminated phosphorylation of p50 NF-κB by DNA-PK, suggesting that serine 20 is the only site in p50 NF-κB for phosphorylation by DNA-PK. Re-establishing wild-type p50 NF-κB, but not its serine 20/alanine mutant, in p50 NF-κB(-/-) fibroblasts reversed VCAM-1 expression after TNF treatment, demonstrating the importance of the serine 20 phosphorylation site in the induction of VCAM-1 expression. Together, these results elucidate a novel mechanism for the involvement of DNA-PK in the positive regulation of p50 NF-κB to drive VCAM-1 expression.  相似文献   

15.
The classical pathway of nuclear factor-kappa B (NF-κB) activation by several inducers mainly involves the phosphorylation of IκBα by a signalsome complex composed of IκBα kinases (IKKα and IKKβ). However, in some cell types hydrogen peroxide (H2O2) has been shown to activate an alternative pathway that does not involve the classical signalsome activation process. In this study, we demonstrate that H2O2 induced NF-κB activation in HeLa cells through phosphorylation and degradation of IκB proteins as shown by immunblot analysis. Our studies reveal that a commonly used non-steroid anti-inflammatory drug, acetylsalicylic acid (aspirin) prevents H2O2-induced NF-κB activation in a dose-dependent manner through inhibition of phosphorylation and degradation of IκBα and IκBβ. Differential staining and DNA fragmentation analysis also show that aspirin preloading of HeLa cells also prevents H2O2-induced apoptosis in a dose-dependent manner with maximum efficiency at 10?mM concentration. Additionally, aspirin effectively prevents caspase-3 and caspase-9 (cysteinyl aspartate-specific proteases) activation by H2O2. These results suggest that NF-κB activation is involved in H2O2-induced apoptosis and aspirin may inhibit both processes simultaneously.  相似文献   

16.
17.
IκB kinase (IKK) complex, the master kinase for NF-κB activation, contains two kinase subunits, IKKα and IKKβ. In addition to mediating NF-κB signaling by phosphorylating IκB proteins during inflammatory and immune responses, the activation of the IKK complex also responds to various stimuli to regulate diverse functions independently of NF-κB. Although these two kinases share structural and biochemical similarities, different sub-cellular localization and phosphorylation targets between IKKα and IKKβ account for their distinct physiological and pathological roles. While IKKβ is predominantly cytoplasmic, IKKα has been found to shuttle between the cytoplasm and the nucleus. The nuclear-specific roles of IKKα have brought increasing complexity to its biological function. This review highlights major advances in the studies of the nuclear functions of IKKα and the mechanisms of IKKα nuclear translocation. Understanding the nuclear activity is essential for targeting IKKα for therapeutics.  相似文献   

18.
19.
目的探讨内毒素(LPS)刺激大鼠肠黏膜微血管内皮细胞(RIMMVECs)后,乳酸(LA)调控NF-κB信号通路中磷酸化IκBα和NF-κB p65蛋白表达情况,肿瘤坏死因子α(TNF-α)和白细胞介素6(IL-6)mRNA表达情况,阐明乳酸发挥作用的最佳时间及其调控NF-κB信号通路的部位。方法提取RIMMVECs总蛋白和总RNA,用Western blotting检测NF-κB p65、IκBα及p-IκBα蛋白表达水平,用real-time PCR对TNF-α和IL-6 mRNA进行定量检测。结果乳酸能降低LPS诱导RIMMVECs分泌的TNF-α和IL-6 mRNA表达水平,并分别于24 h和3 h下调效果最明显;乳酸能抑制IκBα磷酸化及NF-κB转录活性,并于4~8 h达到最佳效果;乳酸发挥作用部位是抑制信号通路中IκBα磷酸化。结论乳酸通过抑制IκBα磷酸化而阻断NF-κB的激活,抑制下游炎性因子表达,进而发挥出很好的预防炎症效果。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号