首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
The effect of perturbation at the allosteric site was investigated through several replicas of molecular dynamics (MD) simulations conducted on bacterial phosphofructokinase (SaPFK). In our previous work, an alternative binding site was estimated to be allosteric in addition to the experimentally reported one. To highlight the effect of both allosteric sites on receptor’s dynamics, MD runs were carried out on apo forms with and without perturbation. Perturbation was achieved via incorporating multiple bond restraints for residue pairs located at the allosteric site. Restraints applied to the predicted site caused one dimer to stiffen, whereas an increase in mobility was detected in the same dimer when the experimentally resolved site was restrained. Fluctuations in Cα-Cα distances which is used to disclose residues with high potential of communication indicated a marked increase in signal transmission within each dimer as the receptor switched to a restrained state. Cross-correlation of positional fluctuations indicated an overall decrease in the magnitude of both positive and negative correlations when restraints were employed on the predicted allosteric site whereas an exact opposite effect was observed for the reported site. Finally, mutual correspondence between positional fluctuations noticeably increased with restraints on predicted allosteric site, whereas an opposite effect was observed for restraints applied on experimentally reported one. In view of these findings, it is clear that the perturbation of either one of two allosteric sites effected the dynamics of the receptor with a distinct and contrasting character.  相似文献   

6.
Allosteric communication between distant parts of proteins controls many cellular functions, in which metal ions are widely utilized as effectors to trigger the allosteric cascade. Due to the involvement of strong coordination interactions, the energy landscape dictating the metal ion binding is intrinsically rugged. How metal ions achieve fast binding by overcoming the landscape ruggedness and thereby efficiently mediate protein allostery is elusive. By performing molecular dynamics simulations for the Ca2+ binding mediated allostery of the calmodulin (CaM) domains, each containing two Ca2+ binding helix-loop-helix motifs (EF-hands), we revealed the key role of water-bridged interactions in Ca2+ binding and protein allostery. The bridging water molecules between Ca2+ and binding residue reduces the ruggedness of ligand exchange landscape by acting as a lubricant, facilitating the Ca2+ coupled protein allostery. Calcium-induced rotation of the helices in the EF-hands, with the hydrophobic core serving as the pivot, leads to exposure of hydrophobic sites for target binding. Intriguingly, despite being structurally similar, the response of the two symmetrically arranged EF-hands upon Ca2+ binding is asymmetric. Breakage of symmetry is needed for efficient allosteric communication between the EF-hands. The key roles that water molecules play in driving allosteric transitions are likely to be general in other metal ion mediated protein allostery.  相似文献   

7.
Nickel transport systems in microorganisms   总被引:8,自引:0,他引:8  
The transition metal Ni is an essential cofactor for a number of enzymatic reactions in both prokaryotes and eukaryotes. Molecular analyses have revealed the existence of two major types of high-affinity Ni2+ transporters in bacteria. The Nik system of Escherichia coli is a member of the ABC transporter family and provides Ni2+ ion for the anaerobic biosynthesis of hydrogenases. The periplasmic binding protein of the transporter, NikA, is likely to play a dual role. It acts as the primary binder in the uptake process and is also involved in negative chemotaxis to escape Ni overload. Expression of the nik operon is controlled by the Ni-responsive repressor NikR, which shows functional similarity to the ferric ion uptake regulator Fur. The second type of Ni2+ transporter is represented by HoxN of Ralstonia eutropha, the prototype of a novel family of transition metal permeases. Members of this family have been identified in gram-negative and gram-positive bacteria and recently also in a fission yeast. They transport Ni2+ with very high affinity, but differ with regard to specificity. Site-directed mutagenesis experiments have identified residues that are essential for transport. Besides these uptake systems, different types of metal export systems, which prevent microorganisms from the toxic effects of Ni2+ at elevated intracellular concentrations, have also been described. Received: 14 July / Accepted: 8 October 1999  相似文献   

8.
The allosteric mechanism plays a key role in cellular functions of several PDZ domain proteins (PDZs) and is directly linked to pharmaceutical applications; however, it is a challenge to elaborate the nature and extent of these allosteric interactions. One solution to this problem is to explore the dynamics of PDZs, which may provide insights about how intramolecular communication occurs within a single domain. Here, we develop an advancement of perturbation response scanning (PRS) that couples elastic network models with linear response theory (LRT) to predict key residues in allosteric transitions of the two most studied PDZs (PSD-95 PDZ3 domain and hPTP1E PDZ2 domain). With PRS, we first identify the residues that give the highest mean square fluctuation response upon perturbing the binding sites. Strikingly, we observe that the residues with the highest mean square fluctuation response agree with experimentally determined residues involved in allosteric transitions. Second, we construct the allosteric pathways by linking the residues giving the same directional response upon perturbation of the binding sites. The predicted intramolecular communication pathways reveal that PSD-95 and hPTP1E have different pathways through the dynamic coupling of different residue pairs. Moreover, our analysis provides a molecular understanding of experimentally observed hidden allostery of PSD-95. We show that removing the distal third alpha helix from the binding site alters the allosteric pathway and decreases the binding affinity. Overall, these results indicate that (i) dynamics plays a key role in allosteric regulations of PDZs, (ii) the local changes in the residue interactions can lead to significant changes in the dynamics of allosteric regulations, and (iii) this might be the mechanism that each PDZ uses to tailor their binding specificities regulation.  相似文献   

9.
MgtC is a virulence factor of unknown function important for survival inside macrophages in several intracellular bacterial pathogens, including Mycobacterium tuberculosis. It is also involved in adaptation to Mg2+ deprivation, but previous work suggested that MgtC is not a Mg2+ transporter. In this study, we demonstrated that the amount of the M. tuberculosis MgtC protein is not significantly increased by Mg2+ deprivation. Members of the MgtC protein family share a conserved membrane N-terminal domain and a more divergent cytoplasmic C-terminal domain. To get insights into MgtC functional and structural organization, we have determined the nuclear magnetic resonance (NMR) structure of the C-terminal domain of M. tuberculosis MgtC. This structure is not affected by the Mg2+ concentration, indicating that it does not bind Mg2+. The structure of the C-terminal domain forms a βαββαβ fold found in small molecule binding domains called ACT domains. However, the M. tuberculosis MgtC ACT domain differs from canonical ACT domains because it appears to lack the ability to dimerize and to bind small molecules. We have shown, using a bacterial two-hybrid system, that the M. tuberculosis MgtC protein can dimerize and that the C-terminal domain somehow facilitates this dimerization. Taken together, these results indicate that M. tuberculosis MgtC does not have an intrinsic function related to Mg2+ uptake or binding but could act as a regulatory factor based on protein-protein interaction that could be facilitated by its ACT domain.  相似文献   

10.
11.
12.
13.
Helicobacter pylori NikR (HpNikR) is a ribbon-helix-helix (RHH) DNA-binding protein that binds to several different promoter regions. The binding site sequences are not absolutely conserved. The ability of HpNikR to discriminate specific DNA sites resides partly in its nine-amino acid N-terminal arm. Previously, indirect evidence indicated that the arm exists in different conformations when HpNikR is bound to the nixA and ureA promoters. Here, we directly examined HpNikR conformation when it was bound to nixA and ureA DNA fragments by tethering (S)-1{[bis(carboxymethyl)amino]methyl}-2-{4-[(2-bromoacetyl)amino]phenylethyl}(carboxymethyl)amino]acetic acid, iron(III) to different positions in the N-terminal arm and RHH DNA binding domain. Different cleavage patterns at each promoter directly demonstrated that both the RHH domain and the arm adopt different conformations on the nixA and ureA promoters. Additionally, the two RHH domain dimers of the HpNikR tetramer are in distinct conformations at ureA. Site-directed mutagenesis identified an interchain salt bridge (Lys(48)-Glu(47')) in the RHH domain remote from the DNA binding interface that is required for high affinity binding to ureA but not nixA. Finally, DNA affinity measurements of wild-type HpNikR and a salt bridge mutant (K48A) to hybrid nixA-ureA promoters demonstrated that inverted repeat half-sites, spacers, and flanking DNA are all required for sequence-specific DNA binding by HpNikR. Notably, the spacer region made the largest contribution to DNA affinity. HpNikR exhibits a substantially expanded regulon compared with other NikR proteins. The results presented here provide a molecular basis for understanding regulatory network expansion by NikR as well as other prokaryotic regulatory proteins.  相似文献   

14.
The Tet repressor (TetR) mediates the most important mechanism of bacterial resistance against tetracycline (Tc) antibiotics. In the absence of Tc, TetR is tightly bound to its operator DNA; upon binding of Tc with an associated Mg2+ ion, it dissociates from the DNA, allowing expression of the repressed genes. Its tight control by Tc makes TetR broadly useful in genetic engineering. The Tc binding site is over 20 Å from the DNA, so the binding signal must propagate a long distance. We use molecular dynamics simulations and continuum electrostatic calculations to test two models of the allosteric mechanism. We simulate the TetR:DNA complex, the Tc-bound, “induced” TetR, and the transition pathway between them. The simulations support the model inferred previously from the crystal structures and reveal new details. When [Tc:Mg]+ binds, the Mg2+ ion makes direct and water-mediated interactions with helix 8 of one TetR monomer and helix 6 of the other monomer, and helix 6 is pulled in towards the central core of the structure. Hydrophobic interactions with helix 6 then pull helix 4 in a pendulum motion, with a maximal displacement at its N-terminus: the DNA interface. The crystal structure of an additional TetR reported here corroborates this motion. The N-terminal residue of helix 4, Lys48, is highly conserved in DNA-binding regulatory proteins of the TetR class and makes the largest contribution of any amino acid to the TetR:DNA binding free energy. Thus, the conformational changes lead to a drastic reduction in the TetR:DNA binding affinity, allowing TetR to detach itself from the DNA. Tc plays the role of a specific Mg2+ carrier, whereas the Mg2+ ion itself makes key interactions that trigger the allosteric transition in the TetR:Tc complex.  相似文献   

15.
Rhodanese domains are abundant structural modules that catalyze the transfer of a sulfur atom from thiolsulfates to cyanide via formation of a covalent persulfide intermediate that is bound to an essential conserved cysteine residue. In this study, the three-dimensional structure of the rhodanese domain of YgaP from Escherichia coli was determined using solution NMR. A typical rhodanese domain fold was observed, as expected from the high homology with the catalytic domain of other sulfur transferases. The initial sulfur-transfer step and formation of the rhodanese persulfide intermediate were monitored by addition of sodium thiosulfate using two-dimensional 1H–15N correlation spectroscopy. Discrete sharp signals were observed upon substrate addition, indicting fast exchange between sulfur-free and persulfide-intermediate forms. Residues exhibiting pronounced chemical shift changes were mapped to the structure, and included both substrate binding and surrounding residues.  相似文献   

16.
Mycobacterium tuberculosis virulence is highly metal‐dependent with metal availability modulating the shift from the dormant to active states of M. tuberculosis infection. Rv0045c from M. tuberculosis is a proposed metabolic serine hydrolase whose folded stability is dependent on divalent metal concentration. Herein, we measured the divalent metal inhibition profile of the enzymatic activity of Rv0045c and found specific divalent transition metal cations (Cu2+ ≥ Zn2+ > Ni2+ > Co2+) strongly inhibited its enzymatic activity. The metal cations bind allosterically, largely affecting values for k cat rather than K M. Removal of the artificial N‐terminal 6xHis‐tag did not change the metal‐dependent inhibition, indicating that the allosteric inhibition site is native to Rv0045c. To isolate the site of this allosteric regulation in Rv0045c, the structures of Rv0045c were determined at 1.8 Å and 2.0 Å resolution in the presence and absence of Zn2+ with each structure containing a previously unresolved dynamic loop spanning the binding pocket. Through the combination of structural analysis with and without zinc and targeted mutagenesis, this metal‐dependent inhibition was traced to multiple chelating residues (H202A/E204A) on a flexible loop, suggesting dynamic allosteric regulation of Rv0045c by divalent metals. Although serine hydrolases like Rv0045c are a large and diverse enzyme superfamily, this is the first structural confirmation of allosteric regulation of their enzymatic activity by divalent metals.  相似文献   

17.
The 97 amino acid bitopic membrane protein M2 of influenza A forms a tetrameric bundle in which two of the monomers are covalently linked via a cysteine bridge. In its tetrameric assembly the protein conducts protons across the viral envelope and within intracellular compartments during the infectivity cycle of the virus. A key residue in the translocation of the protons is His-37 which forms a planar tetrad in the configuration of the bundle accepting and translocating the incoming protons from the N terminal side, exterior of the virus, to the C terminal side, inside the virus. With experimentally available data from NMR spectroscopy of the transmembrane domains of the tetrameric M2 bundle classical MD simulations are conducted with the protein bundle in different protonation stages in respect to His-37. A full correlation analysis (FCA) of the data sets with the His-37 tetrad either in a fully four times unprotonated or protonated state, assumed to mimic high and low pH in vivo, respectively, in both cases reveal asymmetric backbone dynamics. His-37 side chain rotation dynamics is increased at full protonation of the tetrad compared to the dynamics in the fully unprotonated state. The data suggest that proton translocation can be achieved by decoupled side chain or backbone dynamics.
Graphical abstract Visualization of the tetrameric bundle of the transmembrane domains of M2 of influenza A after 200 ns of MD simulations (upper left). The four histidine residues 37 are either not protonated as in M20 or fully protonated is in M24+. The asymmetric dynamics of the backbones are shown after a full correlation analysis (FCA) in blue (lower left). The rotational dynamics of the χ2 dihedral angles of the histidines in M20 (upper right) are less than those in M24+ (lower right)
  相似文献   

18.
Hypoxanthine‐guanine‐xanthine phosphoribosyltransference (HGXPRT), a key enzyme in the purine salvage pathway of the malarial parasite, Plasmodium falciparum (Pf), catalyses the conversion of hypoxanthine, guanine, and xanthine to their corresponding mononucleotides; IMP, GMP, and XMP, respectively. Out of the five active site loops (I, II, III, III', and IV) in PfHGXPRT, loop III' facilitates the closure of the hood over the core domain which is the penultimate step during enzymatic catalysis. PfHGXPRT mutants were constructed wherein Trp 181 in loop III' was substituted with Ser, Thr, Tyr, and Phe. The mutants (W181S, W181Y and W181F), when examined for xanthine phosphoribosylation activity, showed an increase in Km for PRPP by 2.1‐3.4 fold under unactivated condition and a decrease in catalytic efficiency by more than 5‐fold under activated condition as compared to that of the wild‐type enzyme. The W181T mutant showed 10‐fold reduced xanthine phosphoribosylation activity. Furthermore, molecular dynamics simulations of WT and in silico W181S/Y/F/T PfHGXPRT mutants bound to IMP.PPi.Mg2+ have been carried out to address the effect of the mutation of W181 on the overall dynamics of the systems and identify local changes in loop III'. Dynamic cross‐correlation analyses show a communication between loop III' and the substrate binding site. Differential cross‐correlation maps indicate altered communication among different regions in the mutants. Changes in the local contacts and hydrogen bonding between residue 181 with the nearby residues cause altered substrate affinity and catalytic efficiency of the mutant enzymes. Proteins 2016; 84:1658–1669. © 2016 Wiley Periodicals, Inc.  相似文献   

19.
As a unique member of the voltage-gated potassium channel family, a large conductance, voltage- and Ca2+-activated K+ (BK) channel has a large cytosolic domain that serves as the Ca2+ sensor, in addition to a membrane-spanning domain that contains the voltage-sensing (VSD) and pore-gate domains. The conformational changes of the cytosolic domain induced by Ca2+ binding and the conformational changes of the VSD induced by membrane voltage changes trigger the opening of the pore-gate domain. Although some structural information of these individual functional domains is available, how the interactions among these domains, especially the noncovalent interactions, control the dynamic gating process of BK channels is still not clear. Previous studies discovered that intracellular Mg2+ binds to an interdomain binding site consisting of D99 and N172 from the membrane-spanning domain and E374 and E399 from the cytosolic domain. The bound Mg2+ at this narrow interdomain interface activates the BK channel through an electrostatic interaction with a positively charged residue in the VSD. In this study, we investigated the potential interdomain interactions between the Mg2+-coordination residues and their effects on channel gating. By introducing different charges to these residues, we discovered a native interdomain interaction between D99 and E374 that can affect BK channel activation. To understand the underlying mechanism of the interdomain interactions between the Mg2+-coordination residues, we introduced artificial electrostatic interactions between residues 172 and 399 from two different domains. We found that the interdomain interactions between these two positions not only alter the local conformations near the Mg2+-binding site but also change distant conformations including the pore-gate domain, thereby affecting the voltage- and Ca2+-dependent activation of the BK channel. These results illustrate the importance of interdomain interactions to the allosteric gating mechanisms of BK channels.  相似文献   

20.
Ancient conserved domain protein/cyclin M (CNNM) family proteins are evolutionarily conserved Mg2+ transporters. However, their biochemical mechanism of action remains unknown. Here, we show the functional importance of the commonly conserved cystathionine-β-synthase (CBS) domains and reveal their unique binding ability to ATP. Deletion mutants of CNNM2 and CNNM4, lacking the CBS domains, are unable to promote Mg2+ efflux. Furthermore, the substitution of one amino acid residue in the CBS domains of CNNM2, which is associated with human hereditary hypomagnesemia, abrogates Mg2+ efflux. Binding analyses reveal that the CBS domains of CNNM2 bind directly to ATP and not AMP in a manner dependent on the presence of Mg2+, which is inhibited in a similar pattern by the disease-associated amino acid substitution. The requirement of Mg2+ for these interactions is a unique feature among CBS domains, which can be explained by the presence of highly electronegative surface potentials around the ATP binding site on CNNM2. These results demonstrate that the CBS domains play essential roles in Mg2+ efflux, probably through interactions with ATP. Interactions with ATP, which mostly forms complexes with Mg2+ in cells, may account for the rapid Mg2+ transport by CNNM family proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号