首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 0 毫秒
1.
Proteins belonging to the glycoside hydrolase family 63 (GH63) are found in bacteria, archaea, and eukaryotes. Eukaryotic GH63 proteins are processing α-glucosidase I enzymes that hydrolyze an oligosaccharide precursor of eukaryotic N-linked glycoproteins. In contrast, the functions of the bacterial and archaeal GH63 proteins are unclear. Here we determined the crystal structure of a bacterial GH63 enzyme, Escherichia coli K12 YgjK, at 1.78 Å resolution and investigated some properties of the enzyme. YgjK consists of the N-domain and the A-domain, joined by a linker region. The N-domain is composed of 18 antiparallel β-strands and is classified as a super-β-sandwich. The A-domain contains 16 α-helices, 12 of which form an (α/α)6-barrel; the remaining 4 α-helices are found in an extra structural unit that we designated as the A′-region. YgjK, a member of the glycoside hydrolase clan GH-G, shares structural similarity with glucoamylase (GH15) and chitobiose phosphorylase (GH65), both of which belong to clan GH-L. In crystal structures of YgjK in complex with glucose, mannose, and galactose, all of the glucose, mannose, and galactose units were located in the catalytic cleft. YgjK showed the highest activity for the α-1,3-glucosidic linkage of nigerose, but also hydrolyzed trehalose, kojibiose, and maltooligosaccharides from maltose to maltoheptaose, although the activities were low. These findings suggest that YgjK is a glucosidase with relaxed specificity for sugars.  相似文献   

2.
In the ancient organisms, methanogenic archaea, lacking the canonical cysteinyl-tRNA synthetase, Cys-tRNA(Cys) is produced by an indirect pathway, in which O-phosphoseryl-tRNA synthetase ligates O-phosphoserine (Sep) to tRNA(Cys) and Sep-tRNA:Cys-tRNA synthase (SepCysS) converts Sep-tRNA(Cys) to Cys-tRNA(Cys). In this study, the crystal structure of SepCysS from Archaeoglobus fulgidus has been determined at 2.4 A resolution. SepCysS forms a dimer, composed of monomers bearing large and small domains. The large domain harbors the seven-stranded beta-sheet, which is typical of the pyridoxal 5'-phosphate (PLP)-dependent enzymes. In the active site, which is located near the dimer interface, PLP is covalently bound to the side-chain of the conserved Lys209. In the proximity of PLP, a sulfate ion is bound by the side-chains of the conserved Arg79, His103, and Tyr104 residues. The active site is located deep within the large, basic cleft to accommodate Sep-tRNA(Cys). On the basis of the surface electrostatic potential, the amino acid residue conservation mapping, the position of the bound sulfate ion, and the substrate amino acid binding manner in other PLP-dependent enzymes, a binding model of Sep-tRNA(Cys) to SepCysS was constructed. One of the three strictly conserved Cys residues (Cys39, Cys42, or Cys247), of one subunit may play a crucial role in the catalysis in the active site of the other subunit.  相似文献   

3.
4.
DNA is a remarkable macromolecule that functions primarily as the carrier of the genetic information of organisms ranging from viruses to bacteria to eukaryotes. The ability of DNA polymerases to efficiently and accurately replicate genetic material represents one of the most fundamental yet complex biological processes found in nature. The central dogma of DNA polymerization is that the efficiency and fidelity of this biological process is dependent upon proper hydrogen-bonding interactions between an incoming nucleotide and its templating partner. However, the foundation of this dogma has been recently challenged by the demonstration that DNA polymerases can effectively and, in some cases, selectively incorporate non-natural nucleotides lacking classic hydrogen-bonding capabilities into DNA. In this review, we describe the results of several laboratories that have employed a variety of non-natural nucleotide analogs to decipher the molecular mechanism of DNA polymerization. The use of various non-natural nucleotides has lead to the development of several different models that can explain how efficient DNA synthesis can occur in the absence of hydrogen-bonding interactions. These models include the influence of steric fit and shape complementarity, hydrophobicity and solvation energies, base-stacking capabilities, and negative selection as alternatives to rules invoking simple recognition of hydrogen-bonding patterns. Discussions are also provided regarding how the kinetics of primer extension and exonuclease proofreading activities associated with high-fidelity DNA polymerases are influenced by the absence of hydrogen-bonding functional groups exhibited by non-natural nucleotides.  相似文献   

5.
Cytosolic 5′-nucleotidase II (cN-II) catalyzes the dephosphorylation of 6-hydroxypurine nucleoside 5′-monophosphates and participates in the regulation of purine nucleotide pools within the cell. It interferes with the phosphorylation-dependent activation of nucleoside analogues used in the treatment of cancer and viral diseases. It is allosterically activated by a number of phosphate-containing cellular metabolites such as ATP, diadenosine polyphosphates, and 2,3-bisphosphoglycerate, which couple its activity with the metabolic state of the cell. We present seven high-resolution structures of human cN-II, including a ligand-free form and complexes with various substrates and effectors. These structures reveal the structural basis for the allosteric activation of cN-II, uncovering a mechanism where an effector-induced disorder-to-order transition generates rearrangements within the catalytic site and the subsequent coordination of the catalytically essential magnesium. Central to the activation is the large transition of the catalytically essential Asp356. This study also provides the structural basis for the substrate specificity of cN-II, where Arg202, Asp206, and Phe157 seem to be important residues for purine/pyrimidine selectivity. These structures provide a comprehensive structural basis for the design of cN-II inhibitors. They also contribute to the understanding of how the nucleotide salvage pathway is regulated at a molecular level.  相似文献   

6.
Gluconate 5‐dehydrogenase (Ga5DH) is an NADP(H)‐dependent enzyme that catalyzes a reversible oxidoreduction reaction between D ‐gluconate and 5‐keto‐D ‐gluconate, thereby regulating the flux of this important carbon and energy source in bacteria. Despite the considerable amount of physiological and biochemical knowledge of Ga5DH, there is little physical or structural information available for this enzyme. To this end, we herein report the crystal structures of Ga5DH from pathogenic Streptococcus suis serotype 2 in both substrate‐free and liganded (NADP+/D ‐gluconate/metal ion) quaternary complex forms at 2.0 Å resolution. Structural analysis reveals that Ga5DH adopts a protein fold similar to that found in members of the short chain dehydrogenase/reductase (SDR) family, while the enzyme itself represents a previously uncharacterized member of this family. In solution, Ga5DH exists as a tetramer that comprised four identical ~29 kDa subunits. The catalytic site of Ga5DH shows considerable architectural similarity to that found in other enzymes of the SDR family, but the S. suis protein contains an additional residue (Arg104) that plays an important role in the binding and orientation of substrate. The quaternary complex structure provides the first clear crystallographic evidence for the role of a catalytically important serine residue and also reveals an amino acid tetrad RSYK that differs from the SYK triad found in the majority of SDR enzymes. Detailed analysis of the crystal structures reveals important contributions of Ca2+ ions to active site formation and of specific residues at the C‐termini of subunits to tetramer assembly. Because Ga5DH is a potential target for therapy, our findings provide insight not only of catalytic mechanism, but also suggest a target of structure‐based drug design.  相似文献   

7.
FeoB in bacteria and archaea is involved in the uptake of ferrous iron (Fe2+), an important cofactor in biological electron transfer and catalysis. Unlike any other known prokaryotic membrane protein, FeoB contains a GTP-binding domain at its N-terminus. We determined high-resolution X-ray structures of the FeoB G-domain from Methanococcus jannaschii with and without bound GDP or Mg2+-GppNHp. The G-domain forms the same dimer in all three structures, with the nucleotide-binding pockets at the dimer interface, as in the ATP-binding domain of ABC transporters. The G-domain follows the typical fold of nucleotide-binding proteins, with a β-strand inserted in switch I that becomes partially disordered upon GTP binding. Switch II does not contact the nucleotide directly and does not change its conformation in response to the bound nucleotide. Release of the nucleotide causes a rearrangement of loop L6, which we identified as the G5 region of FeoB. Together with the C-terminal helix, this loop may transmit the information about the nucleotide-bound state from the G-domain to the transmembrane region of FeoB.  相似文献   

8.
Adenylosuccinate lyase (ADL) catalyzes the breakdown of 5-aminoimidazole- (N-succinylocarboxamide) ribotide (SAICAR) to 5-aminoimidazole-4-carboxamide ribotide (AICAR) and fumarate, and of adenylosuccinate (ADS) to adenosine monophosphate (AMP) and fumarate in the de novo purine biosynthetic pathway. ADL belongs to the argininosuccinate lyase (ASL)/fumarase C superfamily of enzymes. Members of this family share several common features including: a mainly alpha-helical, homotetrameric structure; three regions of highly conserved amino acid residues; and a general acid-base catalytic mechanism with the overall beta-elimination of fumarate as a product. The crystal structures of wild-type Escherichia coli ADL (ec-ADL), and mutant-substrate (H171A-ADS) and -product (H171N-AMP.FUM) complexes have been determined to 2.0, 1.85, and 2.0 A resolution, respectively. The H171A-ADS and H171N-AMP.FUM structures provide the first detailed picture of the ADL active site, and have enabled the precise identification of substrate binding and putative catalytic residues. Contrary to previous suggestions, the ec-ADL structures implicate S295 and H171 in base and acid catalysis, respectively. Furthermore, structural alignments of ec-ADL with other superfamily members suggest for the first time a large conformational movement of the flexible C3 loop (residues 287-303) in ec-ADL upon substrate binding and catalysis, resulting in its closure over the active site. This loop movement has been observed in other superfamily enzymes, and has been proposed to be essential for catalysis. The ADL catalytic mechanism is re-examined in light of the results presented here.  相似文献   

9.
Plant β‐galactosidases hydrolyze cell wall β‐(1,4)‐galactans to play important roles in cell wall expansion and degradation, and turnover of signaling molecules, during ripening. Tomato β‐galactosidase 4 (TBG4) is an enzyme responsible for fruit softening through the degradation of β‐(1,4)‐galactan in the pericarp cell wall. TBG4 is the only enzyme among TBGs 1–7 that belongs to the β‐galactosidase/exo‐β‐(1,4)‐galactanase subfamily. The enzyme can hydrolyze a wide range of plant‐derived (1,4)‐ or 4‐linked polysaccharides, and shows a strong ability to attack β‐(1,4)‐galactan. To gain structural insight into its substrate specificity, we determined crystal structures of TBG4 and its complex with β‐d ‐galactose. TBG4 comprises a catalytic TIM barrel domain followed by three β‐sandwich domains. Three aromatic residues in the catalytic site that are thought to be important for substrate specificity are conserved in GH35 β‐galactosidases derived from bacteria, fungi and animals; however, the crystal structures of TBG4 revealed that the enzyme has a valine residue (V548) replacing one of the conserved aromatic residues. The V548W mutant of TBG4 showed a roughly sixfold increase in activity towards β‐(1,6)‐galactobiose, and ~0.6‐fold activity towards β‐(1,4)‐galactobiose, compared with wild‐type TBG4. Amino acid residues corresponding to V548 of TBG4 thus appear to determine the substrate specificities of plant β‐galactosidases towards β‐1,4 and β‐1,6 linkages.  相似文献   

10.
11.
The phnD gene of Escherichia coli encodes the periplasmic binding protein of the phosphonate (Pn) uptake and utilization pathway. We have crystallized and determined structures of E. coli PhnD (EcPhnD) in the absence of ligand and in complex with the environmentally abundant 2-aminoethylphosphonate (2AEP). Similar to other bacterial periplasmic binding proteins, 2AEP binds near the center of mass of EcPhnD in a cleft formed between two lobes. Comparison of the open, unliganded structure with the closed 2AEP-bound structure shows that the two lobes pivot around a hinge by ∼ 70° between the two states. Extensive hydrogen bonding and electrostatic interactions stabilize 2AEP, which binds to EcPhnD with low nanomolar affinity. These structures provide insight into Pn uptake by bacteria and facilitated the rational design of high signal-to-noise Pn biosensors based on both coupled small-molecule dyes and autocatalytic fluorescent proteins.  相似文献   

12.
The prokaryotic 5′-methylthioadenosine/S-adenosylhomocysteine nucleosidase (MTAN) catalyzes the irreversible cleavage of the glycosidic bond in 5′-methylthioadenosine (MTA) and S-adenosylhomocysteine (SAH), a process that plays a key role in several metabolic pathways. Its absence in all mammalian species has implicated this enzyme as a promising target for antimicrobial drug design. Here, we report the crystal structure of BmMTAN in complex with its product adenine at a resolution of 2.6 Å determined by single-wavelength anomalous dispersion method. 11 key residues were mutated for kinetic characterization. Mutations of Tyr134 and Met144 resulted in the largest overall increase in Km, whereas mutagenesis of residues Glu18, Glu145 and Asp168 completely abolished activity. Glu145 and Asp168 were identified as active site residues essential for catalysis. The catalytic mechanism and implications of this structure for broad-based antibiotic design are discussed.  相似文献   

13.
The three-dimensional structure of a Salmonella enterica hypothetical protein YihS is significantly similar to that of N-acyl-d-glucosamine 2-epimerase (AGE) with respect to a common scaffold, an α66-barrel, although the function of YihS remains to be clarified. To identify the function of YihS, Escherichia coli and S. enterica YihS proteins were overexpressed in E. coli, purified, and characterized. Both proteins were found to show no AGE activity but showed cofactor-independent aldose-ketose isomerase activity involved in the interconversion of monosaccharides, mannose, fructose, and glucose, or lyxose and xylulose. In order to clarify the structure/function relationship of YihS, we determined the crystal structure of S. enterica YihS mutant (H248A) in complex with a substrate (d-mannose) at 1.6 Å resolution. This enzyme-substrate complex structure is the first demonstration in the AGE structural family, and it enables us to identify active-site residues and postulate a reaction mechanism for YihS. The substrate, β-d-mannose, fits well in the active site and is specifically recognized by the enzyme. The substrate-binding site of YihS for the mannose C1 and O5 atoms is architecturally similar to those of mutarotases, suggesting that YihS adopts the pyranose ring-opening process by His383 and acidifies the C2 position, forming an aldehyde at the C1 position. In the isomerization step, His248 functions as a base catalyst responsible for transferring the proton from the C2 to C1 positions through a cis-enediol intermediate. On the other hand, in AGE, His248 is thought to abstract and re-adduct the proton at the C2 position of the substrate. These findings provide not only molecular insights into the YihS reaction mechanism but also useful information for the molecular design of novel carbohydrate-active enzymes with the common scaffold, α66-barrel.  相似文献   

14.
The glutamine/amino acid transporter was solubilized from rat renal apical plasma membrane (brush-border membrane) with C12E8 and reconstituted into liposomes by removing the detergent from mixed micelles by hydrophobic chromatography on Amberlite XAD-4. The reconstitution was optimised with respect to the protein concentration, the detergent/phospholipid ratio and the number of passages through a single Amberlite column. The reconstituted glutamine/amino acid transporter catalysed a first-order antiport reaction stimulated by external, not internal, Na+. Optimal activity was found at pH 7.0. The sulfhydryl reagents HgCl2, mersalyl and p-hydroxymercuribenzoate and the amino acids alanine, serine, threonine, cysteine, asparagine, methionine and valine strongly inhibited the transport, whereas the amino acid analogue methylaminoisobutyrate had no effect. Glutamine, alanine, serine, asparagine, threonine were efficiently translocated from outside to inside and from inside to outside the proteoliposomes as well. Cysteine and valine were translocated preferentially from outside to inside. The Km for glutamine on the external and internal side of the transporter was 0.47 and 11 mM, respectively; the values were not influenced by the type of the counter substrate. The transporter is functionally asymmetrical and it is unidirectionally inserted into the proteoliposomal membrane with an orientation corresponding to that of the native membrane. By a bisubstrate kinetic analysis of the glutamine antiport, a random simultaneous mechanism was found. The glutamine antiport was strongly stimulated by internal nucleoside triphosphates and, to a lower extent, by pyrophoshate. The reconstituted glutamine/amino acid transporter functionally corresponds to the ASCT2 protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号