首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The crystal structures of two analogs of Pro-Leu-Gly-NH2 (1), containing a gamma-lactam conformational constraint in place of the -Leu-Gly- sequences, are described. The highly biologically active (S,R)-diastereomer 2a is semi-extended at the C-terminus, with the N-terminal Pro residue in the unusual "C5" conformation [psi 1 = -0.8(15) degrees] stabilized by a (peptide)N-H...N(amino) intramolecular H-bond [the N(3)...N(4) separation is 2.687(11)A]. Conversely, the N,N'-isopropylidene aminal trihydrate of the (S,S)-diastereomer 2b, compound 3, adopts a beta-bend conformation at the C-terminus, as already reported for 1. However, the backbone torsion angles [phi 2 = 57.4(4), psi 2 = -129.9(3) degrees; psi 3 = -92.3(4), phi 3 = 6.4(5) degrees] lie close to the values expected for the corner residues of an ideal type-II' beta-bend. A weak intramolecular 4----1 H-bond is seen between the Gly carboxyamide anti-NH and Pro C = O groups. In the newly formed 2,2,3,4-tetraalkyl-5-oxo-imidazolidin-1-yl moiety the psi 1 torsion angle is 12.9(4) degrees and the intramolecular N(3)...N(4) separation is 2.321(4)A.  相似文献   

2.
To identify basic local backbone motions in unfolded chains, simulations are performed for a variety of peptide systems using three popular force fields and for implicit and explicit solvent models. A dominant "crankshaft-like" motion is found that involves only a localized oscillation of the plane of the peptide group. This motion results in a strong anticorrelated motion of the phi angle of the ith residue (phi(i)) and the psi angle of the residue i - 1 (psi(i-1)) on the 0.1 ps time scale. Only a slight correlation is found between the motions of the two backbone dihedral angles of the same residue. Aside from the special cases of glycine and proline, no correlations are found between backbone dihedral angles that are separated by more than one torsion angle. These short time, correlated motions are found both in equilibrium fluctuations and during the transit process between Ramachandran basins, e.g., from the beta to the alpha region. A residue's complete transit from one Ramachandran basin to another, however, occurs in a manner independent of its neighbors' conformational transitions. These properties appear to be intrinsic because they are robust across different force fields, solvent models, nonbonded interaction routines, and most amino acids.  相似文献   

3.
Geometrical validation around the Calpha is described, with a new Cbeta measure and updated Ramachandran plot. Deviation of the observed Cbeta atom from ideal position provides a single measure encapsulating the major structure-validation information contained in bond angle distortions. Cbeta deviation is sensitive to incompatibilities between sidechain and backbone caused by misfit conformations or inappropriate refinement restraints. A new phi,psi plot using density-dependent smoothing for 81,234 non-Gly, non-Pro, and non-prePro residues with B < 30 from 500 high-resolution proteins shows sharp boundaries at critical edges and clear delineation between large empty areas and regions that are allowed but disfavored. One such region is the gamma-turn conformation near +75 degrees,-60 degrees, counted as forbidden by common structure-validation programs; however, it occurs in well-ordered parts of good structures, it is overrepresented near functional sites, and strain is partly compensated by the gamma-turn H-bond. Favored and allowed phi,psi regions are also defined for Pro, pre-Pro, and Gly (important because Gly phi,psi angles are more permissive but less accurately determined). Details of these accurate empirical distributions are poorly predicted by previous theoretical calculations, including a region left of alpha-helix, which rates as favorable in energy yet rarely occurs. A proposed factor explaining this discrepancy is that crowding of the two-peptide NHs permits donating only a single H-bond. New calculations by Hu et al. [Proteins 2002 (this issue)] for Ala and Gly dipeptides, using mixed quantum mechanics and molecular mechanics, fit our nonrepetitive data in excellent detail. To run our geometrical evaluations on a user-uploaded file, see MOLPROBITY (http://kinemage.biochem.duke.edu) or RAMPAGE (http://www-cryst.bioc.cam.ac.uk/rampage).  相似文献   

4.
This paper describes the chemical synthesis and crystal molecular conformation of a non-chiral beta-Ala containing model peptide Boc-beta-Ala-Acc5-OCH3. The analysis revealed the existence of two crystallographically independent molecules A and B, in the asymmetric unit. Unexpectedly, while the magnitudes of the backbone torsion angles in both molecules are remarkably similar, the signs of the corresponding torsion angles are reverse therefore, inclining us to suggest the existence of non-superimposable stereogeometrical features in a non-chiral one-component beta-Ala model system. The critical mu torsion angle around CbetaH2-CalphaH2 bond of the beta-Ala residue represents a typical gauche orientation i.e., mu = 67.7 degrees in A and mu = -61.2 degrees in B, providing the molecule an overall crescent shaped topology. The observed conformation contrasts markedly to those determined for the correlated non-chiral model peptides: Boc-beta-Ala-Acc6-OCH3 and Boc-beta-Ala-Aib-OCH3 signifying the role of stereocontrolling elements since the stereochemically constrained Calpha, alpha-disubstituted glycyl residues (e.g., Acc5, Acc6, and the prototype Aib) are known to strongly restrict the peptide backbone conformations in the 3(10)/alpha-helical-regions ( phi approximately +/-60+/-20 degrees, psi approximately +/-30+/-20 degrees) of the Ramachandran map. Unpredictably, the preferred, phi, psi torsion angles of the Acc5 residue fall outside the helical regions of the Ramachandran map and exhibit opposite-handed twists for A and B. The implications of the semi-extended conformation of the Acc5 residue in the construction of backbone-modified novel scaffolds and peptides of biological relevance are highlighted. Taken together, the results indicate that in short linear beta-Ala containing peptides specific structural changes can be induced by selective substitution of non-coded linear- or cyclic symmetrically Calpha,alpha-disubstituted glycines, reinstating the hypothesis that in addition to conformational restrictions, the chemical nature of the neighboring side-chain substituents and local environments collectively influences the stabilization of folding-unfolding behavior of the two methylene units of a beta-Ala residue.  相似文献   

5.
To estimate how extensively the ensemble of denatured-state conformations is constrained by local side-chain–backbone interactions, propensities of each of the 20 amino acids to occur in mono- and dipeptides mapped to discrete regions of the Ramachandran map are computed from proteins of known structure. In addition, propensities are computed for the trans, gauche−, and gauche+ rotamers, with or without consideration of the values of phi and psi. These propensities are used in scoring functions for fragment threading, which estimates the energetic favorability of fragments of protein sequence to adopt the native conformation as opposed to hundreds of thousands of incorrect conformations. As finer subdivisions of the Ramachandran plot, neighboring residue phi/psi angles, and rotamers are incorporated, scoring functions become better at ranking the native conformation as the most favorable. With the best composite propensity function, the native structure can be distinguished from 300,000 incorrect structures for 71% of the 2130 arbitrary protein segments of length 40, 48% of 2247 segments of length 30, and 20% of 2368 segments of length 20. A majority of fragments of length 30–40 are estimated to be folded into the native conformation a substantial fraction of the time. These data suggest that the variations observed in amino acid frequencies in different phi/psi/chi1 environments in folded proteins reflect energetically important local side-chain–backbone interactions, interactions that may severely restrict the ensemble of conformations populated in the denatured state to a relatively small subset with nativelike structure.  相似文献   

6.
Crystals of the tripeptide, glycyl-glycyl-sarcosine (C7H13N3O4) from aqueous methanol are orthorhombic, space group Pbcn with cell parameters at 294 K of a = 8.279(1), b = 9.229(4), c = 24.447(5)A, V = 1868.0 A3, M.W. = 203.2, and Z = 8. The crystal structure was solved and refined using CAD-4 data (1171 reflections greater than or equal to 3 sigma) to a final R-value of 0.053. The first peptide linkage is trans and planar whereas the second peptide link between Gly and sarcosine is cis and appreciably non-planar (w = 7.4 degrees). The peptide backbone has an extended conformation at the N-terminal part but adopts a polyglycine-II type of conformation at the C-terminal part. The backbone torsion angles are: psi 1 = -173.9, w1 = -177.8, (phi 2, psi 2) = (-178.8, -170.8), w2 = 7.4, (phi 3, psi 3) = (-81.6, 165.6 degrees).  相似文献   

7.
A composite plot for depicting in two dimensions the conformation and the secondary structural features of protein residues has been developed. Instead of presenting the exact values of the main- and side-chain torsion angles (φ, psi and chi(1)), it indicates the region in the three-dimensional conformational space to which a residue belongs. Other structural aspects, like the presence of a cis peptide bond and disulfide linkages, are also displayed. The plot may be used to recognize patterns in the backbone and side-chain conformation along a polypeptide chain and to compare protein structures derived from X-ray crystallography, NMR spectroscopy or molecular modelling studies and also to highlight the effect of mutation on structure.  相似文献   

8.
There are many kinds of silks from silkworms and spiders with different structures and properties, and thus, silks are suitable to study the structure-property relationship of fibrous proteins. Silk fibroin from a wild silkworm, Samia cynthia ricini, mainly consists of the repeated similar sequences by about 100 times where there are alternative appearances of the polyalanine (Ala)(12-13) region and the Gly-rich region. In this paper, a sequential model peptide, GGAGGGYGGDGG(A)(12)GGAGDGYGAG, which is a typical sequence of the silk fibroin, was synthesized, and the atomic-level conformations of Gly residues at the N- and C-terminal ends of the polyalanine region were determined as well as that of the central Ala residue using (13)C 2D spin diffusion solid-state nuclear magnetic resonance (NMR) under off-magic angle spinning. In the model peptide with alpha-helical conformation, the torsion angle of the central Ala residue, the 19th Ala, was determined to be (phi, psi) = (-60 degrees, -50 degrees ), which was a typical alpha-helical structure, but the torsion angles of two Gly residues, the 12th and 25th Gly residues, which are located at the N- and C-terminal ends of the polyalanine region, were determined to be (phi, psi) = (-70 degrees, -30 degrees ) and (phi, psi) = (-70 degrees, -20 degrees ), respectively. Thus, it was observed that the turns at both ends of polyalanine with alpha-helix conformation in the model peptide are tightly wound.  相似文献   

9.
Stress and strain in staphylococcal nuclease.   总被引:5,自引:5,他引:0       下载免费PDF全文
Protein molecules generally adopt a tertiary structure in which all backbone and side chain conformations are arranged in local energy minima; however, in several well-refined protein structures examples of locally strained geometries, such as cis peptide bonds, have been observed. Staphylococcal nuclease A contains a single cis peptide bond between residues Lys 116 and Pro 117 within a type VIa beta-turn. Alternative native folded forms of nuclease A have been detected by NMR spectroscopy and attributed to a mixture of cis and trans isomers at the Lys 116-Pro 117 peptide bond. Analyses of nuclease variants K116G and K116A by NMR spectroscopy and X-ray crystallography are reported herein. The structure of K116A is indistinguishable from that of nuclease A, including a cis 116-117 peptide bond (92% populated in solution). The overall fold of K116G is also indistinguishable from nuclease A except in the region of the substitution (residues 112-117), which contains a predominantly trans Gly 116-Pro 117 peptide bond (80% populated in solution). Both Lys and Ala would be prohibited from adopting the backbone conformation of Gly 116 due to steric clashes between the beta-carbon and the surrounding residues. One explanation for these results is that the position of the ends of the residue 112-117 loop only allow trans conformations where the local backbone interactions associated with the phi and psi torsion angles are strained. When the 116-117 peptide bond is cis, less strained backbone conformations are available. Thus the relaxation of the backbone strain intrinsic to the trans conformation compensates for the energetically unfavorable cis X-Pro peptide bond. With the removal of the side chain from residue 116 (K116G), the backbone strain of the trans conformation is reduced to the point that the conformation associated with the cis peptide bond is no longer favorable.  相似文献   

10.
On the basis of joint consideration of distance dependences between amide proton NH and protons C alpha H, NH, C beta H of the preceding in amino acid sequence residue from the torsion angles phi psi, chi 1, the correlation diagram of these proton-proton distances with the regions of sterically allowed conformational space (phi, psi) is presented and the method for the determination of the L-amino acid residues backbone conformations is proposed. The diagram was used for the determination of backbone conformations of bovine pancreatic trypsin inhibitor and trypsin inhibitors E and K from Dendroaspis polylepis using the data from two-dimensional 1H-NMR spectroscopy. The analysis of backbone conformations was carried out. The individual elements of these protein molecules secondary structure were characterized and their high conformational homology was shown. The inference about qualitative coincidence of three protein molecules conformation in solution, preservation of secondary structure basic elements and their similarity with bovine pancreatic trypsin inhibitor crystalline structure was made.  相似文献   

11.
Residue Asn47 at position L1 of a type II' beta-turn of the alpha-spectrin SH3 domain is located in a disallowed region of the Ramachandran plot (phi = 56 +/- 12, psi = -118 +/- 17). Therefore, it is expected that replacement of Asn47 by Gly should result in a considerable stabilization of the protein. Thermodynamic analysis of the N47G and N47A mutants shows that the change in free energy is small (approximately 0.7 kcal/mol; approximately 3 kJ/mol) and comparable to that found when mutating a Gly to Ala in a alpha-helix or beta-sheet. X-ray structural analysis of these mutants shows that the conformation of the beta-turn does not change upon mutation and, therefore, that there is no relaxation of the structure, nor is there any gain or loss of interactions that could explain the small energy change. Our results indicate that the energetic definition of II' region of the Ramachandran plot (phi = 60 +/- 30, psi = -115 +/- 15) should be revised for at least Ala and Asn in structure validation and protein design.  相似文献   

12.
Non-glycine residues in proteins are rarely observed to have "left-handed helical" conformations. For glycine, however, this conformation is common. To determine the contributions of left-handed helical residues to the stability of a protein, two such residues in phage T4 lysozyme, Asn55 and Lys124, were replaced with glycine. The mutant proteins fold normally and are fully active, showing that left-handed non-glycine residues, although rare, do not have an indispensable role in the folding of the protein or in its activity. The thermodynamic stability of the Lys124 to Gly variant is essentially identical with that of wild-type lysozyme. The Asn55 to Gly mutant protein is marginally less stable (0.5 kcal/mol). These results indicate that the conformational energy of a glycine and a non-glycine residue in the left-handed helical conformation are very similar. This is consistent with some theoretical energy distributions, but is inconsistent with others, which suggest that replacements of the sort described here might increase the stability of the protein by up to 5 kcal/mol. Crystallographic analysis of the mutant proteins shows that the backbone conformation of the Lys124 to Gly variant is essentially identical with that of the wild-type structure. In the case of the Asn55 to Gly replacement, however, the (phi, psi) values of residue 55 change by about 20 degrees. This suggests that the energy minimum for left-handed glycine residues is not the same as that for non-glycine residues. This is strongly indicated also by a survey of accurately determined protein crystal structures, which suggests that the energy minimum for left-handed glycine residues is near (phi = 90 degrees, psi = 0 degrees), whereas that for non-glycine residues is close to (phi = 60 degrees, psi = 30 degrees). This apparent energy minimum for glycine is not clearly predicted by any of the theoretical (phi, psi) energy contour maps.  相似文献   

13.
Approaching a complete classification of protein secondary structure   总被引:2,自引:0,他引:2  
A complete classification of types of the protein secondary structure is developed on the basis of computer analysis of the crystallographic structural data deposited in the protein Data Bank. The majority of amino acid residues fall into five conformation types. A conclusion is drawn that the number of sequence variants of torsion angles phi, psi in globular proteins is limited and is essentially less than the number of possible amino acid sequences for this chain length. Along with alpha-helix and beta-structure, the distribution analysis assigning every maximum of distribution of amino acid conformations on Ramachandran map to a certain type of the secondary structure exposed a third type of the secondary structure that was previously neglected. This type of the structure is extended left-handed helical conformation, designated as mobile (M-) conformation. A full set of M-conformation fragments that seems to play a major role in protein globule dynamics has been obtained, a small radius of correlation for the polypeptide chain in M-conformation is demonstrated. It explains a prevalence of short segments of mobile conformation revealed in globular proteins. For secondary structure types, the frequency of occurrence of amino acid residues has been computed.  相似文献   

14.
A graphics package has been developed to display the main chain torsion angles phi, psi (phi, Psi); (Ramachandran angles) in a protein of known structure. In addition, the package calculates the Ramachandran angles at the central residue in the stretch of three amino acids having specified the flanking residue types. The package displays the Ramachandran angles along with a detailed analysis output. This software is incorporated with all the protein structures available in the Protein Databank.  相似文献   

15.
Doherty T  Waring AJ  Hong M 《Biochemistry》2006,45(44):13323-13330
The conformation and membrane topology of the disulfide-stabilized antimicrobial peptide tachyplesin I (TP) in lipid bilayers are determined by solid-state NMR spectroscopy. The backbone (phi and psi) torsion angles of Val(6) are found to be -133 degrees and 142 degrees , respectively, and the Val(6) CO-Phe(8) H(N) distance is 4.6 A. These constrain the middle of the N-terminal strand to a relatively ideal antiparallel beta-sheet conformation. In contrast, the phi angle of Gly(10) is +/-85 degrees , consistent with a beta-turn conformation. Thus, TP adopts a beta-hairpin conformation with straight strands, similar to its structure in aqueous solution but different from a recently reported structure in DPC micelles where bending of the two beta-strands was observed. The Val(6) and Gly(10) CO groups are both 6.8 A from the lipid (31)P, while the Val(6) side chain is in (1)H spin diffusion contact with the lipid acyl chains. These results suggest that TP is immersed in the glycerol backbone region of the membrane and is oriented roughly parallel to the plane of the membrane. This depth of insertion and orientation differs from those of the analogous beta-sheet antimicrobial peptide protegrin-1 and suggest the importance of structural amphiphilicity in determining the location and orientation of membrane peptides in lipid bilayers.  相似文献   

16.
The conformational preferences of azaphenylalanine-containing peptide were investigated using a model compound, Ac-azaPhe-NHMe with ab initio method at the HF/3-21G and HF/6-31G(*) levels, and the seven minimum energy conformations with trans orientation of acetyl group and the 4 minimum energy conformations with cis orientation of acetyl group were found at the HF/6-31G(*) level if their mirror images were not considered. An average backbone dihedral angle of the 11 minimum energy conformations is phi=+/-91 degrees +/-24 degrees , psi =+/-18 degrees +/-10 degrees (or +/-169 degrees +/-8 degrees ), corresponding to the i+2 position of beta-turn (delta(R)) or polyproline II (beta(P)) structure, respectively. The chi(1) angle in the aromatic side chain of azaPhe residue adopts preferentially between +/-60 degrees and +/-130 degrees, which reflect a steric hindrance between the N-terminal carbonyl group or the C-terminal amide group and the aromatic side chain with respect to the configuration of the acetyl group. These conformational preferences of Ac-azaPhe-NHMe predicted theoretically were compared with those of For-Phe-NHMe to characterize the structural role of azaPhe residue. Four tripeptides containing azaPhe residue, Boc-Xaa-azaPhe-Ala-OMe [Xaa=Gly(1), Ala(2), Phe(3), Asn(4)] were designed and synthesized to verify whether the backbone torsion angles of azaPhe reside are still the same as compared with theoretical conformations and how the preceding amino acids of azaPhe residue perturb the beta-turn skeleton in solution. The solution conformations of these tripeptide models containing azaPhe residue were determined in CDCl(3) and DMSO solvents using NMR and molecular modeling techniques. The characteristic NOE patterns, the temperature coefficients of amide protons and small solvent accessibility for the azapeptides 1-4 reveal to adopt the beta-turn structure. The structures of azapeptides containing azaPhe residue from a restrained molecular dynamics simulation indicated that average dihedral angles [(phi(1), psi(1)), (phi(2), psi(2))] of Xaa-azaPhe fragment in azapeptide, Boc-Xaa-azaPhe-Ala-OMe were [(-68 degrees, 135 degrees ), (116 degrees, -1 degrees )], and this implies that the intercalation of an azaPhe residue in tripeptide induces the betaII-turn conformation, and the volume change of a preceding amino acid of azaPhe residue in tripeptides would not perturb seriously the backbone dihedral angle of beta-turn conformation. We believe such information could be critical in designing useful molecules containing azaPhe residue for drug discovery and peptide engineering.  相似文献   

17.
The local structure (torsion angles phi, psi and chi 1 of amino acid residues) of insectotoxin I5A (35 residues) of scorpion Buthus eupeus has been determined from cross-peak integral intensities in two-dimensional nuclear Overhauser enhancement (NOESY) spectra and spin coupling constants of vicinal H--NC alpha--H and H--C alpha C beta--H protons. The local structure determination was carried out by fitting complete relaxation matrix of peptide unit protons (protons of a given residue and NH proton of the next residue in the amino acid sequence) with experimental NOESY cross-peak intensities. The obtained intervals of backbone torsional angles phi and psi consistent with NMR data were determined for all but Gly residues. The predominant C alpha--C beta rotamer of the side chain has been unambiguously determined for 42% of the insectotoxin amino acid residues whereas for another 46% residues experimental data are fitted equally well with two rotamers. Stereospecific assignments were obtained for 38% of beta-methylene groups. The determined torsional angles phi, psi and chi 1 correspond to the sterically allowed conformations of the amino acid residues and agree with the insectotoxin secondary structure established earlier by 1H NMR spectroscopy.  相似文献   

18.
The accurate determination of a large number of protein structures by X-ray crystallography makes it possible to conduct a reliable statistical analysis of the distribution of the main-chain and side-chain conformational angles, how these are dependent on residue type, adjacent residue in the sequence, secondary structure, residue-residue interactions and location at the polypeptide chain termini. The interrelationship between the main-chain (phi, psi) and side-chain (chi 1) torsion angles leads to a classification of amino acid residues that simplify the folding alphabet considerably and can be a guide to the design of new proteins or mutational studies. Analyses of residues occurring with disallowed main-chain conformation or with multiple conformations shed some light on why some residues are less favoured in thermophiles.  相似文献   

19.
The molecular and crystal structure of one of the crystalline modifications of Bombyx mori, silk I, was determined by x-ray diffraction method. Cell dimensions are essentially the same as those found in the synthetic model peptide poly(L-Ala-Gly). The (straight phi, psi) values of L-Ala and Gly in the repeating unit are (-112 degrees, -6 degrees ), and (71 degrees, -99 degrees ) respectively, which are in the Bridge and the forth quadrant regions of the Ramachandran map, respectively. The observed molecular conformation in the present study has a "crank-shaft" or a S-shaped zigzag arrangement, leading to a remarkable agreement of observed and calculated structure amplitudes for both dipeptide and hexapeptide sequences, and has a reasonable hydrogen bond networks. Obtained (straight phi, psi) values are quite different from those reported by Lotz and Keith, even though overall appearances are quite similar to each other. In spite of intra- and intermolecular hydrogen-bond networks, silk I structure changes easily to the silk II by a mechanical deformation. This fragility may be due to the above peculiar crank-shaft conformation deduced from the alternating structure of alanine and glycine.  相似文献   

20.
The peptide N-Boc-L-Pro-dehydro-Phe-L-Gly-OH was synthesized by the usual workup procedure and finally coupling the N-Boc-L-Pro-dehydro-Phe to glycine. The peptide crystallizes in monoclinic space group P2(1) with a = 8.951(4) A, b = 5.677(6) A, c = 21.192(11) A, beta = 96.97(4) degrees, V = 1069(1) A3, Z = 2, dm = 1.295(5) Mgm-3, and dc = 1.297(4) Mgm-3. The structure was determined by direct methods using SHELXS86. The structure was refined by the block-diagonal least-squares procedure to an R value of 0.074 for 1002 observed reflections. The C alpha 2-C beta 2 distance of 1.33(2) A is an appropriate double bond length. The angle C alpha 2-C beta 2-C gamma 2 is 133(1) degrees. The peptide backbone torsion angles are theta 1 = -167(1) degrees, omega 0 = 179(1) degrees, phi 1 = -48(1) degrees, psi 1 = 137(1) degrees, omega 1 = 175(1) degrees, phi 2 = 65(2) degrees, psi 2 = 15(2) degrees, omega 2 = -179(1) degrees, and phi 3 = -166(1) degrees. These values show that the Boc group has a trans-trans conformation while the peptide backbone adopts a beta-turn II conformation, which is stabilized by an intramolecular hydrogen bond of length of 3.05(1) A. The structures of dehydro-Phe containing peptides suggest that the dehydro-Phe promotes the beta-turn II conformation. The five-membered pyrrolidine ring of the Pro residue adopts an ideal C gamma-exo conformation with torsion angles chi 1(1) = -24(1) degrees, chi 2(1) = 34(1) degrees, chi 3(1) = -30(1) degrees, chi 4(1) = 15(1) degrees, and theta 0(1) = 6(1) degrees. The side-chain torsion angles in dehydro-Phe are chi 1(2) = -1(2) degrees, chi 2,1(2) = -176(1) degrees, and chi 2,2(2) = 8(2) degrees. The plane of C alpha 2-C beta 2-C gamma 2 is rotated with respect to the plane of the phenyl ring at 7(1) degrees, which indicates that the atoms of the side chain of dehydro-Phe are essentially coplanar. The molecules form a 2(1) screw axis related hydrogen-bonded rows along the b axis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号