首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The EGF-like homeotic gene Dlk1 appears to function as an inhibitor of adipogenesis. Overexpression of Dlk1 prevents adipogenesis of 3T3-L1 cells. Dlk1-deficient mice are obese; however, adipose tissue still develops in Fc-dlk1 transgenic mice, suggesting that Dlk1 is not a strict inhibitor of adipogenesis. To clarify the role of Dlk1 in adipogenesis, we studied whether Dlk1 could act differently on this process depending upon the differentiation state of the precursor cells. We found that Dlk1 is a potentiator of adipogenesis for mesenchymal C3H10T1/2 cells. This potentiating effect can be triggered by overexpressing the entire protein or the extracellular EGF-like-containing region, but not by overexpressing the intracellular dlk1 sequence. In addition, coculture of C3H10T1/2 cells with other cells expressing Dlk1, but not with cells lacking Dlk1 expression, enhances their adipogenic response. Potentiation of adipogenesis by Dlk1 was associated with changes in the activation of ERK1/2 after IGFI/insulin induction. Finally, as reported with other cells, dlk1 functioned as a Notch signaling inhibitor in C3H10T1/2 cells, but inhibition of Notch1 expression prevented the potentiating effects of Dlk1 in adipogenesis. These data suggest that Dlk1 may potentiate or inhibit adipogenesis depending upon the cellular context, and that Notch1 expression and activation are important factors in this context.  相似文献   

2.
The protein dlk, encoded by the Dlk1 gene, belongs to the Notch epidermal growth factor (EGF)-like family of receptors and ligands, which participate in cell fate decisions during development. The molecular mechanisms by which dlk regulates cell differentiation remain unknown. By using the yeast two-hybrid system, we found that dlk interacts with Notch1 in a specific manner. Moreover, by using luciferase as a reporter gene under the control of a CSL/RBP-Jk/CBF-1-dependent promoter in the dlk-negative, Notch1-positive Balb/c 14 cell line, we found that addition of synthetic dlk EGF-like peptides to the culture medium or forced expression of dlk decreases endogenous Notch activity. Furthermore, the expression of the gene Hes-1, a target for Notch1 activation, diminishes in confluent Balb/c14 cells transfected with an expression construct encoding for the extracellular EGF-like region of dlk. The expression of Dlk1 and Notch1 increases in 3T3-L1 cells maintained in a confluent state for several days, which is associated with a concomitant decrease in Hes-1 expression. On the other hand, the decrease of Dlk1 expression in 3T3-L1 cells by antisense cDNA transfection is associated with an increase in Hes-1 expression. These results suggest that dlk functionally interacts in vivo with Notch1, which may lead to the regulation of differentiation processes modulated by Notch1 activation and signaling, including adipogenesis.  相似文献   

3.
Previous studies demonstrate that the delta-like (dlk) and preadipocyte factor 1 (Pref-1) genes encode similar proteins. Pref-1 is downregulated during adipocyte differentiation, and expression of ectopic Pref-1 inhibits adipogenesis. We explored whether dlk functions similarly to Pref-1 and studied the role of alternately spliced dlk variants encoding membrane-associated or -secreted forms. We also studied whether enforced downregulation of dlk/Pref-1 may enhance the differentiation response of non-committed cells. Ectopic expression of a potentially secreted dlk variant, conditioned media from dlk expressing cells or several individual epidermal-growth-factor-dlk peptides inhibited 3T3-L1 differentiation. This demonstrates that dlk and Pref-1 are functionally equivalent. dlk gene mRNA encoding for secreted variants decreased much faster than total dlk gene mRNA during differentiation of 3T3-L1 cells. In fact, total dlk or membrane-associated dlk protein expression increased during the first hours of differentiation. Cells sorted for lowest levels of dlk protein diminished or lost their ability to differentiate. These data suggest that membrane and secreted dlk protein variants play opposite roles in the control of adipogenesis. In addition, enforced downregulation of dlk protein expression in the weakly adipogenic Balb/c 3T3 cell line dramatically enhanced adipogenesis in response to insulin. These results indicate that dlk protein not only participates in processes leading to inhibition of adipogenesis but that the control of its expression and different spliced variants is essential for the adipogenic response to extracellular signals.  相似文献   

4.
5.
6.
The Dlk1 gene appears to function as a regulator of adipogenesis. Adult Dlk1-deficient mice are obese, but adipose tissue still develops in transgenic mice overexpressing an Fc-dlk1 fusion protein, and neither type of genetically modified mice displays serious abnormalities. It was therefore possible that one yet unidentified gene might either compensate or antagonize for the absence or for overexpression, respectively, of Dlk1 in those animals. In database searches, we found a novel gene, EGFL9, encoding for a protein whose structural features are virtually identical to those of dlk1, suggesting it may function in a similar way. As dlk1 does, the protein encoded by EGFL9/Dlk2 affects adipogenesis of 3T3-L1 preadipocytes and mesenchymal C3H10T1/2 cells; however, it does so in an opposite way to that of dlk1. In addition, expression levels of both genes appear to be inversely correlated in both cell lines. Moreover, enforced changes in the expression of one gene affect the expression levels of the other. Our data suggest that adipogenesis may be modulated by the coordinated expression of Dlk1 and EGFL9/Dlk2.  相似文献   

7.
Polycomb repressive complex 1 (PRC1) plays an essential role in the epigenetic repression of gene expression during development and cellular differentiation via multiple effector mechanisms, including ubiquitination of H2A and chromatin compaction. However, whether it regulates the stepwise progression of adipogenesis is unknown. Here, we show that FBXL10/KDM2B is an anti-adipogenic factor that is up-regulated during the early phase of 3T3-L1 preadipocyte differentiation and in adipose tissue in a diet-induced model of obesity. Interestingly, inhibition of adipogenesis does not require the JmjC demethylase domain of FBXL10, but it does require the F-box and leucine-rich repeat domains, which we show recruit a noncanonical polycomb repressive complex 1 (PRC1) containing RING1B, SKP1, PCGF1, and BCOR. Knockdown of either RING1B or SKP1 prevented FBXL10-mediated repression of 3T3-L1 preadipocyte differentiation indicating that PRC1 formation mediates the inhibitory effect of FBXL10 on adipogenesis. Using ChIP-seq, we show that FBXL10 recruits RING1B to key specific genomic loci surrounding the key cell cycle and the adipogenic genes Cdk1, Uhrf1, Pparg1, and Pparg2 to repress adipogenesis. These results suggest that FBXL10 represses adipogenesis by targeting a noncanonical PRC1 complex to repress key genes (e.g. Pparg) that control conversion of pluripotent cells into the adipogenic lineage.  相似文献   

8.
Stress hormone is known to play a vital role in lipolysis and adipogenesis in fat cells. The present study was carried out to evaluate the effect of epinephrine on adipogenesis in the 3T3-L1 cells. The investigation on adipogenesis was done in both mono and co-cultured 3T3-L1 cells. 3T3-L1 preadipocytes and C2C12 cells were grown independently on transwell plates and transferred to differentiation medium. Following differentiation, C2C12 cells transferred to 3T3-L1 plate and treated with medium containing 10 μg/ml of epinephrine. Adipogenic markers such as fatty acid binding protein 4, peroxisome proliferator activating receptor, CCAAT/enhancer-binding protein, adiponectin, lipoprotein lipase and fatty acid synthase mRNA expressions were evaluated in the 3T3-L1 cells. Epinephrine treatment reduced adipogenesis, evidenced by reducing adipogenic marker mRNA expression in the 3T3-L1 cells. In addition, glycerol accumulation and oil red-O staining supported the reduced rate of adipogenesis. Taking all together, it is concluded that the stress hormone, epinephrine reduces the rate of adipogenesis in the mono and co-cultured 3T3-L1 cells. In addition, the rate of adipogenesis is much reduced in the co-cultured 3T3-L1 cells compared monocultured 3T3-L1 cells.  相似文献   

9.
Adipogenesis involves a highly orchestrated series of complex events in which microRNAs (miRNAs) may play an essential role. In this study, we found that the miR-185 expression increased gradually during 3T3-L1 cells differentiation. To explore the role of miR-185 in adipogenesis, miRNA agomirs and antagomirs were used to perform miR-185 overexpression and knockdown, respectively. Overexpression of miR-185 dramatically reduced the mRNA expression of the adipogenic markers, PPARγ, FABP4, FAS, and LPL, and the protein level of PPARγ and FAS. MiR-185 overexpression also led to a notable reduction in lipid accumulation. In contrast, miR-185 inhibition promoted differentiation of 3T3-L1 cells. By target gene prediction and luciferase reporter assay, we demonstrated that sterol regulatory element binding protein 1 (SREBP-1) may be the target of miR-185. These results indicate that miR-185 negatively regulates the differentiation of 3T3-L1 cells by targeting SREBP-1, further highlighting the importance of miRNAs in adipogenesis.  相似文献   

10.
Previous microarray analyses revealed that LMO4 is expressed in 3T3-L1 preadipocytes, however, its roles in adipogenesis are unknown. In the present study, using RT-PCR sequencing and quantitative real-time RT-PCR, we confirmed that LMO4 gene is expressed in 3T3-L1 preadipocytes and its expression peaks at the early stage of 3T3-L1 preadipocyte differentiation. Further analyses showed that LMO4 knockdown decreased the proliferation of 3T3-L1 preadipocytes, and attenuated the differentiation of 3T3-L1 preadipocytes, as evidenced by reduced lipid accumulation and down-regulation of PPARγ gene expression. Collectively, our findings indicate that LMO4 is a novel modulator of adipogenesis.  相似文献   

11.
The central regulator of adipogenesis, PPARγ, is a nuclear receptor that is linked to obesity and metabolic diseases. Here we report that MKRN1 is an E3 ligase of PPARγ that induces its ubiquitination, followed by proteasome-dependent degradation. Furthermore, we identified two lysine sites at 184 and 185 that appear to be targeted for ubiquitination by MKRN1. Stable overexpression of MKRN1 reduced PPARγ protein levels and suppressed adipocyte differentiation in 3T3-L1 and C3H10T1/2 cells. In contrast, MKRN1 depletion stimulated adipocyte differentiation in these cells. Finally, MKRN1 knockout MEFs showed an increased capacity for adipocyte differentiation compared with wild-type MEFs, with a concomitant increase of PPARγ and adipogenic markers. Together, these data indicate that MKRN1 is an elusive PPARγ E3 ligase that targets PPARγ for proteasomal degradation by ubiquitin-dependent pathways, and further depict MKRN1 as a novel target for diseases involving PPARγ.  相似文献   

12.
13.
Levels of dlk, an EGF-like homeotic protein, are critical for several differentiation processes. Because growth and differentiation are, in general, exclusive of each other, and increasing evidence indicates that Dlk1 expression changes in tumorigenic processes, we studied whether dlk could also affect cell growth. We found that, in response to glucocorticoids, Balb/c 3T3 cells with diminished levels of dlk expression develop foci-like cells that have lost contact inhibition, display altered morphology, and grow faster than control cell lines. Balb/c 3T3 cells spontaneously growing more rapidly are also dlk-negative cells. Moreover, screening by the yeast two-hybrid system, using Dlk1 constructs as baits, resulted in the isolation of GAS1 and acrogranin cDNAs. Interestingly, these proteins are cysteine-rich molecules involved in the control of cell growth. Taken together, these observations suggest that dlk may participate in a network of interactions controlling how the cells respond to growth or differentiation signals.  相似文献   

14.
15.
Hydroxysafflor yellow A (HSYA), a main component of safflor yellow, has been demonstrated to prevent steroid-induced avascular necrosis of femoral head by inhibiting primary bone marrow-derived mesenchymal stromal cells adipogenic differentiation induced by steroid. In this study, we investigate the effect of HSYA on the proliferation and adipogenesis of mouse 3T3-L1 preadipocytes. The effects of HSYA on proliferation and differentiation of 3T3-L1 cells and its possible mechanism were studied by 3-(4,5-dimethylthiazol-2-yl) 2,5-diphenyl tetrazolium bromide spectrophotometry, Oil Red O staining, intracellular triglyceride assays, real-time quantitative RT-PCR, transient transfection and dual luciferase reporter gene methods. HSYA inhibited the proliferation of 3T3-L1 preadipocytes and cell viability greatly decreased in a dose and time dependent manner. HSYA (1 mg/l) notably reduced the amount of intracellular lipid and triglyceride content in adipocytes by 21.3 % (2.13 ± 0.36 vs 2.71 ± 0.40, P < 0.01) and 22.6 % (1.33 ± 0.07 vs 1.72 ± 0.07, P < 0.01) on days 8 following the differentiation, respectively. HSYA (1 mg/l) significantly increased hormone-sensitive lipase (HSL) mRNA expression and promoter activities by 2.4- and 1.55-fold, respectively (P < 0.01), in differentiated 3T3-L1 adipocytes. HSYA inhibits the proliferation and adipogenesis of 3T3-L1 preadipocytes. The inhibitory action of HYSA on adipogenesis may be due to the promotion of lipolytic-specific enzyme HSL expression by increasing HSL promoter activity.  相似文献   

16.
17.
18.
Phoenixin-14 (PNX) is a newly discovered peptide produced by proteolytic cleavage of the small integral membrane protein 20 (Smim20). Previous studies showed that PNX is involved in controlling reproduction, pain, anxiety and memory. Furthermore, in humans, PNX positively correlates with BMI suggesting a potential role of PNX in controlling fat accumulation in obesity. Since the influence of PNX on adipose tissue formation has not been so far demonstrated, we investigated the effects of PNX on proliferation and differentiation of preadipocytes using 3T3-L1 and rat primary preadipocytes. We detected Smim20 and Gpr173 mRNA in 3T3-L1 preadipocytes as well as in rat primary preadipocytes. Furthermore, we found that PNX peptide is produced and secreted from 3T3-L1 and rat primary adipocytes. PNX increased 3T3-L1 preadipocytes proliferation and viability. PNX stimulated the expression of adipogenic genes (Pparγ, C/ebpβ and Fabp4) in 3T3-L1 adipocytes. 3T3-L1 preadipocytes differentiated in the presence of PNX had increased lipid content. Stimulation of cell proliferation and differentiation by PNX was also confirmed in rat preadipocytes. PNX failed to induce AKT phosphorylation, however, PNX increased cAMP levels in 3T3-L1 cells. Suppression of Epac signalling attenuated PNX-induced Pparγ expression without affecting cell proliferation. Our data show that PNX stimulates differentiation of 3T3-L1 and rat primary preadipocytes into mature adipocytes via cAMP/Epac-dependent pathway. In conclusion our data shows that phoenixin promotes white adipogenesis, thereby may be involved in controlling body mass regulation.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号