首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
O-linked methylation of sugar substituents is a common modification in the biosynthesis of many natural products and is catalyzed by multiple families of S-adenosyl-l-methionine (SAM or AdoMet)-dependent methyltransferases (MTs). Mycinamicins, potent antibiotics from Micromonospora griseorubida, can be methylated at two positions on a 6-deoxyallose substituent. The first methylation is catalyzed by MycE, a SAM- and metal-dependent MT. Crystal structures were determined for MycE bound to the product S-adenosyl-l-homocysteine (AdoHcy) and magnesium, both with and without the natural substrate mycinamicin VI. This represents the first structure of a natural product sugar MT in complex with its natural substrate. MycE is a tetramer of a two-domain polypeptide, comprising a C-terminal catalytic MT domain and an N-terminal auxiliary domain, which is important for quaternary assembly and for substrate binding. The symmetric MycE tetramer has a novel MT organization in which each of the four active sites is formed at the junction of three monomers within the tetramer. The active-site structure supports a mechanism in which a conserved histidine acts as a general base, and the metal ion helps to position the methyl acceptor and to stabilize a hydroxylate intermediate. A conserved tyrosine is suggested to support activity through interactions with the transferred methyl group from the SAM methyl donor. The structure of the free enzyme reveals a dramatic order-disorder transition in the active site relative to the S-adenosyl-l-homocysteine complexes, suggesting a mechanism for product/substrate exchange through concerted movement of five loops and the polypeptide C-terminus.  相似文献   

2.
NovP is an S-adenosyl-l-methionine-dependent O-methyltransferase that catalyzes the penultimate step in the biosynthesis of the aminocoumarin antibiotic novobiocin. Specifically, it methylates at 4-OH of the noviose moiety, and the resultant methoxy group is important for the potency of the mature antibiotic: previous crystallographic studies have shown that this group interacts directly with the target enzyme DNA gyrase, which is a validated drug target. We have determined the high-resolution crystal structure of NovP from Streptomyces spheroides as a binary complex with its desmethylated cosubstrate S-adenosyl-l-homocysteine. The structure displays a typical class I methyltransferase fold, in addition to motifs that are consistent with a divalent-metal-dependent mechanism. This is the first representative structure of a methyltransferase from the TylF superfamily, which includes a number of enzymes implicated in the biosynthesis of antibiotics and other therapeutics. The NovP structure reveals a number of distinctive structural features that, based on sequence conservation, are likely to be characteristic of the superfamily. These include a helical ‘lid’ region that gates access to the cosubstrate binding pocket and an active center that contains a 3-Asp putative metal binding site. A further conserved Asp likely acts as the general base that initiates the reaction by deprotonating the 4-OH group of the noviose unit. Using in silico docking, we have generated models of the enzyme-substrate complex that are consistent with the proposed mechanism. Furthermore, these models suggest that NovP is unlikely to tolerate significant modifications at the noviose moiety, but could show increasing substrate promiscuity as a function of the distance of the modification from the methylation site. These observations could inform future attempts to utilize NovP for methylating a range of glycosylated compounds.  相似文献   

3.
In mammals, DNA methylation is crucial for embryonic development and germ cell differentiation. The DNA methylation patterns are created by de novo-type DNA methyltransferases (Dnmts) 3a and 3b. Dnmt3a is crucial for global methylation, including that of imprinted genes in germ cells. In eukaryotic nuclei, genomic DNA is packaged into multinucleosomes with linker histone H1, which binds to core nucleosomes, simultaneously making contacts in the linker DNA that separates adjacent nucleosomes. In the present study, we prepared oligonucleosomes from HeLa nuclei with or without linker histone H1 and used them as a substrate for Dnmt3a. Removal of histone H1 enhanced the DNA methylation activity. Furthermore, Dnmt3a preferentially methylated the linker between the two nucleosome core regions of reconstituted dinucleosomes, and the binding of histone H1 inhibited the DNA methylation activity of Dnmt3a towards the linker DNA. Since an identical amount of histone H1 did not inhibit the activity towards naked DNA, the inhibitory effect of histone H1 was not on the Dnmt3a catalytic activity but on its preferential location in the linker DNA of the dinucleosomes. The central globular domain and C-terminal tail of the histone H1 molecule were indispensable for inhibition of the DNA methylation activity of Dnmt3a. We propose that the binding and release of histone H1 from the linker portion of chromatin may regulate the local DNA methylation of the genome by Dnmt3a, which is expressed ubiquitously in somatic cells in vivo.  相似文献   

4.
5.
6.
l-Alanine dehydrogenase from Mycobacterium tuberculosis catalyzes the NADH-dependent reversible conversion of pyruvate and ammonia to l-alanine. Expression of the gene coding for this enzyme is up-regulated in the persistent phase of the organism, and alanine dehydrogenase is therefore a potential target for pathogen control by antibacterial compounds. We have determined the crystal structures of the apo- and holo-forms of the enzyme to 2.3 and 2.0 Å resolution, respectively. The enzyme forms a hexamer of identical subunits, with the NAD-binding domains building up the core of the molecule and the substrate-binding domains located at the apical positions of the hexamer. Coenzyme binding stabilizes a closed conformation where the substrate-binding domains are rotated by about 16° toward the dinucleotide-binding domains, compared to the open structure of the apo-enzyme. In the structure of the abortive ternary complex with NAD+ and pyruvate, the substrates are suitably positioned for hydride transfer between the nicotinamide ring and the C2 carbon atom of the substrate. The approach of the nucleophiles water and ammonia to pyruvate or the reaction intermediate iminopyruvate, respectively, is, however, only possible through conformational changes that make the substrate binding site more accessible. The crystal structures identified the conserved active-site residues His96 and Asp270 as potential acid/base catalysts in the reaction. Amino acid replacements of these residues by site-directed mutagenesis led to inactive mutants, further emphasizing their essential roles in the enzymatic reaction mechanism.  相似文献   

7.
Overall structural changes of enzymes in response to ligand binding were investigated by database analysis of 62 non-redundant enzymes whose ligand-unbound and ligand-bound forms were available in the Protein Data Bank. The results of analysis indicate that transferases often undergo large rigid-body domain motions upon ligand binding, while other enzymes, most typically, hydrolases, change their structures to a small extent. It was also found that the solvent accessibility of the substrate molecule was low in transferases but high in hydrolases. These differences are explained by the enzymatic reaction mechanisms. The transferase reaction requires the catalytic groups to be insulated from the water environment, and thus transferases bury the ligand molecule inside the protein by closing the cleft. On the other hand, the hydrolase reaction involves the surrounding water molecules and occurs at the protein surface, requiring only a small structural change.  相似文献   

8.
Pseudomonas cichoriiid-tagatose 3-epimerase (P. cichoriid-TE) can efficiently catalyze the epimerization of not only d-tagatose to d-sorbose, but also d-fructose to d-psicose, and is used for the production of d-psicose from d-fructose. The crystal structures of P. cichoriid-TE alone and in complexes with d-tagatose and d-fructose were determined at resolutions of 1.79, 2.28, and 2.06 Å, respectively. A subunit of P. cichoriid-TE adopts a (β/α)8 barrel structure, and a metal ion (Mn2+) found in the active site is coordinated by Glu152, Asp185, His211, and Glu246 at the end of the β-barrel. P. cichoriid-TE forms a stable dimer to give a favorable accessible surface for substrate binding on the front side of the dimer. The simulated omit map indicates that O2 and O3 of d-tagatose and/or d-fructose coordinate Mn2+, and that C3-O3 is located between carboxyl groups of Glu152 and Glu246, supporting the previously proposed mechanism of deprotonation/protonation at C3 by two Glu residues. Although the electron density is poor at the 4-, 5-, and 6-positions of the substrates, substrate-enzyme interactions can be deduced from the significant electron density at O6. The O6 possibly interacts with Cys66 via hydrogen bonding, whereas O4 and O5 in d-tagatose and O4 in d-fructose do not undergo hydrogen bonding to the enzyme and are in a hydrophobic environment created by Phe7, Trp15, Trp113, and Phe248. Due to the lack of specific interactions between the enzyme and its substrates at the 4- and 5-positions, P. cichoriid-TE loosely recognizes substrates in this region, allowing it to efficiently catalyze the epimerization of d-tagatose and d-fructose (C4 epimer of d-tagatose) as well. Furthermore, a C3-O3 proton-exchange mechanism for P. cichoriid-TE is suggested by X-ray structural analysis, providing a clear explanation for the regulation of the ionization state of Glu152 and Glu246.  相似文献   

9.
Dynamic histone lysine methylation involves the activities of modifying enzymes (writers), enzymes removing modifications (erasers), and readers of the histone code. One common feature of these activities is the recognition of lysines in methylated and unmethylated states, whether they are substrates, reaction products, or binding partners. We applied the concept of adding a lysine mimic to an established inhibitor (BIX-01294) of histone H3 lysine 9 methyltransferases G9a and G9a-like protein by including a 5-aminopentyloxy moiety, which is inserted into the target lysine-binding channel and becomes methylated by G9a-like protein, albeit slowly. The compound enhances its potency in vitro and reduces cell toxicity in vivo. We suggest that adding a lysine or methyl-lysine mimic should be considered in the design of small-molecule inhibitors for other methyl-lysine writers, erasers, and readers.  相似文献   

10.
Rat kidney glutamine transaminase K (GTK) exhibits broad specificity both as an aminotransferase and as a cysteine S-conjugate β-lyase. The β-lyase reaction products are pyruvate, ammonium and a sulfhydryl-containing fragment. We show here that recombinant human GTK (rhGTK) also exhibits broad specificity both as an aminotransferase and as a cysteine S-conjugate β-lyase. S-(1,1,2,2-Tetrafluoroethyl)-l-cysteine is an excellent aminotransferase and β-lyase substrate of rhGTK. Moderate aminotransferase and β-lyase activities occur with the chemopreventive agent Se-methyl-l-selenocysteine. l-3-(2-Naphthyl)alanine, l-3-(1-naphthyl)alanine, 5-S-l-cysteinyldopamine and 5-S-l-cysteinyl-l-DOPA are measurable aminotransferase substrates, indicating that the active site can accommodate large aromatic amino acids. The α-keto acids generated by transamination/l-amino acid oxidase activity of the two catechol cysteine S-conjugates are unstable. A slow rhGTK-catalyzed β-elimination reaction, as measured by pyruvate formation, was demonstrated with 5-S-l-cysteinyldopamine, but not with 5-S-l-cysteinyl-l-DOPA. The importance of transamination, oxidation and β-elimination reactions involving 5-S-l-cysteinyldopamine, 5-S-l-cysteinyl-l-DOPA and Se-methyl-l-selenocysteine in human tissues and their biological relevance are discussed.  相似文献   

11.
d-Ribono-1,4-lactone was treated with ethylamine in DMF to afford N-ethyl-d-ribonamide 8a in quantitative yield. Using this reaction procedure, N-butyl, N-hexyl, N-dodecyl, N-benzyl, N-(3-methyl-pyridinyl)-, N-(2-hydroxy-ethyl)-, and N-(2-cyano-ethyl)-d-ribonamides 8b-h were obtained in quantitative yield. Bromination of the amides 8a-e with acetyl bromide in dioxane followed by acetylation gave 2,3,4-tri-O-acetyl-5-bromo-5-deoxy-N-ethyl, N-butyl, N-hexyl, N-dodecyl, and N-benzyl-d-ribonamides 9a-e in 40-54% yields. To obtain 2,3,4-tri-O-acetyl-5-bromo-5-deoxy-N-(3-methyl-pyridinyl)-, N-(2-hydroxy-ethyl)-, and N-(2-cyano-ethyl)-9f-h, the bromination is necessary before the amidation reaction. Treatment of the bromoamides 9a-h with NaH in DMF followed by methanolysis affords N-alkyl-d-ribono-1,5-lactams 12a-h in quantitative yield.  相似文献   

12.
A series of O-alkyl derivatives of cyclodextrin: heksakis[2,3,6-tri-O-(2′-methoxyethyl)]-α-cyclodextrin; heksakis(2,3-di-O-methyl)-α-cyclodextrin; heptakis(2,3-di-O-methyl)-β-cyclodextrin; heksakis[2,3-di-O-methyl-6-O-(2′-methoxyethyl)]-α-cyclodextrin; heptakis[2,3-di-O-methyl-6-O-(2′-methoxyethyl)]-β-cyclodextrin; heksakis[2,3-di-O-(2′-methoxyethyl)]-α-cyclodextrin and heptakis[2,3-di-O-(2′-methoxyethyl)]-β-cyclodextrin have been synthesized. Purity and composition of the obtained substances were examined. The cyclodextrin derivatives listed above as well as (2-hydroxypropyl)-α-cyclodextrin and (2-hydroxypropyl)-β-cyclodextrin, the two commercially available ones, have been investigated as the additives in the course of enzymatic decomposition of l-tryptophan by l-tryptophan indole-lyase. It has been found that each of cyclodextrin derivatives causes the inhibition of enzymatic process, both competitive and non-competitive. The competitive inhibition is connected with the formation of inclusion complexes between cyclodextrins and l-tryptophan, related to the geometry of these complexes. The mechanism of the non-competitive inhibition is not so evident; it could be related to the formation of the cyclodextrin complexes on the surface of the enzyme, leading to the change in the flexibility of the enzyme molecule.  相似文献   

13.
Class A penicillin-binding proteins (PBPs) catalyze the last two steps in the biosynthesis of peptidoglycan, a key component of the bacterial cell wall. Both reactions, glycosyl transfer (polymerization of glycan chains) and transpeptidation (cross-linking of stem peptides), are essential for peptidoglycan stability and for the cell division process, but remain poorly understood. The PBP-catalyzed transpeptidation reaction is the target of β-lactam antibiotics, but their vast employment worldwide has prompted the appearance of highly resistant strains, thus requiring concerted efforts towards an understanding of the transpeptidation reaction with the goal of developing better antibacterials. This goal, however, has been elusive, since PBP substrates are rapidly deacylated. In this work, we provide a structural snapshot of a “trapped” covalent intermediate of the reaction between a class A PBP with a pseudo-substrate, N-benzoyl-d-alanylmercaptoacetic acid thioester, which partly mimics the stem peptides contained within the natural, membrane-associated substrate, lipid II. The structure reveals that the d-alanyl moiety of the covalent intermediate (N-benzoyl-d-alanine) is stabilized in the cleft by a network of hydrogen bonds that place the carbonyl group in close proximity to the oxyanion hole, thus mimicking the spatial arrangement of β-lactam antibiotics within the PBP active site. This arrangement allows the target bond to be in optimal position for attack by the acceptor peptide and is similar to the structural disposition of β-lactam antibiotics with PBP clefts. This information yields a better understanding of PBP catalysis and could provide key insights into the design of novel PBP inhibitors.  相似文献   

14.
We have studied the regulatory function of Dictyostelium discoideum Ax2 phenylalanine hydroxylase (dicPAH) via characterization of domain structures. Including the full-length protein, partial proteins truncated in regulatory, tetramerization, or both, were prepared from Escherichia coli as his-tag proteins and examined for oligomeric status and catalytic parameters for phenylalanine. The proteins were also expressed extrachromosomally in the dicPAH knockout strain to examine their in vivo compatibility. The results suggest that phenylalanine activates dicPAH, which is functional in vivo as a tetramer, although cooperativity was not observed. In addition, the results of kinetic study suggest that the regulatory domain of dicPAH may play a role different from that of the domain in mammalian PAH.

Structured summary of protein interactions

dicPAH and dicPAHbind by molecular sieving (View Interaction: 1, 2, 3, 4)  相似文献   

15.
Trm1 catalyzes a two-step reaction, leading to mono- and dimethylation of guanosine at position 26 in most eukaryotic and archaeal tRNAs. We report the crystal structures of Trm1 from Pyrococcus horikoshii liganded with S-adenosyl-l-methionine or S-adenosyl-l-homocysteine. The protein comprises N-terminal and C-terminal domains with class I methyltransferase and novel folds, respectively. The methyl moiety of S-adenosyl-l-methionine points toward the invariant Phe27 and Phe140 within a narrow pocket, where the target G26 might flip in. Mutagenesis of Phe27 or Phe140 to alanine abolished the enzyme activity, indicating their role in methylating G26. Structural analyses revealed that the movements of Phe140 and the loop preceding Phe27 may be involved in dissociation of the monomethylated tRNA•Trm1 complex prior to the second methylation. Moreover, the catalytic residues Asp138, Pro139, and Phe140 are in a different motif from that in DNA 6-methyladenosine methyltransferases, suggesting a different methyl transfer mechanism in the Trm1 family.  相似文献   

16.
The role of Glu119 in S-adenosyl-L-methionine-dependent DNA methyltransferase M.HhaI-catalyzed DNA methylation was studied. Glu119 belongs to the highly conserved Glu/Asn/Val motif found in all DNA C5-cytosine methyltransferases, and its importance for M.HhaI function remains untested. We show that formation of the covalent intermediate between Cys81 and the target cytosine requires Glu119, since conversion to Ala, Asp or Gln lowers the rate of methyl transfer 10(2)-10(6) fold. Further, unlike the wild-type M.HhaI, these mutants are not trapped by the substrate in which the target cytosine is replaced with the mechanism-based inhibitor 5-fluorocytosine. The DNA binding affinity for the Glu119Asp mutant is decreased 10(3)-fold. Thus, the ability of the enzyme to stabilize the extrahelical cytosine is coupled directly to tight DNA binding. The structures of the ternary protein/DNA/AdoHcy complexes for both the Glu119Ala and Glu119Gln mutants (2.70 A and 2.75 A, respectively) show that the flipped base is positioned nearly identically with that observed in the wild-type M.HhaI complex. A single water molecule in the Glu119Ala structure between Ala119 and the extrahelical cytosine N3 is lacking in the Glu119Gln and wild-type M.HhaI structures, and most likely accounts for this mutant's partial activity. Glu119 has essential roles in activating the target cytosine for nucleophilic attack and contributes to tight DNA binding.  相似文献   

17.
Biosynthesis of lysine and meso-diaminopimelic acid in bacteria provides essential components for protein synthesis and construction of the bacterial peptidoglycan cell wall. The dapE operon enzymes synthesize both meso-diaminopimelic acid and lysine and, therefore, represent potential targets for novel antibacterials. The dapE-encoded N-succinyl-l,l-diaminopimelic acid desuccinylase functions in a late step of the pathway and converts N-succinyl-l,l-diaminopimelic acid to l,l-diaminopimelic acid and succinate. Deletion of the dapE gene is lethal to Helicobacter pylori and Mycobacterium smegmatis, indicating that DapE's are essential for cell growth and proliferation. Since there are no similar pathways in humans, inhibitors that target DapE may have selective toxicity against only bacteria. A major limitation in developing antimicrobial agents that target DapE has been the lack of structural information. Herein, we report the high-resolution X-ray crystal structures of the DapE from Haemophilus influenzae with one and two zinc ions bound in the active site, respectively. These two forms show different activity. Based on these newly determined structures, we propose a revised catalytic mechanism of peptide bond cleavage by DapE enzymes. These structures provide important insight into catalytic mechanism of DapE enzymes as well as a structural foundation that is critical for the rational design of DapE inhibitors.  相似文献   

18.
Allophylus edulis, commonly called ‘Chal chal’, is a member of the Sapindaceae occurring in the Uruguayan and Brazilian native flora. During the phytochemical analysis of two Chal chal specimens from two well-differentiated geographical zones (Assis, São Paulo, Brazil, and Santa Lucía, Canelones, Uruguay), considerable amounts of l-quebrachitol were isolated from both samples. The isolation was carried out from the ethanolic twig extracts obtained by maceration of both vegetal samples. White easily distinguishable crystals were mechanically separated, washed, and characterized by 1D and 2D NMR experiments and by MS data. Such techniques confirmed that the crystals isolated from sources collected in both countries resulted in the same compound, l-quebrachitol, a natural product not previously reported for this species and one that has been investigated as a sugar substitute for diabetics. Worthy of note, the content of l-quebrachitol in A. edulis may be the chemical basis to explain its ethnobotanical uses, since infusions of this plant are used to treat diabetes in the practice of local traditional medicine.  相似文献   

19.
The three-dimensional structure of a Salmonella enterica hypothetical protein YihS is significantly similar to that of N-acyl-d-glucosamine 2-epimerase (AGE) with respect to a common scaffold, an α66-barrel, although the function of YihS remains to be clarified. To identify the function of YihS, Escherichia coli and S. enterica YihS proteins were overexpressed in E. coli, purified, and characterized. Both proteins were found to show no AGE activity but showed cofactor-independent aldose-ketose isomerase activity involved in the interconversion of monosaccharides, mannose, fructose, and glucose, or lyxose and xylulose. In order to clarify the structure/function relationship of YihS, we determined the crystal structure of S. enterica YihS mutant (H248A) in complex with a substrate (d-mannose) at 1.6 Å resolution. This enzyme-substrate complex structure is the first demonstration in the AGE structural family, and it enables us to identify active-site residues and postulate a reaction mechanism for YihS. The substrate, β-d-mannose, fits well in the active site and is specifically recognized by the enzyme. The substrate-binding site of YihS for the mannose C1 and O5 atoms is architecturally similar to those of mutarotases, suggesting that YihS adopts the pyranose ring-opening process by His383 and acidifies the C2 position, forming an aldehyde at the C1 position. In the isomerization step, His248 functions as a base catalyst responsible for transferring the proton from the C2 to C1 positions through a cis-enediol intermediate. On the other hand, in AGE, His248 is thought to abstract and re-adduct the proton at the C2 position of the substrate. These findings provide not only molecular insights into the YihS reaction mechanism but also useful information for the molecular design of novel carbohydrate-active enzymes with the common scaffold, α66-barrel.  相似文献   

20.
Kuschelina bergi (Harold, 1881) is being studied to be evaluated as a natural enemy of Phyla nodiflora var. minor (Hook.) N. O’Leary & Múlgura (Verbenaceae), an invasive weed in Australia. Eggs, and 1st and 3rd instar larvae are described and illustrated for the first time. The following characters distinguish Kuschelina bergi: presence of two medial setae in prosternum, mesosternum and metasternum, absence of tubercle on sternum I and eight setae in abdominal segment IX. The 3rd instar larvae of Kuschelina bergi resemble Kuschelina gibbitarsa (Say) larvae: the body shape and details of mouthparts are similar, but the morphology of the mandible is different, as is the tarsungulus which has a single seta. Differences between Kuschelina bergi and other known larvae of Oedionychina are discussed. New biological data based on laboratory rearing and field observation are also presented and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号