首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The ankyrin repeat (AR) domain of IκBα consists of a cooperative folding unit of roughly four ARs (AR1-AR4) and of two weakly folded repeats (AR5 and AR6). The kinetic folding mechanism of the cooperative subdomain, IκBα67-206, was analyzed using rapid mixing techniques. Despite its apparent architectural simplicity, IκBα67-206 displays complex folding kinetics, with two sequential on-pathway high-energy intermediates. The effect of mutations to or away from the consensus sequences of ARs on folding behavior was analyzed, particularly the GXTPLHLA motif, which have not been examined in detail previously. Mutations toward the consensus generally resulted in an increase in folding stability, whereas mutations away from the consensus resulted in decreased overall stability. We determined the free energy change upon mutation for three sequential transition state ensembles along the folding route for 16 mutants. We show that folding initiates with the formation of the interface of the outer helices of AR3 and AR4, and then proceeds to consolidate structure in these repeats. Subsequently, AR1 and AR2 fold in a concerted way in a single kinetic step. We show that this mechanism is robust to the presence of AR5 and AR6 as they do not strongly affect the folding kinetics. Overall, the protein appears to fold on a rather smooth energy landscape, where the folding mechanism conforms a one-dimensional approximation. However, we note that the AR does not necessarily act as a single folding element.  相似文献   

2.
3.
4.
5.
6.
Protein-protein interactions play fundamental roles in physiological and pathological biological processes. The characterization of the structural determinants of protein-protein recognition represents an important step for the development of molecular entities able to modulate these interactions. We have recently found that IκB-α (nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha) blocks the HIV-1 expression and replication in a NF-κB-independent manner by directly binding to the virus-encoded Tat transactivator. Here, we report the evaluation of the entity of binding of IκB-α to Tat through in vitro Surface Plasmon Resonance assay. Moreover, by designing and characterizing a set of peptides of the C-terminus region of IκB-α, we show that the peptide corresponding to the IκB-α sequence 262-287 was able to bind to Tat with high affinity (300 nM). The characterization of a number of IκB-α-based peptides also provided insights into their intrinsic folding properties. These findings have been corroborated by mutagenesis studies on the full-length IκB-α, which unveil that different IκB-α residues are involved in NF-κB or Tat recognition.  相似文献   

7.
8.
9.
《Cellular signalling》2014,26(10):2266-2275
Testes-specific protease 50 (TSP50) is a novelly identified pro-oncogene and it shares a similar enzymatic structure with many serine proteases. Our previous results suggested that TSP50 could promote tumorigenesis through degradation of IκBα protein and activating NF-κB signaling, and the threonine mutation in its catalytic triad could depress TSP50-mediated cell proliferation. However, whether the two other residues in the catalytic triad of TSP50 play a role in maintaining protease activity and tumorigenesis, and the mechanisms involved in this process remain unclear. Here, we constructed and characterized three catalytic triad mutants of TSP50 and found that all the mutants could significantly depress TSP50-induced cell proliferation and colony formation in vitro and tumor formation in vivo, and the aspartic acid at position 206 in the catalytic triad played a more crucial role than threonine and histidine in this process. Mechanistic studies revealed that the mutants in the catalytic triad abolished the enzyme activity of TSP50, but did not change the cellular localization. Furthermore, our data indicated that all the three mutants suppressed activation of NF-κB signal by preventing the interaction between TSP50 and the NF-κB:IκBα complex. Most importantly, we demonstrated that TSP50 could interact with IκBα protein and cleave it directly as a new protease in vitro.  相似文献   

10.
11.
12.
Transglutaminase 2 (TGase 2) catalyzes covalent isopeptide bond formation between glutamine and lysine residues. Recently, we reported that TGase 2 activates nuclear factor-kappa B (NF-κB) by depleting inhibitor of NF-κBα (I-κBα) levels via polymer formation. Furthermore, TGase 2 expression synergistically increases NF-κB activity with canonical pathway. The major I-κB proteins such as I-κBα and I-κBβ resemble each other in both primary sequence and tertiary structure. However, I-κBβ does not degrade fully, while I-κBα degrades immediately in response to most stimuli. We found that I-κBβ does not contain any of the previously identified TGase 2 target sites. In this study, both an in vitro cross-linking assay and a TGase 2 transfection assay revealed that I-κBβ is independent from TGase 2-mediated polymerization. Furthermore, increased I-κBβ expression reversed NF-κB activation in cancer cells, compensating for the loss of I-κBα via TGase 2 polymerization.  相似文献   

13.
14.
15.
NF-κB activity is tightly regulated by IκB class of proteins. IκB proteins possess ankyrin repeats for binding to and inhibiting NF-κB. The regulatory protein, NPR1 from Brassica juncea possesses ankyrin repeats with sequence similarity to IκBα subgroup. Therefore, we examined whether stably expressed BjNPR1 could function as IκB in inhibiting NF-κB in human glioblastoma cell lines. We observed that BjNPR1 bound to NF-κB and inhibited its nuclear translocation. Further, BjNPR1 expression down-regulated the NF-κB target genes iNOS, Cox-2, c-Myc and cyclin D1 and reduced the proliferation rate of U373 cells. Finally, BjNPR1 decreased the levels of pERK, pJNK and PKCα and increased the Caspase-3 and Caspase-8 activities. These results suggested that inhibition of NF-κB activation by BjNPR1 can be a promising therapy in NF-κB dependent pathologies.  相似文献   

16.
目的探讨内毒素(LPS)刺激大鼠肠黏膜微血管内皮细胞(RIMMVECs)后,乳酸(LA)调控NF-κB信号通路中磷酸化IκBα和NF-κB p65蛋白表达情况,肿瘤坏死因子α(TNF-α)和白细胞介素6(IL-6)mRNA表达情况,阐明乳酸发挥作用的最佳时间及其调控NF-κB信号通路的部位。方法提取RIMMVECs总蛋白和总RNA,用Western blotting检测NF-κB p65、IκBα及p-IκBα蛋白表达水平,用real-time PCR对TNF-α和IL-6 mRNA进行定量检测。结果乳酸能降低LPS诱导RIMMVECs分泌的TNF-α和IL-6 mRNA表达水平,并分别于24 h和3 h下调效果最明显;乳酸能抑制IκBα磷酸化及NF-κB转录活性,并于4~8 h达到最佳效果;乳酸发挥作用部位是抑制信号通路中IκBα磷酸化。结论乳酸通过抑制IκBα磷酸化而阻断NF-κB的激活,抑制下游炎性因子表达,进而发挥出很好的预防炎症效果。  相似文献   

17.
18.
Lys63-linked polyubiquitination of transforming growth factor-β-activated kinase 1 (TAK1) has an important role in tumor necrosis factor-α (TNFα)-induced NF-κB activation. Using a functional genomic approach, we have identified ubiquitin-specific peptidase 4 (USP4) as a deubiquitinase for TAK1. USP4 deubiquitinates TAK1 in vitro and in vivo. TNFα induces association of USP4 with TAK1 to deubiquitinate TAK1 and downregulate TAK1-mediated NF-κB activation. Overexpression of USP4 wild type, but not deuibiquitinase-deficient C311A mutant, inhibits both TNFα- and TAK1/TAB1 co-overexpression-induced TAK1 polyubiquitination and NF-κB activation. Notably, knockdown of USP4 in HeLa cells enhances TNFα-induced TAK1 polyubiquitination, IκB kinase phosphorylation, IκBα phosphorylation and ubiquitination, as well as NF-κB-dependent gene expression. Moreover, USP4 negatively regulates IL-1β-, LPS- and TGFβ-induced NF-κB activation. Together, our results demonstrate that USP4 serves as a critical control to downregulate TNFα-induced NF-κB activation through deubiquitinating TAK1.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号