首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
To study the substrate requirements for the histone 3'-end processing reaction of mammalian histone pre-mRNAs, we created a set of mutations in the sequences flanking the processing site of a mouse H3 gene. We found that deletion of the downstream purine-rich element hypothesized to interact with U7 small nuclear RNA abolishes in vitro 3'-end processing. Somewhat surprisingly, however, mutations in the hairpin loop element which destabilize or destroy the secondary structure reduce but do not abolish 3'-end processing. This is in apparent contrast to results obtained for the sea urchin system, where both sequence elements appear to be absolutely required for 3'-end formation.  相似文献   

3.
We used nuclear extracts from Drosophila Kc cells to characterize 3' end processing of Drosophila histone pre-mRNAs. Drosophila SLBP plays a critical role in recruiting the U 7 snRNP to the pre-mRNA and is essential for processing all five Drosophila histone pre-mRNAs. The Drosophila processing machinery strongly prefers cleavage after a fourth nucleotide following the stem-loop and favors an adenosine over pyrimidines in this position. Increasing the distance between the stem-loop and the HDE does not result in a corresponding shift of the cleavage site, suggesting that in Drosophila processing the U 7 snRNP does not function as a molecular ruler. Instead, SLBP directs the cleavage site close to the stem-loop. The upstream cleavage product generated in Drosophila nuclear extracts contains a 3' OH, and the downstream cleavage product is degraded by a nuclease dependent on the U 7 snRNP, suggesting that the cleavage factor has been conserved between Drosophila and mammalian processing. A 2'O-methyl oligonucleotide complementary to the first 17 nt of the Drosophila U 7 snRNA was not able to deplete the U 7 snRNP from Drosophila nuclear extracts, suggesting that the 5' end of the Drosophila U 7 snRNA is inaccessible. This oligonucleotide selectively inhibited processing of only two Drosophila pre-mRNAs and had no effect on processing of the other three pre-mRNAs. Together, these studies demonstrate that although Drosophila and mammalian histone pre-mRNA processing share common features, there are also significant differences, likely reflecting divergence in the mechanism of 3' end processing between vertebrates and invertebrates.  相似文献   

4.
Most histone precursor mRNAs (pre-mRNAs) in metazoans are matured by 3'-end cleavage directed by the U7 small nuclear ribonucleoprotein (snRNP). RNA functional groups necessary for in vivo assembly and activity of the U7 snRNP were examined by nucleotide-analog interference mapping and mutagenesis using a chimeric mouse histone H4 pre-mRNA-U7 snRNA construct that is cleaved in cis in Xenopus laevis oocytes. Assembly of the unique U7 Sm protein core is rate limiting for processing in vivo and requires four conserved nucleotides within the U7 Sm-binding site, as well as the correct positioning and size of the U7 terminal stem-loop structure. To our surprise, pseudouridine substitution revealed a requirement for backbone flexibility at a particular position within the U7 Sm site, providing in vivo biochemical evidence that an unusual C2'-endo sugar conformation is necessary for assembly of the Sm ring.  相似文献   

5.
In metazoans, cell-cycle-dependent histones are produced from poly(A)-lacking mRNAs. The 3′ end of histone mRNAs is formed by an endonucleolytic cleavage of longer precursors between a conserved stem–loop structure and a purine-rich histone downstream element (HDE). The cleavage requires at least two trans-acting factors: the stem–loop binding protein (SLBP), which binds to the stem–loop and the U7 snRNP, which anchors to histone pre-mRNAs by annealing to the HDE. Using RNA structure-probing techniques, we determined the secondary structure of the 3′-untranslated region (3′-UTR) of mouse histone pre-mRNAs H4–12, H1t and H2a–614. Surprisingly, the HDE is embedded in hairpin structures and is therefore not easily accessible for U7 snRNP anchoring. Probing of the 3′-UTR in complex with SLBP revealed structural rearrangements leading to an overall opening of the structure especially at the level of the HDE. Electrophoretic mobility shift assays demonstrated that the SLBP-induced opening of HDE actually facilitates U7 snRNA anchoring on the histone H4–12 pre-mRNAs 3′ end. These results suggest that initial binding of the SLBP functions in making the HDE more accessible for U7 snRNA anchoring.  相似文献   

6.
7.
E C Scharl  J A Steitz 《The EMBO journal》1994,13(10):2432-2440
Two conserved elements direct the 3' end processing of histone messenger RNA: a stem-loop structure immediately upstream of the site of cleavage and the histone downstream element (HDE), located 12-19 nucleotides downstream of the stem-loop in the premessenger RNA. We studied the role of these two elements by systematically inserting up to 10 C residues between them in the mouse H2A-614 histone pre-mRNA. 3' End mapping of RNAs processed in vitro demonstrated that as the HDE is move downstream, the site of cleavage correspondingly moves 3'. In addition, the efficiency of processing declines. In the wild-type substrate, cleavage occurs 3' of an A residue; modest increases in the efficiency of processing of the insertion mutants were observed when an A residue was placed at the new cleavage site. The results of psoralen cross-linking studies and immunoprecipitations using anti-trimethylguanosine antibodies indicated that the decreased processing efficiency of the insertion mutants is not due to impaired binding of the U7 small nuclear ribonucleoprotein (snRNP). We conclude that the mammalian U7 snRNP acts as a molecular ruler, targeting enzymatic components of cleave histone pre-mRNAs a fixed distance from its binding site, the HDE.  相似文献   

8.
Xenopus laevis histone H4 and H1 genes were transcribed in vitro to generate artificial precursor mRNAs (pre-mRNAs). These pre-mRNAs were microinjected into oocytes, matured oocytes, and unfertilized eggs of Xenopus laevis and their 3' cleavage and polyadenylation were investigated. In the oocyte nucleus both H4 and H1 pre-mRNAs were 3' cleaved but were not detectably polyadenylated. In the oocyte cytoplasm there was neither 3' cleavage nor polyadenylation of these histone pre-mRNAs. When injected into either matured oocytes or unfertilized eggs, the pre-mRNAs underwent 3' cleavage but this was inefficient when compared to the oocyte nucleus. In addition approximately 50% of the remaining uncleaved pre-mRNA was subject to a polyadenylation activity which added A tails of approximately 70 A residues. In contrast, artificial mouse beta-globin pre-mRNAs were not detectably 3' cleaved or polyadenylated in either microinjected oocytes or unfertilized eggs.  相似文献   

9.
Metazoan replication-dependent histone mRNAs are not polyadenylated, and instead terminate in a conserved stem-loop structure generated by an endonucleolytic cleavage involving the U7 snRNP, which interacts with histone pre-mRNAs through base-pairing between U7 snRNA and a purine-rich sequence in the pre-mRNA located downstream of the cleavage site. Here we generate null mutations of the single Drosophila U7 gene and demonstrate that U7 snRNA is required in vivo for processing all replication-associated histone pre-mRNAs. Mutation of U7 results in the production of poly A+ histone mRNA in both proliferating and endocycling cells because of read-through to cryptic polyadenylation sites found downstream of each Drosophila histone gene. A similar molecular phenotype also results from mutation of Slbp, which encodes the protein that binds the histone mRNA 3' stem-loop. U7 null mutants develop into sterile males and females, and these females display defects during oogenesis similar to germ line clones of Slbp null cells. In contrast to U7 mutants, Slbp null mutations cause lethality. This may reflect a later onset of the histone pre-mRNA processing defect in U7 mutants compared to Slbp mutants, due to maternal stores of U7 snRNA. A double mutant combination of a viable, hypomorphic Slbp allele and a viable U7 null allele is lethal, and these double mutants express polyadenylated histone mRNAs earlier in development than either single mutant. These data suggest that SLBP and U7 snRNP cooperate in the production of histone mRNA in vivo, and that disruption of histone pre-mRNA processing is detrimental to development.  相似文献   

10.
M Buvoli  F Cobianchi    S Riva 《Nucleic acids research》1992,20(19):5017-5025
The in vitro interaction of recombinant hnRNP A1 with purified snRNPs and with pre-mRNAs was investigated. We show that protein A1 can stably bind U2 and U4 snRNP but not U1. Oligo-RNAse H cleavage of U2 nucleotides involved in base pairing with the branch site, totally eliminates the A1-U2 interaction. RNase T1 protection and immunoprecipitation experiments demonstrate that recombinant protein A1 specifically binds the 3'-end regions of both beta-globin and Ad-2 introns. However, while on the beta-globin intron only binding to the polypyrimidine tract was observed, on the Ad-2 intron a 32 nt fragment encompassing the branch point and the AG splice-site dinucleotide was bound and protected. Such protection was drastically reduced in the presence of U2 snRNP. Altogether these results indicate that protein A1 can establish a different pattern of association with different pre-mRNAs and support the hypothesis that this protein could play a role in the annealing of U2 to the branch site and hence in the early events of pre-splicing complex assembly.  相似文献   

11.
12.
Excision of introns from pre-mRNAs is mediated by the spliceosome, a multi-megadalton complex consisting of U1, U2, U4/U6, and U5 snRNPs plus scores of associated proteins. Spliceosome assembly and disassembly are highly dynamic processes involving multiple stable intermediates. In this study, we utilized a split TAP-tag approach for large-scale purification of an abundant endogenous U2·U5·U6 complex from Schizosaccharomyces pombe. RNAseq revealed this complex to largely contain excised introns, indicating that it is primarily ILS (intron lariat spliceosome) complexes. These endogenous ILS complexes are remarkably resistant to both high-salt and nuclease digestion. Mass spectrometry analysis identified 68, 45, and 43 proteins in low-salt-, high-salt-, and micrococcal nuclease-treated preps, respectively. The protein content of a S. pombe ILS complex strongly resembles that previously reported for human spliced product (P) and Saccharomyces cerevisiae ILS complexes assembled on single pre-mRNAs in vitro. However, the ATP-dependent RNA helicase Brr2 was either substoichiometric in low-salt preps or completely absent from high-salt and MNase preps. Because Brr2 facilitates spliceosome disassembly, its relative absence may explain why the ILS complex accumulates logarithmically growing cultures and the inability of S. pombe extracts to support in vitro splicing.  相似文献   

13.
14.
Formation of the 3' end of histone mRNA: getting closer to the end   总被引:1,自引:0,他引:1  
Dominski Z  Marzluff WF 《Gene》2007,396(2):373-390
Nearly all eukaryotic mRNAs end with a poly(A) tail that is added to their 3' end by the ubiquitous cleavage/polyadenylation machinery. The only known exceptions to this rule are metazoan replication-dependent histone mRNAs, which end with a highly conserved stem-loop structure. This distinct 3' end is generated by specialized 3' end processing machinery that cleaves histone pre-mRNAs 4-5 nucleotides downstream of the stem-loop and consists of the U7 small nuclear RNP (snRNP) and number of protein factors. Recently, the U7 snRNP has been shown to contain a unique Sm core that differs from that of the spliceosomal snRNPs, and an essential heat labile processing factor has been identified as symplekin. In addition, cross-linking studies have pinpointed CPSF-73 as the endonuclease, which catalyzes the cleavage reaction. Thus, many of the critical components of the 3' end processing machinery are now identified. Strikingly, this machinery is not as unique as initially thought but contains at least two factors involved in cleavage/polyadenylation, suggesting that the two mechanisms have a common evolutionary origin. The greatest challenge that lies ahead is to determine how all these factors interact with each other to form a catalytically competent processing complex capable of cleaving histone pre-mRNAs.  相似文献   

15.
During RNA editing in kinetoplastid parasites, trans-acting guide RNAs (gRNAs) direct the insertion and deletion of U residues at precise sites in mitochondrial pre-mRNAs. We show here that some modifications to the 3' terminal ribose of gRNA inhibit its ability to direct in vitro U insertion. However, we found that gRNAs lacking this moiety in some circumstances support in vitro editing. Thus, the 3' OH is not required. Inhibition resulting from gRNA modification can be overcome by increasing the gRNA-pre-mRNA base-pairing potential upstream of the editing site, suggesting an importance for this interaction to productive processing.  相似文献   

16.
3' Processing of sea urchin H3 histone pre-mRNA depends on a small nuclear RNP which contains an RNA of nominally 60 nucleotide length, referred to below as U7 RNA. The U7 RNA can be enriched by precipitation of sea urchin U-snRNPs with human systematic lupus erythematosus antiserum of the Sm serotype. We have prepared cDNA clones of U7 RNA and determined by hybridization techniques that this RNA is present in sea urchin eggs at 30-fold lower molar concentration than U1 RNA. The RNA sequences derived from an analysis of eight U7 cDNA clones show neither homologies nor complementarities to any other know U-RNAs. The 3' portion of the presumptive RNA sequence can be folded into a stem-loop structure. The 5'-terminal sequences would be largely unstructured as free RNA. Their most striking feature is their base complementarity to the 3' conserved sequences of histone pre-mRNAs. Six out of nine bases of the conserved CAAGAAAGA sequence of the histone mRNA precursor and 13 out of 16 nucleotides from the conserved palindrome can be base paired with presumptive U7 RNA sequence, suggesting a unique hybrid structure for a processing intermediate formed from histone precursor and U7 RNA.  相似文献   

17.
The protein factor U2 snRNP Auxiliary Factor (U2AF) 65 is an essential component required for splicing and involved in the coupling of splicing and 3' end processing of vertebrate pre-mRNAs. Here we have addressed the mechanisms by which U2AF 65 stimulates pre-mRNA 3' end processing. We identify an arginine/serine-rich region of U2AF 65 that mediates an interaction with an RS-like alternating charge domain of the 59 kDa subunit of the human cleavage factor I (CF I(m)), an essential 3' processing factor that functions at an early step in the recognition of the 3' end processing signal. Tethered functional analysis shows that the U2AF 65/CF I(m) 59 interaction stimulates in vitro 3' end cleavage and polyadenylation. These results therefore uncover a direct role of the U2AF 65/CF I(m) 59 interaction in the functional coordination of splicing and 3' end processing.  相似文献   

18.
3′-End cleavage of animal replication-dependent histone pre-mRNAs is controlled by the U7 snRNP. Lsm11, the largest component of the U7-specific Sm ring, interacts with FLASH, and in mammalian nuclear extracts these two proteins form a platform that recruits the CPSF73 endonuclease and other polyadenylation factors to the U7 snRNP. FLASH is limiting, and the majority of the U7 snRNP in mammalian extracts exists as a core particle consisting of the U7 snRNA and the Sm ring. Here, we purified the U7 snRNP from Drosophila nuclear extracts and characterized its composition by mass spectrometry. In contrast to the mammalian U7 snRNP, a significant fraction of the Drosophila U7 snRNP contains endogenous FLASH and at least six subunits of the polyadenylation machinery: symplekin, CPSF73, CPSF100, CPSF160, WDR33, and CstF64. The same composite U7 snRNP is recruited to histone pre-mRNA for 3′-end processing. We identified a motif in Drosophila FLASH that is essential for the recruitment of the polyadenylation complex to the U7 snRNP and analyzed the role of other factors, including SLBP and Ars2, in 3′-end processing of Drosophila histone pre-mRNAs. SLBP that binds the upstream stem–loop structure likely recruits a yet-unidentified essential component(s) to the processing machinery. In contrast, Ars2, a protein previously shown to interact with FLASH in mammalian cells, is dispensable for processing in Drosophila. Our studies also demonstrate that Drosophila symplekin and three factors involved in cleavage and polyadenylation—CPSF, CstF, and CF Im—are present in Drosophila nuclear extracts in a stable supercomplex.  相似文献   

19.
Sequence and expression of a mouse U7 snRNA type II pseudogene.   总被引:3,自引:0,他引:3  
  相似文献   

20.
U14 is a member of the rapidly growing family of intronic small nucleolar RNAs (snoRNAs) that are involved in pre-rRNA processing and ribosome biogenesis. These snoRNA species are encoded within introns of eukaryotic protein coding genes and are synthesized via an intron processing pathway. Characterization of Xenopus laevis U14 snoRNA genes has revealed that in addition to the anticipated location of U14 within introns of the amphibian hsc70 gene (introns 4, 5 and 7), additional intronic U14 snoRNAs are also found in the ribosomal protein S13 gene (introns 3 and 4). U14 is thus far a unique intronic snoRNA in that it is encoded within two different parent genes of a single organism. Northern blot analysis revealed that U14 snoRNAs accumulate during early oocyte development and are rapidly expressed after the mid-blastula transition of developing embryos. Microinjection of hsc70 pre-mRNAs into developing oocytes demonstrated that oocytes as early as stages II and III are capable of processing U14 snoRNA from the pre-mRNA precursor. The ability of immature oocytes to process intronic snoRNAs is consistent with the observed accumulation of U14 during oocyte maturation and the developmentally regulated synthesis of rRNA during oogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号