首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
By comparing, under the same experimental conditions, the effects of naturally occurring mycoviral dsRNA with those of the synthetic dsRNA, polyinosinic:polycytidylic acid, we were able to determine if the source of the dsRNA would modify its immunomodulating properties. Mycoviral dsRNA, but not the synthetic dsRNA, significantly enhanced the hemagglutinating antibody response to sRBC in C57B1/6 mice. Although both dsRNA preparations significantly increased the rate of rejection of heterologous skin grafts by recipient mice when compared to controls, mycoviral dsRNA induced higher interferon titers than the synthetic dsRNA. This study showed that mycoviral dsRNA was a more potent adjuvant than polyinosinic:polycytidylic acid for both humoral and cellular immune responses.  相似文献   

2.
The double-stranded RNA (dsRNA)-induced interferon response is a defense mechanism against viral infection. Upon interferon activation by dsRNA, 2',5'-oligoadenylate synthetase 1 (OAS1A) is induced; it binds dsRNA and converts ATP into 2',5'-linked oligomers of adenosine (called 2-5A), which activate RNase L that in turn degrades viral and cellular RNAs. In a screen to identify oocyte-specific genes, we identified a novel murine cDNA encoding an ovary-specific 2',5'-oligoadenylate synthetase-like protein, OAS1D, which displays 59% identity with OAS1A. OAS1D is predominantly cytoplasmic and is exclusively expressed in growing oocytes and early embryos. Like OAS1A, OAS1D binds the dsRNA mimetic poly(I-C), but unlike OAS1A, it lacks 2'-5' adenosine linking activity. OAS1D interacts with OAS1A and inhibits the enzymatic activity of OAS1A. Mutant mice lacking OAS1D (Oas1d(-/-)) display reduced fertility due to defects in ovarian follicle development, decreased efficiency of ovulation, and eggs that are fertilized arrest at the one-cell stage. These effects are exacerbated after activation of the interferon/OAS1A/RNase L pathway by poly(I-C). We propose that OAS1D suppresses the interferon/OAS/RNase L-mediated cellular destruction by interacting with OAS1A during oogenesis and early embryonic development.  相似文献   

3.
Type I interferons (IFN alpha and beta) convert vertebrate cells into an antiviral state by inducing expression of proteins that inhibit virus replication. In humans and mice, Mx proteins constitute one family of interferon-induced antiviral proteins. Mx genes have recently been cloned from Atlantic salmon and rainbow trout. Moreover, double-stranded RNA (dsRNA) and type I IFN-like activity have been shown to induce Mx protein in salmonid cells. Chinook salmon embryo cells (CHSE-214 cells) have been suggested to have a defect in the IFN-system because the dsRNA polyinosinic polycytidylic acid (poly I:C) failed to induce an antiviral state in the cells. We have studied this phenomenon more closely in the present work. CHSE-214 cells were either transfected with poly I:C or incubated with poly I:C without transfection reagent. The cells were then studied for Mx protein expression and protection against infectious pancreatic necrosis virus (IPNV) infection. The results showed that cells transfected with poly I:C were protected from IPNV infection, whilst cells incubated with poly I:C were not protected. Cells transfected with the double-stranded DNA poly dI:dC were also not protected against IPNV. Mx protein was expressed in CHSE-214 cells upon transfection with poly I:C, but not after incubation with poly I:C alone. Stimulation of CHSE-214 cells with supernatants from cells transfected with poly I:C, induced protection against IPNV, indicating production of type I IFN-like activity. These results suggest that CHSE-214 cells in fact are able to produce type I IFN, but may have defects in the mechanisms mediating uptake of poly I:C or may degrade unprotected poly I:C.  相似文献   

4.
5.
Arenavirus RNA genomes are initiated by a "prime and realign" mechanism, such that the initiating GTP is found as a single unpaired (overhanging) nucleotide when the complementary genome ends anneal to form double-stranded (ds) RNA panhandle structures. dsRNAs modeled on these structures do not induce interferon (IFN), as opposed to blunt-ended (5' ppp)dsRNA. This study examines whether these viral structures can also act as decoys, by trapping RIG-I in inactive dsRNA complexes. We examined the ability of various dsRNAs to activate the RIG-I ATPase (presumably a measure of helicase translocation on dsRNA) relative to their ability to induce IFN. We found that there is no simple relationship between these two properties, as if RIG-I can translocate on short dsRNAs without inducing IFN. Moreover, we found that (5' ppp)dsRNAs with a single unpaired 5' ppp-nucleotide can in fact competitively inhibit the ability of blunt-ended (5' ppp)dsRNAs to induce IFN when co-transfected into cells and that this inhibition is strongly dependent on the presence of the 5' ppp. In contrast, (5' ppp)dsRNAs with a single unpaired 5' ppp-nucleotide does not inhibit poly(I-C)-induced IFN activation, which is independent of the presence of a 5' ppp group.  相似文献   

6.
Viral infection is one environmental factor that may initiate beta-cell damage during the development of autoimmune diabetes. Formed during viral replication, double-stranded RNA (dsRNA) activates the antiviral response in infected cells. In combination, synthetic dsRNA (polyinosinic-polycytidylic acid, poly(I-C)) and interferon (IFN)-gamma stimulate inducible nitric-oxide synthase (iNOS) expression, inhibit insulin secretion, and induce islet degeneration. Interleukin-1 (IL-1) appears to mediate dsRNA + IFN-gamma-induced islet damage in a nitric oxide-dependent manner, as the interleukin-1 receptor antagonist protein prevents dsRNA + IFN-gamma-induced iNOS expression, inhibition of insulin secretion, and islet degeneration. IL-1beta is synthesized as an inactive precursor protein that requires cleavage by the IL-1beta-converting enzyme (ICE) for activation. dsRNA and IFN-gamma stimulate IL-1beta expression and ICE activation in primary beta-cells, respectively. Selective ICE inhibition attenuates dsRNA + IFN-gamma-induced iNOS expression by primary beta-cells. In addition, poly(I-C) + IFN-gamma-induced iNOS expression and nitric oxide production by human islets are prevented by interleukin-1 receptor antagonist protein, indicating that human islets respond to dsRNA and IFN-gamma in a manner similar to rat islets. These studies provide biochemical evidence for a novel mechanism by which viral infection may initiate beta-cell damage during the development of autoimmune diabetes. The viral replicative intermediate dsRNA stimulates beta-cell production of pro-IL-1beta, and following cleavage to its mature form by IFN-gamma-activated ICE, IL-1 then initiates beta-cell damage in a nitric oxide-dependent fashion.  相似文献   

7.
A mouse cell line, NIH 3T3, does not respond to some of the activities of interferon. Even after treatment with high concentrations of interferon the replication of lytic viruses, such as encephalomyocarditis virus (EMCV) and vesicular stomatitis virus (VSV) is not inhibited in these cells. In contrast, interferon treatment of these same cells results in the inhibition of Moloney murine leukemia virus (MMuLV) production. We have analyzed enzymatic pathways which are induced by interferon in these cells. After interferon treatment, the level of the (2'-5')oligoadenylate [(2'-5)An] synthetase activity and the phosphorylation of the 67000-dalton protein (P1) are enhanced in NIH 3T3 cells to approximately the same level as interferon-sensitive mouse L-cells. Moreover, NIH 3T3 and L-cells, contain approximately the same levels of enzymes which inactivate (2'-5')An. Both exogenously added (2'-5')A3 or double-stranded RNA (dsRNA) failed to inhibit protein synthesis in NIH 3T3 extracts even though they were potent inhibitors of L-cell extract-directed protein synthesis. Direct measurements of the (2'-5')An-dependent ribonuclease F (RNase F) failed to detect such activity in NIH 3T3 cells. Our results, therefore, suggest that the presence of RNase F activity is necessary for the interferon-induced antiviral activity against EMCV and against VSV. The induction of protein kinase activity by interferon treatment of NIH 3T3 cells appears to have no direct effect on EMCV and VSV replication.  相似文献   

8.
Type I interferons (IFN-alpha/beta) play an essential role in both innate and adaptive antiviral immune responses. IFN- beta is produced by fibroblasts and myeloid dendritic cells (DCs) upon viral infection or in response to doublestranded RNA (dsRNA). Several intracellular molecules having a dsRNA-binding motif such as dsRNA-dependent protein kinase recognize dsRNA in a sequence-independent manner and induce antiviral innate responses. Toll-like receptor (TLR) 3, a member of TLR family proteins, recognizes extracellular dsRNA and activates NF- kappaB and the IFN-beta promoter leading to the induction of IFN-beta production. Here we analyzed the dsRNA structure capable of inducing TLR3-mediated IFN-beta production using various synthetic RNA duplexes. In contrast to the recognition of dsRNA by intracellular molecules, TLR3 preferentially recognizes polyriboinocinic:polyribocytidylic acid (poly(I:C)) rather than synthetic virus-derived dsRNAs. 2'-O-methyl or 2'-fluoro modification of cytidylic acid abolished the IFN-beta-inducing ability of the poly(I:C) duplex, and these modified dsRNAs inhibited poly(I:C)-induced TLR3-mediated IFN-beta production by fibroblasts and DCs. In addition, poly(dI:dC), a non-IFN inducer, also blocked poly(I:C)-induced IFN-beta induction. Since TLR3 is localized in the intracellular compartment of DCs where signaling occurs, modified dsRNAs may compete with poly(I:C) for binding to the cell-surface receptor that transfers dsRNA into TLR3-enriched vesicles. Thus, TLR3 recognizes a unique dsRNA structure that largely differs from those recognized by other dsRNA-binding proteins.  相似文献   

9.
Interleukin-6 (IL-6) activates (2'-5') A synthetase (2'-5' AS) gene expression in differentiating myeloleukemic M1 cells. Antibodies to type I interferon (IFN) inhibit 2'-5' AS induction but not differentiation. Analysis of the mechanism of 2'-5' AS induction shows that it does not result from increased IFN formation, but from a synergism between IL-6 and endogenously secreted IFN. IL-6 can activate expression of a CAT construct fused to the interferon response sequence (IRS) of the 2'-5' AS gene. In extracts of IL-6-treated M1 cells, changes in protein binding to IRS DNA can be demonstrated. One of the effects of IL-6 on M1 cells is, therefore, to induce DNA binding factors, some of which act on the same enhancer sequence as IFNs, resulting in a synergistic gene activation. M1 variants resistant to differentiation by IL-6 have lost the ability to induce the 2'-5' AS gene.  相似文献   

10.
Neutrophils, historically known for their involvement in acute inflammation, are also targets for infection by many different DNA and RNA viruses. However, the mechanisms by which they recognize and respond to viral components are poorly understood. Polyinosinic:polycytidylic acid (poly(I:C)) is a synthetic mimetic of viral dsRNA that is known to interact either with endosomal TLR3 (not expressed by human neutrophils) or with cytoplasmic RNA helicases such as melanoma differentiation-associated gene 5 (MDA5) and retinoic acid-inducible gene I (RIG-I). In this study, we report that intracellularly administered poly(I:C) stimulates human neutrophils to specifically express elevated mRNA levels encoding type I IFNs, immunoregulatory cytokines, and chemokines, such as TNF-alpha, IL-12p40, CXCL10, CXCL8, CCL4, and CCL20, as well as classical IFN-responsive genes (IRG), including IFIT1 (IFN-induced protein with tetratricopeptide repeats 1)/IFN-stimulated gene (ISG)56, G1P2/ISG15, PKR (dsRNA-dependent protein kinase), and IFN-regulatory factor (IRF)7. Investigations into the mechanisms whereby transfected poly(I:C) promotes gene expression in neutrophils uncovered a crucial involvement of the MAPK-, PKR-, NF-kappaB-, and TANK (TNF receptor-associated NF-kappaB kinase)-binding kinase (TBK1)/IRF3-signaling transduction pathways, as illustrated by the use of specific pharmacological inhibitors. Consistent with the requirement of the cytoplasmic dsRNA pathway for antiviral signaling, human neutrophils were found to constitutively express significant levels of both MDA5 and RIG-I, but not TLR3. Accordingly, neutrophils isolated from MDA5-deficient mice had a partial impairment in the production of IFN-beta and TNF-alpha upon infection with encephalomyocarditis virus. Taken together, our data demonstrate that neutrophils are able to activate antiviral responses via helicase recognition, thus acting at the frontline of immunity against viruses.  相似文献   

11.
Human beta-defensins (hBDs) are antimicrobial peptides that play important roles in host defense against infection, inflammation and immunity. Previous studies showed that micro-organisms and proinflammatory mediators regulate the expression of these peptides in airway epithelial cells. The aim of the present study was to investigate the modulation of expression of hBDs in cultured primary bronchial epithelial cells (PBEC) by rhinovirus-16 (RV16), a respiratory virus responsible for the common cold and associated with asthma exacerbations. RV16 was found to induce expression of hBD-2 and -3 mRNA in PBEC, but did not affect hBD-1 mRNA. Viral replication appeared essential for rhinovirus-induced beta-defensin mRNA expression, since UV-inactivated rhinovirus did not increase expression of hBD-2 and hBD-3 mRNA. Exposure to synthetic double-stranded RNA (dsRNA) molecule polyinosinic:polycytidylic acid had a similar effect as RV16 on mRNA expression of these peptides in PBEC. In line with this, PBEC were found to express TLR3, a Toll-like receptor involved in recognition of dsRNA. This study shows that rhinovirus infection of PBEC leads to increased hBD-2 and hBD-3 mRNA expression, which may play a role in both the uncomplicated common cold and in virus-associated exacerbations of asthma.  相似文献   

12.
13.
14.
The 40-kDa 2'-5'-oligoadenylate [(2'-5') (A)n] synthetase isoenzyme was proven to be a mediator of the inhibition of encephalomyocarditis virus (EMCV) replication by interferon (IFN). When activated by double-stranded RNA, this enzyme converts ATP into 2'-5'-oligoadenylate [(2'-5') (A)n], and (2'-5') (A)n was found to accumulate in IFN-treated, EMCV-infected cells. The only known function of (2'-5') (A)n is the activation of RNase L, a latent RNase, and this was also implicated in the inhibition of EMCV replication. Intermediates or side products in EMCV RNA replication, presumed to be partially double stranded, were shown to activate (2'-5') (A)n synthetase in vitro. These findings served as the basis of the long-standing hypothesis that the activator of (2'-5') (A)n synthetase in IFN-treated, EMCV-infected cells is the viral RNA. To test this hypothesis, we have generated a polyclonal rabbit antiserum to the human 40-kDa (2'-5') (A)n synthetase. The antiserum immunoprecipitated, from IFN-treated HeLa cells that had been infected with EMCV, the 40-kDa (2'-5') (A)n synthetase protein in complex with both strands of EMCV RNA. The immunoprecipitate was active in (2'-5') (A)n synthesis even without addition of double-stranded RNA, whereas the immunoprecipitate from IFN-treated, uninfected cells was not. These and other results demonstrate that in IFN-treated, EMCV-infected cells, viral RNA is bound to the (2'-5') (A)n synthetase and suggest that the agent activating the (2'-5') (A)n synthetase is the bound viral RNA.  相似文献   

15.
Treatment of primary cultures of chicken embryo fibroblasts with a recombinant chicken alpha/beta interferon (rcIFN) induces an antiviral state that causes a strong inhibition of vaccinia virus and vesicular stomatitis virus replication but has no effect on avian reovirus S1133 replication. The fact that avian reovirus polypeptides are synthesized normally in rcIFN-treated cells prompted us to investigate whether this virus expresses factors that interfere with the activation and/or the activity of the IFN-induced, double-stranded RNA (dsRNA)-dependent enzymes. Our results demonstrate that extracts of avian-reovirus-infected cells, but not those of uninfected cells, are able to relieve the translation-inhibitory activity of dsRNA in reticulocyte lysates, by blocking the activation of the dsRNA-dependent enzymes. In addition, our results show that protein sigmaA, an S1133 core polypeptide, binds to dsRNA in an irreversible manner and that clearing this protein from extracts of infected cells abolishes their protranslational capacity. Taken together, our results raise the interesting possibility that protein sigmaA antagonizes the IFN-induced cellular response against avian reovirus by blocking the intracellular activation of enzyme pathways dependent on dsRNA, as has been suggested for several other viral dsRNA-binding proteins.  相似文献   

16.
17.
Natural killer (NK) cells are a component of innate immunity against viral infections through their rapid cytotoxic activity and cytokine production. However, intra-hepatic NK cells’ ability to respond to virus is still mostly unknown. Our results show that the synthetic dsRNA polyinosinic–polycytidylic acid (poly I:C), a mimic of a common product of viral infections, activates NK cells directly in the context of cytokines found in the liver, i.e.: poly I:C plus inflammatory cytokines (IL-18, IL-12, and IL-2) induced NK cell IFN-γ production and TRAIL expression, and anti-inflammatory cytokines (TGF-β and IL-10) inhibit NK cell IFN-γ production. Neutralization of IFN-γ blocks poly I:C plus inflammatory cytokines-induced NK cell TRAIL expression, suggesting that IFN-γ is an autocrine differentiation factor for these cells. A better understanding of the intra-hepatic NK cell activation against viral infection may help in the design of therapies and vaccines for the control of viral hepatitis.  相似文献   

18.
19.
The technique of photoaffinity labeling has been applied to the double-stranded RNA (dsRNA)-dependent enzyme 2',5'-oligoadenylate (2-5A) synthetase to provide a means for the examination of RNA-protein interaction(s) in the dsRNA allosteric binding domain of this enzyme. The synthesis, characterization, and biological properties of the photoaffinity probe poly[( 32P]I,8-azidoI).poly(C) and its mismatched analog poly[( 32P]I,8-azidoI).poly(C12U), which mimic the parent molecules poly(I).poly(C) and poly(I).poly(C12U), are described. The efficacy of poly[( 32P]I,8-azidoI).poly(C) and poly[( 32P]I,8-azidoI).poly(C12U) as allosteric site-directed activators is demonstrated using highly purified 2-5A synthetase from rabbit reticulocyte lysates and from extracts of interferon-treated HeLa cells. The dsRNA photoprobes activate these two 2-5A synthetases. Saturation of 2-5A synthetase is observed at 6 x 10(-4) g/ml poly[( 32P]I,8-azidoI).poly(C) following photolysis for 20 s at 0 degrees C. The photoincorporation of poly[( 32P]I,8-azidoI).poly(C) is specific, as demonstrated by the prevention of photoincorporation by native poly(I).poly(C). DNA, poly(I), and poly(C) are not competitors of poly[( 32P]I,8-azidoI).poly(C). Following UV irradiation of 2-5A synthetase with poly[( 32P]I,8-azidoI).poly(C), the reaction mixture is treated with micrococcal nuclease to hydrolyze azido dsRNA that is not cross-linked to the enzyme. A radioactive band of 110 kDa (the same as that reported for native rabbit reticulocyte lysate 2-5A synthetase) is observed following sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography. The specific photolabeling of the 2-5A synthetase suggests that the azido dsRNA is intrinsic to the allosteric binding domain. The utility of poly[( 32P]I,8-azidoI).poly(C) for the detection of dsRNA-dependent binding proteins and the isolation of peptides at or near the allosteric binding site is discussed.  相似文献   

20.
Interferon gamma (IFN-γ) has important roles in both innate and adaptive immune responses. In this study, the cDNA and genomic sequences of Atlantic cod IFN-γ were cloned and found to encode a putative protein containing 194 amino acids with a 24 amino acid signal peptide sequence. The gene is composed of four exons and three introns similar to IFN-γ genes of other vertebrates. The cod IFN-γ showed only 14–29% amino acid identity with other fish IFN-γ and 9–17% identity with IFN-γ from higher vertebrates. However, cod IFN-γ possesses the typical IFN-γ motifs in the C-terminal end of the protein and displays an alpha-helix structure similar to mammalian IFN-γ. The promoter region contains a putative ISRE element indicating up-regulation by type I IFNs and dsRNA. Real time RT-PCR analysis confirmed that IFN-γ gene expression was up-regulated in organs of cod injected with the dsRNA polyinosinic:polycytidylic acid (poly I:C), which is a strong inducer of type I IFNs. Injection of cod with formalin-killed Vibrio anguillarum also increased IFN-γ expression in head kidney, but to a much lesser extent than poly I:C. The gene expression results thus indicate a role for IFN-γ in innate immune response against both virus and bacteria in Atlantic cod.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号