首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 562 毫秒
1.
马静  张铁民 《现代生物医学进展》2012,12(31):6195-6197,6194
Cajal间质细胞(interstitial cells of cajal,ICC)主要分布在胃肠道平滑肌细胞与神经纤维之间,是一类特殊的间质细胞,它是胃肠运动的起搏细胞,具有产生、传导慢波,调节胃肠道平滑肌运动的功能。而慢性假性肠梗阻是由于胃肠神经抑制,毒素刺激或肠壁平滑肌本身病变,导致的肠壁肌肉运动功能减弱,临床上具有肠梗阻的症状和体征,但无肠内外机械性肠梗阻因素存在,故又称动力性肠梗阻,按病程有急性和慢性之分,麻痹性肠梗阻和痉挛性肠梗阻属于急性假性肠梗阻,深入研究Cajal间质细胞,对进一步认识胃肠运动的生理及胃肠动力疾病的发生机制有重要意义。  相似文献   

2.
Cajal间质细胞(interstitial cells of Cajal,ICC)是一类主要分布于胃肠道的间质细胞,与平滑肌细胞以及肠神经细胞有着紧密的关系。ICC分布于整个胃肠道,是胃肠道起搏细胞,具有产生和传播慢波的功能,参与神经递质调节,在一些胃肠动力性疾病中表现为异常状态。近期,关于ICC的生理功能、损伤和恢复机制的研究取得了显著的进展。ICC网络存在动态平衡,为了维持ICC网络功能,ICC周期代谢需要被紧密的控制调节平衡ICC死亡和更替。研究表明,ICC具有高度的可塑性,在一些缺失ICC的疾病中ICC并不一定死亡,转分化、去分化和细胞凋亡可能是ICC丢失的机制。。本文主要对Cajal间质细胞及其可塑性的研究进展进行了综述。  相似文献   

3.
马静  张铁民 《生物磁学》2012,(31):6195-6197,6194
Cajal间质细胞(interstitial cells of cajal,ICC)主要分布在胃肠道平滑肌细胞与神经纤维之间,是一类特殊的间质细胞,它是胃肠运动的起搏细胞,具有产生、传导慢波,调节胃肠道平滑肌运动的功能。而慢性假性肠梗阻是由于胃肠神经抑制,毒素刺激或肠壁平滑肌本身病变,导致的肠壁肌肉运动功能减弱,临床上具有肠梗阻的症状和体征,但无肠内外机械性肠梗阻因素存在,故又称动力性肠梗阻。按病程有急性和慢性之分,麻痹性肠梗阻和痉挛性肠梗阻属于急性假性肠梗阻,深入研究Caja1间质细胞,对进一步认识胃肠运动的生理及胃肠动力疾病的发生机制有重要意义。  相似文献   

4.
胃肠平滑肌层富有特殊分化的两种间质细胞,包括Cajal间质细胞(interstitial cells of Cajal,ICC)以及血小板衍生因子受体α阳性细胞(platelet-derived growth factor receptorα-positive cells,PDGFRα~+细胞)。ICC和PDGFRα~+细胞分别与平滑肌细胞(smooth muscle cells,SMC)形成缝隙连接调控平滑肌的收缩功能,因此,这三种细胞共同构成功能性的合胞体,称为SMC、ICC和PDGFRα~+细胞合胞体(SIP合胞体)。各种神经递质、体液因子、内源性生物活性分子以及药物等可以通过SIP合胞体影响胃肠运动。本文综述了SIP合胞体及其作用机制以及生理与病理生理学意义。  相似文献   

5.
内脏平滑肌Cajal间质细胞起搏功能(英文)   总被引:3,自引:0,他引:3  
Huang X  Xu WX 《生理学报》2010,62(5):387-397
胃肠道的大部分区域都存在着一种特殊的间质细胞——Cajal间质细胞(interstitial cells of Cajal,ICCs)。尽管在100多年前它们的存在就已被发现,但是直到最近几十年的研究才逐渐揭示了它们的功能。在胃肠道,ICCs被认为是平滑肌自发性节律性电活动,即"基本电节律"(又称"慢波")的起搏细胞,并介导神经至平滑肌的神经信号传递活动。除胃肠道外,ICC样细胞同样存在于其它内脏平滑肌,如泌尿、生殖系统以及血管平滑肌等。本文仅就这些内脏平滑肌ICCs的功能做一简单综述。  相似文献   

6.
王品  张有成 《现代生物医学进展》2012,12(30):5994-5996,5984
慢传输型便秘(STC)是由多因素引起的临床上常见的一种顽固疾病,其病因及发病机制尚不明确。目前对慢传输型便秘的病因研究主要集中在:药物的滥用、生活习惯、内分泌、心理因素这几个方面,发病机制的研究主要在肠道动力、胃肠神经肽、肠神经系统、Cajal间质细胞这几方面。从不同的层面分析,寻找关键因子,是本病的研究方向。本文对慢传输型便秘的病因及发病机制的研究进展作最新的综述。  相似文献   

7.
Cajal间质细胞(ICCs)是胃肠道的起搏者,在消化系统中具有重要的起搏功能.目前在膀胱中发现了形态学和免疫学上和ICCs相似的细胞,被称为膀胱Cajal样细胞.这类细胞既具有某些起搏细胞的特征,同时又与膀胱逼尿肌细胞紧密相连.这类细胞在膀胱活动中所起的作用就成为广大科研人员关注的问题,本文就膀胱Cajal样细胞的结构、形态、分布特点及其在信号传导中的作用进行了综述.  相似文献   

8.
将免疫荧光及传统全细胞膜片钳技术应用于新鲜分离的小鼠胃Cajal间质细胞样细胞上,探讨了小鼠胃Cajal间质细胞样细胞形态和电生理学特性。经胶原酶消化得到的Cajal间质细胞样细胞胞体呈短梭形,且自胞体发出多个较短的毛刺状突起。免疫细胞化学结果表明,Cajal间质细胞样细胞胞体和突起酪氨酸激酶受体c-kit表达呈阳性。在传统全细胞记录模式、膜电位钳制在-60mV的条件下,可以记录到自发、节律性内向电流,即起搏电流。钙调蛋白抑制剂W-7 (50μmol/L)明显增强了起搏电流幅度并引发明显的内向钳制电流。当电极内液中EGTA的浓度由0.1mmol/L增加到10mmol/L时,也明显增强了起搏电流幅度并引发明显的内向钳制电流。实验结果提示,新鲜分离的小鼠胃Cajal间质细胞样细胞可以产生自发、自律性内向电流,而这种电流对胞内低钙或钙调蛋白抑制剂敏感。这种具有自发性电活动的Cajal间质细胞样细胞可能就是胃Cajal间质细胞。  相似文献   

9.
将免疫荧光及传统全细胞膜片钳技术应用于新鲜分离的小鼠胃Cajal 间质细胞样细胞上,探讨了小鼠胃Cajal 间质细胞样细胞形态和电生理学特性。经胶原酶消化得到的Cajal间质细胞样细胞胞体呈短梭形,且自胞体发出多个较短的毛刺状突起。免疫细胞化学结果表明,Cajal 间质细胞样细胞胞体和突起酪氨酸激酶受体c-kit表达呈阳性。在传统全细胞记录模式、膜电位钳制在-60 mV 的条件下,可以记录到自发、节律性内向电流,即起搏电流。钙调蛋白抑制剂W-7 (50µmol/L)明显增强了起搏电流幅度并引发明显的内向钳制电流。当电极内液中EGTA 的浓度由0.1 mmol/L增加到10 mmol/L时,也明显增强了起搏电流幅度并引发明显的内向钳制电流。实验结果提示,新鲜分离的小鼠胃Cajal 间质细胞样细胞可以产生自发、自律性内向电流,而这种电流对胞内低钙或钙调蛋白抑制剂敏感。这种具有自发性电活动的Cajal 间质细胞样细胞可能就是胃Cajal 间质细胞。  相似文献   

10.
膀胱ICC样细胞研究进展   总被引:2,自引:1,他引:1  
Cajal间质细胞(ICC)是分布在消化道自主神经末梢和平滑肌之间的一类特殊细胞,是胃肠道慢波的起搏细胞,是胃肠运动的pacemaker,它推进电活动的传播以及介导神经信号传递,控制胃肠道自主神经运动功能.近年来在人和动物膀耽中已证实存在ICC样细胞,其功能研究是最近研究的热点.ICC样细胞证实具有和胃肠ICC一样的藕联及神经调节功能的结构基础和功能特点,其是否具有起搏特性值得期待.  相似文献   

11.
12.
胃肠运动功能障碍是许多胃肠道疾病及其他疾病的重要临床表现,其发病率高达胃肠道疾病的70%以上。缝隙连接蛋白43(connexin 43,Cx43)是细胞间隙连接通讯中最重要的间隙连接蛋白,对胃肠道动力的形成和调节起着关键性作用。中西医治疗胃肠道疾病临床疗效显著,但其起效的分子机制尚未阐释清楚。本文从Cx43的细胞间隙连接通讯的角度,对Cx43在调节胃肠运动障碍机制中的研究进展作一综述,为进一步探究中西医调节胃肠运动障碍的机制研究奠定基础。  相似文献   

13.
Malignant ascites is one of the common complication at the late stage of abdominal cancers, which may deteriorate the environment of abdominal cavity and lead to potential damage of functional cells. Interstitial cells of Cajal (ICCs) are mesoderm‐derived mesenchymal cells that function normal gastrointestinal motility. The pathological changes of ICCs or the reduced number may lead to the motility disorders of gastrointestinal tract. In this study, through analysis of malignant ascites which were obtained from cancer patients, we found that inflammatory cells, including tumour‐infiltrating lymphocytes, accounted for 17.26 ± 1.31% and tumour‐associated macrophages, occupied 19.06 ± 2.27% of total cells in the ascites, suggesting these inflammatory cells, in addition to tumour cells, may exert important influence on the tumour environment of abdominal cavity. We further demonstrated that the number of mice ICCs were significant decreased, as well as morphological and functional damage when ICCs were in the simulated tumour microenvironment in vitro. Additionally, we illustrated intestinal myoelectrical activity reduced and irregular with morphological changes of ICCs using the mice model of malignant ascites. In conclusion, our data suggested that inflammatory cells in malignant ascites may damage ICCs of the small intestine and lead to intestinal motility disorders.  相似文献   

14.
The interstitial cells of Cajal (ICCs) are important mediators of gastrointestinal (GI) motility because of their role as pacemakers in the GI tract. In addition to their function, ICCs are also structurally distinct cells most easily identified by their ultra-structural features and expression of the tyrosine kinase receptor c-KIT. ICCs have been described in mammals, rodents, birds, reptiles, and amphibians, but there are no reports at the ultra-structural level of ICCs within the GI tract of an organism from the teleost lineage. We describe the presence of cells in the muscularis of the zebrafish intestine; these cells have similar features to ICCs in other vertebrates. The ICC-like cells are associated with the muscularis, are more electron-dense than surrounding smooth muscle cells, possess long cytoplasmic processes and mitochondria, and are situated opposing enteric nervous structures. In addition, immunofluorescent and immunoelectron-microscopic studies with antibodies targeting the zebrafish ortholog of a putative ICC marker, c-KIT (kita), showed c-kit immunoreactivity in zebrafish ICCs. Taken together, these data represent the first ultra-structural characterization of cells in the muscularis of the zebrafish Danio rerio and suggest that ICC differentiation in vertebrate evolution dates back to the teleost lineage.  相似文献   

15.
BACKGROUND: Interstitial cells of Cajal (ICCs) are mesenchymal cells that play critical roles in gastrointestinal motility as electrical pacemakers and mediators of neuromuscular neurotransmission. Although depletions of ICCs have been implicated in several gastrointestinal motor disorders, quantification of these cells has been difficult due to their varied morphology, regionally changing network density, and overall scarcity. Our goal was to evaluate flow cytometry (FCM) for the enumeration of ICCs. METHODS: We identified murine ICCs in live gastrointestinal muscles or primary cell cultures grown in the presence or absence of stem cell factor (SCF)-expressing STO fibroblasts with fluorescent Kit (CD117) antibodies. Because this technique also labels resident macrophages nonspecifically, we identified the latter with additional fluorescent antibodies. Dispersed cells were analyzed by FCM. RESULTS: ICCs represented 1.63 +/- 0.17% of the total cell count in the distal stomach (n = 18 mice) and 5.85 +/- 0.84% in the proximal colon and 6.28 +/- 0.61% in the distal colon (n = 3 mice). In fundic muscles of W/WV mice (n = 5) that virtually lack ICCs, very few Kit+ cells were detected. FCM identified approximately 2.6- to 7.3-fold more Kit+ ICCs in small intestinal cell cultures grown on STO fibroblasts expressing membrane-bound SCF (n = 6) than in cultures stimulated with soluble SCF (n = 6). CONCLUSIONS: FCM is a sensitive and specific method for the unbiased quantification of ICCs.  相似文献   

16.
Telocytes (TCs) are recently described interstitial cells, present in almost all human organs. Among many other functions, TCs regulate gastrointestinal motility together with the interstitial cells of Cajal (ICCs). TCs and ICCs have close localization in the human myenteric plexus; however, the exact spatial relationship cannot be clearly examined by previously applied double immunofluorescence/confocal microscopy. Data on TCs and submucosal ganglia and their relationship to intestinal nerves are scarce. The aim of the study was to analyse the spatial relationship among these components in the normal human ileum and colon with double CD34/CD117 and CD34/S100 immunohistochemistry and high-resolution light microscopy. TCs were found to almost completely encompass both myenteric and submucosal ganglia in ileum and colon. An incomplete monolayer of ICCs was localized between the TCs and the longitudinal muscle cells in ileum, whereas only scattered ICCs were present on both surfaces of the colonic myenteric ganglia. TC-telopodes were observed within colonic myenteric ganglia. TCs, but no ICCs, were present within and around the interganglionic nerve fascicles, submucosal nerves and mesenterial nerves, but were only observed along small nerves intramuscularly. These anatomic differences probably reflect the various roles of TCs and ICCs in the bowel function.  相似文献   

17.
Etiologically, gastroesophageal reflux disease (GERD) can be regarded as motility disorder: Although blocking acid is effective in the treatment of GERD, it does not overcome the underlying pathologic factors that allow acid, pepsin, and bile to reflux into the esophagus. Prokinetic agents address the upper gastrointestinal motility disturbances contributing to GERD and, thus, have an important role in the short- and long-term medical management of reflux esophagitis. This paper discusses the rationale for the effectiveness of pharmacologic modulation by reviewing current concepts and postulated theories about the mechanisms underlying the neuromuscular abnormalities. The multifactorial aspects of GERD are addressed and the potential for tailoring medical therapy also emphasized.  相似文献   

18.
Membrane stretch is an important stimulus in gastrointestinal (GI) motility regulation, but the relationship between membrane stretch and the pacemaking activity of GI smooth muscle is poorly understood. We examined the effect of intestinal distension on slow waves and the effect of membrane stretch on pacemaker currents in cultured intestinal interstitial cells of Cajal (ICCs) from murine small intestine. At organ level, intestinal distension significantly increased amplitude of slow and fast waves, and enhanced frequencies of fast but not slow waves. At the cellular level, membrane stretch-induced by hyposmotic cell swelling (MSHC) depolarized membrane potential and activated large inward holding current, but suppressed amplitude of pacemaker potential or pacemaking current. External Ca2+-free solution abolished pacemaker current and blocked MSHC-induced inward holding current. However, a sustained inward holding current was activated and the amplitude of pacemaker current was increased by high ethylene glycol tetraacetic acid (EGTA) in pipette. Then MSHC also potentiated the inward holding current. MSHC significantly increased amplitude of rhythmic Ca2+ transients and basal intracellular Ca2+ concentration ([Ca2+]i). 2-APB blocked both pacemaker current and Ca2+ transients but did not alter the effect of MSHC on pacemaker current and Ca2+ transients. In contrast, ryanodine inhibited Ca2+ transients but not pacemaker current, and completely blocked MSHC-induced inward holding current and MSHC-induced increase of basal [Ca2+]i. These results suggest that intestinal distension potentiates intestinal motility by increasing the amplitude of slow waves. Membrane stretch potentiates pacemaking activity via releasing Ca2+ from calcium-induced calcium release (CICR) in cultured intestinal ICCs.  相似文献   

19.
Interstitial cells of Cajal (ICCs) are the pacemakers of the gastrointestinal tract, and transient receptor potential melastatin type 7 (TRPM7) and Ca2+ activated Cl channels (ANO1) are candidate the generators of pacemaker potentials in ICCs. The effects of D-erythro-sphingosine (SPH) and structural analogues of SPH, that is, N,N-dimethyl-Derythro-sphingosine (N,N-DMS), FTY720, and FTY720-P on the pacemaking activities of ICCs were examined using the whole cell patch clamp technique. SPH, N,N-DMS, and FTY720 decreased the amplitudes of pacemaker potentials in ICC clusters, but resting membrane potentials displayed little change. Also, perfusing SPH, N,N-DMS, or FTY720 in the bath reduced both inward and outward TRPM7-like currents in single ICCs, and inhibited ANO1 currents. The another structural analogue of SPH, FTY720-P was ineffective at the pacemaker potentials in ICC clusters and the TRPM7-like currents in single ICCs. Furthermore, FTY720- P had no effect on ANO1. These results suggest that SPH, N,N-DMS, and FTY720 modulate the pacemaker activities of ICCs, and that TRPM7 and ANO1 channels affect intestinal motility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号