首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
The Bacillus subtilis pur operon repressor (PurR) has a PRPP (5-phosphoribosyl 1-pyrophosphate) binding motif at residues 199–211. Two PurR PRPP binding region mutations (D203A and D204A) were constructed, and the effects on binding of repressor to the pur operon control site in vitro and on regulation of pur operon expression in vivo were investigated. PRPP significantly inhibited the binding of wild-type but not mutant PurR to pur operon control site DNA. In strains with the D203A and D204A mutations, pur operon expression in vivo was super-repressed by addition of adenine to the growth medium. These results support the role of PRPP in modulating the regulatory function of PurR in vivo. YabJ, the product of the distal gene in the bicistronic purR operon, is also required for PurR function in vivo. Received: 5 January 2000 / Accepted: 9 February 2000  相似文献   

3.
Site-directed mutagenesis was used to change the PurR binding site in the control region of a glyA-lac gene fusion. Mutations that changed the PurR binding sequence away from the consensus sequence reduced PurR binding, which correlated with reduced purine-mediated repression. Mutations that changed the binding sequence toward the consensus sequence had no significant effect on either PurR binding or purine-mediated repression. Hypoxanthine and guanine, co-repressors for PurR-mediated regulation of the pur regulon, increased binding of PurR to glyA operator DNA.  相似文献   

4.
5.
6.
7.
8.
Addition of purine compounds to the growth medium of Escherichia coli and Salmonella typhimurium causes repressed synthesis of the purine biosynthetic enzymes. The repression is mediated through a regulatory protein, PurR. To identify the co-repressor(s) of PurR, two approaches were used: (i) mutations were introduced into purine salvage genes and the effects of different purines on pur gene expression were determined; (ii) purine compounds which dictate the binding of the PurR protein to its operator DNA were resolved by gel retardation. Both the in vivo and the in vitro data indicated that guanine and hypoxanthine are co-repressors. The toxic purine analogues 6-mercaptopurine and 6-thioguanine also activated the binding of PurR to its operator DNA.  相似文献   

9.
10.
11.
12.
13.
14.
15.
The Bacillus subtilis purine repressor, PurR, regulates many genes involved in purine metabolism. These genes contain a conserved 14-nucleotide inverted repeat (PurBox). Both pur operon and purA, which are regulated by PurR, have this inverted repeat with a 16- or 17-nucleotide spacer, respectively. Mutational studies have earlier shown that PurR binding is dependent on the PurBox of pur operon. In contrast, these studies failed to establish the importance of purA PurBox to PurR binding. To examine this inconsistency, we studied the effects of PurBox mutations both in vivo and in vitro. The data presented here indicate that purA PurBox has a similar role as pur operon PurBox in PurR binding. In addition, our data suggest that the previously proposed classification of the two halves of the Purbox into weak and strong may need to be revised.  相似文献   

16.
The Escherichia coli purine repressor, PurR, binds to a 16-bp operator sequence and coregulates the genes for de novo synthesis of purine and pyrimidine nucleotides, formation of a one-carbon unit for biosynthesis, and deamination of cytosine. We have characterized the purified repressor. Chemical cross-linking indicates that PurR is dimeric. Each subunit has an N-terminal domain of 52 amino acids for DNA binding and a C-terminal 289-residue domain for corepressor binding. Each domain was isolated after cleavage by trypsin. Sites for dimer formation are present within the corepressor binding domain. The corepressors hypoxanthine and guanine bind cooperatively to distinct sites in each subunit. Competition experiments indicate that binding of one purine abolishes cooperativity and decreases the affinity and the binding of the second corepressor. Binding of each corepressor results in a conformation change in the corepressor binding domain that was detected by intrinsic fluorescence of three tryptophan residues. These experiments characterize PurR as a complex allosteric regulatory protein.  相似文献   

17.
Lundegaard C  Jensen KF 《Biochemistry》1999,38(11):3327-3334
Phosphoribosyltransferases catalyze the formation of nucleotides from a nitrogenous base and 5-phosphoribosyl-alpha-1-pyrophosphate (PRPP). These enzymes and the PRPP synthases resemble each other in a short homologous sequence of 13 amino acid residues which has been termed the PRPP binding site and which interacts with the ribose 5-phosphate moiety in structurally characterized complexes of PRPP and nucleotides. We show that each class of phosphoribosyltransferases has subtle deviations from the general consensus PRPP binding site and that all uracil phosphoribosyltransferases (UPRTases) have a proline residue at a position where other phosphoribosyltransferases and the PRPP synthases have aspartate. To investigate the role of this unusual proline (Pro 131 in the E. coli UPRTase) for enzyme activity, we changed the residue to an aspartate and purified the mutant P131D enzyme to compare its catalytic properties with the properties of the wild-type protein. We found that UPRTase of E. coli obeyed the kinetics of a sequential mechanism with the binding of PRPP preceding the binding of uracil. The basic kinetic constants were derived from initial velocity measurements, product inhibition, and ligand binding assays. The change of Pro 131 to Asp caused a 50-60-fold reduction of the catalytic rate (kcat) in both directions of the reaction and approximately a 100-fold increase in the KM for uracil. The KM for PRPP was strongly diminished by the mutation, but kcat/KM,PRPP and the dissociation constant (KD,PRPP) were nearly unaffected. We conclude that the proline in the PRPP binding site of UPRTase is of only little importance for binding of PRPP to the free enzyme, but is critical for binding of uracil to the enzyme-PRPP complex and for the catalytic rate.  相似文献   

18.
The purine regulon repressor, PurR, was identified as a component of the Escherichia coli regulatory system for pyrC, the gene that encodes dihydroorotase, an enzyme in de novo pyrimidine nucleotide synthesis. PurR binds to a pyrC control site that resembles a pur regulon operator and represses expression by twofold. Mutations that increase binding of PurR to the control site in vitro concomitantly increase in vivo regulation. There are completely independent mechanisms for regulation of pyrC by purine and pyrimidine nucleotides. Cross pathway regulation of pyrC by PurR may provide one mechanism to coordinate synthesis of purine and pyrimidine nucleotides.  相似文献   

19.
Xanthine phosphoribosyltransferase (XPRTase) from Bacillus subtilis is a representative of the highly xanthine specific XPRTases found in Gram-positive bacteria. These XPRTases constitute a distinct subclass of 6-oxopurine PRTases, which deviate strongly from the major class of H(X)GPRTases with respect to sequence, PRPP binding motif, and oligomeric structure. They are more related with the PurR repressor of Gram-positive bacteria, the adenine PRTase, and orotate PRTase. The catalytic function and high specificity for xanthine of B. subtilis XPRTase were investigated by ligand binding studies and reaction kinetics as a function of pH with xanthine, hypoxanthine, and guanine as substrates. The crystal structure of the dimeric XPRTase-GMP complex was determined to 2.05 A resolution. In a sequential reaction mechanism XPRTase binds first PRPP, stabilizing its active dimeric form, and subsequently xanthine. The XPRTase is able also to react with guanine and hypoxanthine albeit at much lower (10(-)(4)-fold) catalytic efficiency. Different pK(a) values for the bases and variations in their electrostatic potential can account for these catalytic differences. The unique base specificity of XPRTase has been related to a few key residues in the active site. Asn27 can in different orientations form hydrogen bonds to an amino group or an oxo group at the 2-position of the purine base, and Lys156 is positioned to make a hydrogen bond with N7. This and the absence of a catalytic carboxylate group near the N7-position require the purine base to dissociate a proton spontaneously in order to undergo catalysis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号