首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mitogen-activated protein (MAP) kinases are a family of serine/threonine kinases that are regulated by distinct extracellular stimuli. The currently known members include extracellular signal-regulated protein kinase 1 (ERK1), ERK2, the c-Jun N-terminal kinase/stress-activated protein kinases (JNK/SAPKs), and p38 MAP kinases. We find that overexpression of the Ste20-related enzymes p21-activated kinase 1 (PAK1) and PAK2 in 293 cells is sufficient to activate JNK/SAPK and to a lesser extent p38 MAP kinase but not ERK2. Rat MAP/ERK kinase kinase 1 can stimulate the activity of each of these MAP kinases. Although neither activated Rac nor the PAKs stimulate ERK2 activity, overexpression of either dominant negative Rac2 or the N-terminal regulatory domain of PAK1 inhibits Ras-mediated activation of ERK2, suggesting a permissive role for Rac in the control of the ERK pathway. Furthermore, constitutively active Rac2, Cdc42hs, and RhoA synergize with an activated form of Raf to increase ERK2 activity. These findings reveal a previously unrecognized connection between Rho family small G proteins and the ERK pathway.  相似文献   

2.
MAP kinase pathways comprise a group of parallel protein phosphorylation cascades, which are involved in signaling triggered by a variety of stimuli. Previous findings suggested that the ERK and the JNK pathways have opposing roles in regulating proliferation and survival or apoptosis and that apoptosis can be promoted by inhibiting the ERK pathway or by activation of the JNK pathway. In order to test this hypothesis and explore whether it can be exploited as a strategy for killing human cancer cells, we used gene transfer experiments with a range of cancer cell lines. We expressed the catalytic fragment of human MEKK1 to activate JNK and the Ras-binding domain (RBD) of Raf-1 to inhibit the Ras-ERK pathway. In addition, we designed several RBD-MEKK1 fusion proteins aiming to simultaneously activate the JNK and block the ERK pathway. We found that the MEKK1 proteins as well as the RBD alone could reduce colony formation in all cell lines. The survival time of MEKK1-expressing cells depended on the cell line. In HeLa cells, survival could be prolonged by inhibition of caspases but not by coexpression of the anti-apoptotic protein Bcl-2. Due to a lower kinase activity the RBD-MEKK1 fusion proteins were less effective in apoptosis induction than the MEKK1 kinase domain alone. Using mutant forms of Ras and Raf-1 we could show that the reduced kinase activity of RBD-MEKK1 fusion proteins was caused by binding to the Ras protein. The expression of lethal doses of MEKK1 resulted in a strong activation of all three major MAP kinase families JNK, ERK, and p38. Blocking these pathways either by coexpressing a dominant negative form of MKK4 or with inhibitors of MEK or p38 failed to inhibit apoptosis. This suggests that MEKK1 induces apoptosis by causing a general deregulation of MAP kinase signaling rather than by the activation of a single pathway.  相似文献   

3.
MEKK1 binds raf-1 and the ERK2 cascade components   总被引:8,自引:0,他引:8  
Mitogen-activated protein (MAP) kinase cascades are involved in transmitting signals that are generated at the cell surface into the cytosol and nucleus and consist of three sequentially acting enzymes: a MAP kinase, an upstream MAP/extracellular signal-regulated protein kinase (ERK) kinase (MEK), and a MEK kinase (MEKK). Protein-protein interactions within these cascades provide a mechanism to control the localization and function of the proteins. MEKK1 is implicated in activation of the c-Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK) and ERK1/2 MAP kinase pathways. We showed previously that MEKK1 binds directly to JNK/SAPK. In this study we demonstrate that endogenous MEKK1 binds to endogenous ERK2, MEK1, and another MEKK level kinase, Raf-1, suggesting that it can assemble all three proteins of the ERK2 MAP kinase module.  相似文献   

4.
5.
Small guanine nucleotide-binding proteins of the Ras and Rho (Rac, Cdc42, and Rho) families have been implicated in cardiac myocyte hypertrophy, and this may involve the extracellular signal-related kinase (ERK), c-Jun N-terminal kinase (JNK), and/or p38 mitogen-activated protein kinase (MAPK) cascades. In other systems, Rac and Cdc42 have been particularly implicated in the activation of JNKs and p38-MAPKs. We examined the activation of Rho family small G proteins and the regulation of MAPKs through Rac1 in cardiac myocytes. Endothelin 1 and phenylephrine (both hypertrophic agonists) induced rapid activation of endogenous Rac1, and endothelin 1 also promoted significant activation of RhoA. Toxin B (which inactivates Rho family proteins) attenuated the activation of JNKs by hyperosmotic shock or endothelin 1 but had no effect on p38-MAPK activation. Toxin B also inhibited the activation of the ERK cascade by these stimuli. In transfection experiments, dominant-negative N17Rac1 inhibited activation of ERK by endothelin 1, whereas activated V12Rac1 cooperated with c-Raf to activate ERK. Rac1 may stimulate the ERK cascade either by promoting the phosphorylation of c-Raf or by increasing MEK1 and/or -2 association with c-Raf to facilitate MEK1 and/or -2 activation. In cardiac myocytes, toxin B attenuated c-Raf(Ser-338) phosphorylation (50 to 70% inhibition), but this had no effect on c-Raf activity. However, toxin B decreased both the association of MEK1 and/or -2 with c-Raf and c-Raf-associated ERK-activating activity. V12Rac1 cooperated with c-Raf to increase expression of atrial natriuretic factor (ANF), whereas N17Rac1 inhibited endothelin 1-stimulated ANF expression, indicating that the synergy between Rac1 and c-Raf is potentially physiologically important. We conclude that activation of Rac1 by hypertrophic stimuli contributes to the hypertrophic response by modulating the ERK and/or possibly the JNK (but not the p38-MAPK) cascades.  相似文献   

6.
Raf-1 is a serine/threonine kinase which is essential in cell growth and differentiation. Tyrosine kinase oncogenes and receptors and p21ras can activate Raf-1, and recent studies have suggested that Raf-1 functions upstream of MEK (MAP/ERK kinase), which phosphorylates and activates ERK. To determine whether or not Raf-1 directly activates MEK, we developed an in vitro assay with purified recombinant proteins. Epitope-tagged versions of Raf-1 and MEK and kinase-inactive mutants of each protein were expressed in Sf9 cells, and ERK1 was purified as a glutathione S-transferase fusion protein from bacteria. Raf-1 purified from Sf9 cells which had been coinfected with v-src or v-ras was able to phosphorylate kinase-active and kinase-inactive MEK. A kinase-inactive version of Raf-1 purified from cells that had been coinfected with v-src or v-ras was not able to phosphorylate MEK. Raf-1 phosphorylation of MEK activated it, as judged by its ability to stimulate the phosphorylation of myelin basic protein by glutathione S-transferase-ERK1. We conclude that MEK is a direct substrate of Raf-1 and that the activation of MEK by Raf-1 is due to phosphorylation by Raf-1, which is sufficient for MEK activation. We also tested the ability of protein kinase C to activate Raf-1 and found that, although protein kinase C phosphorylation of Raf-1 was able to stimulate its autokinase activity, it did not stimulate its ability to phosphorylate MEK.  相似文献   

7.
WISP-1 is a cysteine-rich protein that belongs to the CCN (Cyr61, CTGF, Nov) family of matrix cellular proteins. Osteosarcoma is a type of highly malignant tumor with a potent capacity to invade locally and cause distant metastasis. However, the effect of WISP-1 on migration activity in human osteosarcoma cells is mostly unknown. In this study, we first found that the expression of WISP-1 in osteosarcoma patients was significantly higher than that in normal bone and corrected with tumor stage. Exogenous treatment of osteosarcoma cells with WISP-1 promoted cell motility and matrix metalloproteinase (MMP)-2 and MMP-9 expression. In addition, the Ras and Raf-1 inhibitor or siRNA abolished WISP-1-induced cell migration and MMP expression. On the other hand, activation of the Ras, Raf-1, MEK, ERK, and NF-κB signaling pathway after WISP-1 treatment was demonstrated, and WISP-1-induced expression of MMPs and migration activity were inhibited by the specific inhibitor, and mutant of MEK, ERK, and NF-κB cascades. Taken together, our results indicated that WISP-1 enhances the migration of osteosarcoma cells by increasing MMP-2 and MMP-9 expression through the integrin receptor, Ras, Raf-1, MEK, ERK, and NF-κB signal transduction pathway.  相似文献   

8.
9.
Transformation by oncogenic Ras requires signaling through Rho family proteins including RhoA, but the mechanism(s) whereby oncogenic Ras regulates the activity of RhoA is (are) unknown. We examined the effect of Ras on RhoA activity in NIH 3T3 cells either stably transfected with H-Ras(V12) under control of an inducible promoter or transiently expressing the activated H-Ras. Using a novel method to quantitate enzymatically the GTP bound to Rho, we found that expression of the oncogenic Ras increased Rho activity approximately 2-fold. Increased Rho activity was associated with increased plasma membrane binding of RhoA and decreased activity of the Rho/Ras-regulated p21(WAF1/CIP1) promoter. RhoA activation by oncogenic Ras could be explained by a decrease in cytosolic p190 Rho-GAP activity and translocation of p190 Rho-GAP from the cytosol to a detergent-insoluble cytoskeletal fraction. Pharmacologic inhibition of the Ras/Raf/MEK/ERK pathway prevented Ras-induced activation of RhoA and translocation of p190 Rho-GAP; expression of constitutively active Raf-1 kinase or MEK was sufficient to induce p190 Rho-GAP translocation. We conclude that in NIH 3T3 cells oncogenic Ras activates RhoA through the Raf/MEK/ERK pathway by decreasing the cytosolic activity and changing the subcellular localization of p190 Rho-GAP.  相似文献   

10.
How the extracellular signal-regulated kinase (ERK) cascade regulates diverse cellular functions, including cell proliferation, survival, and motility, in a context-dependent manner remains poorly understood. Compelling evidence indicates that scaffolding molecules function in yeast to channel specific signals through common components to appropriate targets. Although a number of putative ERK scaffolding proteins have been identified in mammalian systems, none has been linked to a specific biological response. Here we show that the putative scaffold protein MEK partner 1 (MP1) and its partner p14 regulate PAK1-dependent ERK activation during adhesion and cell spreading but are not required for ERK activation by platelet-derived growth factor. MP1 associates with active but not inactive PAK1 and controls PAK1 phosphorylation of MEK1. Our data further show that MP1, p14, and MEK1 serve to inhibit Rho/Rho kinase functions necessary for the turnover of adhesion structures and cell spreading and reveal a signal-channeling function for a MEK1/ERK scaffold in orchestrating cytoskeletal rearrangements important for cell motility.  相似文献   

11.
The actin cytoskeleton controls multiple cellular functions, including cell morphology, movement, and growth. Accumulating evidence indicates that oncogenic activation of the mitogen-activated protein kinase kinase/extracellular signal-regulated kinase 1/2 (MEK/ERK1/2) pathway is accompanied by actin cytoskeletal reorganization. However, the signaling events contributing to actin cytoskeleton remodeling mediated by aberrant ERK1/2 activation are largely unknown. Mutant B-RAF is found in a variety of cancers, including melanoma, and it enhances activation of the MEK/ERK1/2 pathway. We show that targeted knockdown of B-RAF with small interfering RNA or pharmacological inhibition of MEK increased actin stress fiber formation and stabilized focal adhesion dynamics in human melanoma cells. These effects were due to stimulation of the Rho/Rho kinase (ROCK)/LIM kinase-2 signaling pathway, cumulating in the inactivation of the actin depolymerizing/severing protein cofilin. The expression of Rnd3, a Rho antagonist, was attenuated after B-RAF knockdown or MEK inhibition, but it was enhanced in melanocytes expressing active B-RAF. Constitutive expression of Rnd3 suppressed the actin cytoskeletal and focal adhesion effects mediated by B-RAF knockdown. Depletion of Rnd3 elevated cofilin phosphorylation and stress fiber formation and reduced cell invasion. Together, our results identify Rnd3 as a regulator of cross talk between the RAF/MEK/ERK and Rho/ROCK signaling pathways, and a key contributor to oncogene-mediated reorganization of the actin cytoskeleton and focal adhesions.  相似文献   

12.
Second-phase insulin secretion sustains insulin release in the face of hyperglycemia associated with insulin resistance, requiring the continued mobilization of insulin secretory granules to the plasma membrane. Cdc42, the small Rho family GTPase recognized as the proximal glucose-specific trigger to elicit second-phase insulin secretion, signals downstream to activate the p21-activated kinase (PAK1), which then signals to Raf-1/MEK/ERK to induce filamentous actin (F-actin) remodeling, to ultimately mobilize insulin granules to the plasma membrane. However, the steps required to initiate Cdc42 activation in a glucose-specific manner in β cells have remained elusive. Toward this, we identified the involvement of the Src family kinases (SFKs), based upon the ability of SFK inhibitors to block glucose-stimulated Cdc42 and PAK1 activation events as well as the amplifying pathway of glucose-stimulated insulin release, in MIN6 β cells. Indeed, subsequent studies performed in human islets revealed that SFK phosphorylation was induced only by glucose and within 1 min of stimulation before the activation of Cdc42 at 3 min. Furthermore, pervanadate treatment validated the phosphorylation event to be tyrosine-specific. Although RT-PCR showed β cells to express five different SFK proteins, only two of these, YES and Fyn kinases, were found localized to the plasma membrane, and of these two, only YES kinase underwent glucose-stimulated tyrosine phosphorylation. Immunodetection and RNAi analyses further established YES kinase as a proximal glucose-specific signal in the Cdc42-signaling cascade. Identification of YES kinase provides new insight into the mechanisms underlying the sustainment of insulin secretion via granule mobilization/replenishment and F-actin remodeling.  相似文献   

13.
14.
Arai A  Aoki M  Weihua Y  Jin A  Miura O 《Cellular signalling》2006,18(12):2162-2171
Intracellular signaling mechanisms regulating SDF-1-induced chemotaxis of hematopoietic cells have remained elusive. Here we demonstrate that overexpression of the adaptor molecule CrkL enhances SDF-1-induced chemotaxis of hematopoietic BaF3 and 32Dcl3 cells. Overexpression of CrkL also enhanced SDF-1-induced activation of the Raf-1/MEK/Erk signaling pathway as well as that of the small GTPases Ras, Rap1, and Rac, while a dominant negative mutant of Ras or Rac suppressed CrkL-enhanced Erk activation. SDF-1 stimulation induced tyrosine phosphorylation of CrkL, which was inhibited by the Src family kinase inhibitor PP1 or by dominant negative mutants of Lyn, thus indicating that Lyn mediated SDF-1-induced phosphorylation of CrkL. However, inhibition of the Lyn kinase activity failed to affect SDF-1-induced activation of the small GTPases and Erk. On the other hand, SDF-1-induced activation of the Erk signaling pathway as well as chemotaxis was inhibited by overexpression of a CrkL mutant lacking the N-terminal SH3 domain, which mediates interaction with various signaling molecules including guanine nucleotide exchange factors for the Ras and Rho family GTPases. SDF-1-induced chemotaxis was also inhibited by the dominant negative Ras or Rac mutant as well as by the MEK inhibitor PD98059. These results indicate that CrkL mediates SDF-1-induced activation of the Raf-1/MEK/Erk signaling pathway through Ras as well as Rac in hematopoietic cells and, thereby, plays important roles in the induction of chemotactic response.  相似文献   

15.
Wang X  Li N  Liu B  Sun H  Chen T  Li H  Qiu J  Zhang L  Wan T  Cao X 《The Journal of biological chemistry》2004,279(44):45855-45864
The phosphatidylethanolamine (PE)-binding proteins (PEBPs) are an evolutionarily conserved family of proteins with pivotal biological functions. Here we describe the cloning and functional characterization of a novel family member, human phosphatidylethanolamine-binding protein 4 (hPEBP4). hPEBP4 is expressed in most human tissues and highly expressed in tumor cells. Its expression in tumor cells is further enhanced upon tumor necrosis factor (TNF) alpha treatment, whereas hPEBP4 normally co-localizes with lysosomes, TNFalpha stimulation triggers its transfer to the cell membrane, where it binds to Raf-1 and MEK1. L929 cells overexpressing hPEBP4 are resistant to both TNFalpha-induced ERK1/2, MEK1, and JNK activation and TNFalpha-mediated apoptosis. Co-precipitation and in vitro protein binding assay demonstrated that hPEBP4 interacts with Raf-1 and MEK1. A truncated form of hPEBP4, lacking the PE-binding domain, maintains lysosomal co-localization but has no effect on cellular responses to TNFalpha. Given that MCF-7 breast cancer cells expressed hPEBP4 at a high level, small interfering RNA was used to silence the expression of hPEBP4. We demonstrated that down-regulation of hPEBP4 expression sensitizes MCF-7 breast cancer cells to TNFalpha-induced apoptosis. hPEBP4 appears to promote cellular resistance to TNF-induced apoptosis by inhibiting activation of the Raf-1/MEK/ERK pathway, JNK, and PE externalization, and the conserved region of PE-binding domain appears to play a vital role in this biological activity of hPEBP4.  相似文献   

16.
As activation of the Ras/Raf/MEK/ERK pathway is a critical component of M-CSF-promoted osteoclast survival, determining specific mechanism by which M-CSF activates this signal transduction pathway is paramount towards advancing treatment of pathological conditions resulting in increased bone turnover. The p21 activated kinase PAK1 modulates activation of the Raf/MEK/ERK pathway by either directly activating Raf or priming MEK for activation by Raf. Therefore a role for PAK1 in M-CSF-mediated activation of the MEK/ERK pathway controlling osteoclast survival was assessed. Here we show that PAK1 is activated by M-CSF in a Ras-dependent mechanism that promotes osteoclast survival. Surprisingly, PAK1 did not modulate Raf activation or Raf-mediated MEK activation. M-CSF mediated activation of Raf was required for PAK1 activation and osteoclast survival promoted by PAK1. This survival response was MEK-independent as expression of constitutively active MEK did not rescue osteoclasts from apoptosis induced by blocking PAK1 function. Functionally, PAK1 promoted osteoclast survival by modulating expression of the IAP family member Survivin. M-CSF therefore functions to promote PAK1 activation as a novel MEK-independent Raf target to control Survivin-mediated osteoclast survival.  相似文献   

17.
WNK1 belongs to a unique protein kinase family that lacks the catalytic lysine in its normal position. Mutations in human WNK1 and WNK4 have been implicated in causing a familial form of hypertension. Here we report that overexpression of WNK1 led to increased activity of cotransfected ERK5 in HEK293 cells. ERK5 activation was blocked by the MEK5 inhibitor U0126 and expression of a dominant negative MEK5 mutant. Expression of dominant negative mutants of MEKK2 and MEKK3 also blocked activation of ERK5 by WNK1. Moreover, both MEKK2 and MEKK3 coimmunoprecipitated with endogenous WNK1 from cell lysates. WNK1 phosphorylated both MEKK2 and -3 in vitro, and MEKK3 was activated by WNK1 in 293 cells. Finally, ERK5 activation by epidermal growth factor was attenuated by suppression of WNK1 expression using small interfering RNA. Taken together, these results place WNK1 in the ERK5 MAP kinase pathway upstream of MEKK2/3.  相似文献   

18.
In examining the protein kinase components of mitogen-activated protein (MAP) kinase (MAPK) cascades that regulate the c-Jun N-terminal kinase (JNK) in Drosophila S2 cells, we previously found that distinct upstream kinases were involved in responses to sorbitol and lipopolysaccharide. Here we have extended that analysis to the possible MAPK kinase kinase kinases (MAP4Ks) in the JNK pathway. Fray, a putative Drosophila MAP4K, provided a major contribution to JNK activation by sorbitol. To explore the possible link to JNK in mammalian cells, we isolated and characterized OSR1 (oxidative stress-responsive 1), one of two human Fray homologs. OSR1 is a 58-kDa protein of 527 amino acids that is widely expressed in mammalian tissues and cell lines. Of potential regulators surveyed, endogenous OSR1 is activated only by osmotic stresses, notably sorbitol and to a lesser extent NaCl. However, OSR1 did not increase the activity of coexpressed JNK, nor did it activate three other MAPKs, p38, ERK2, and ERK5. A two-hybrid screen implicated another Ste20p family member, the p21-activated protein kinase PAK1, as an OSR1 target. OSR1 phosphorylated threonine 84 in the N-terminal regulatory domain of PAK1. Replacement of threonine 84 with glutamate reduced the activation of PAK1 by an active form of the small G protein Cdc42, suggesting that phosphorylation by OSR1 modulates the G protein sensitivity of PAK isoforms.  相似文献   

19.
Two Ras effector pathways leading to the activation of Raf-1 and phosphatidylinositol 3-kinase (PI3K) have been implicated in the survival signaling by the interleukin 3 (IL-3) receptor. Analysis of apoptosis suppression by Raf-1 demonstrated the requirement for mitochondrial translocation of the kinase in this process. This could be achieved either by overexpression of the antiapoptotic protein Bcl-2 or by targeting Raf-1 to the mitochondria via fusion to the mitochondrial protein Mas p70. Mitochondrially active Raf-1 is unable to activate extracellular signal-related kinase 1 (ERK1) and ERK2 but suppresses cell death by inactivating the proapoptotic Bcl-2 family member BAD. However, genetic and biochemical data also have suggested a role for the Raf-1 effector module MEK-ERK in apoptosis suppression. We thus tested for MEK requirement in cell survival signaling using the interleukin 3 (IL-3)-dependent cell line 32D. MEK is essential for survival and growth in the presence of IL-3. Upon growth factor withdrawal the expression of constitutively active MEK1 mutants significantly delays the onset of apoptosis, whereas the presence of a dominant negative mutant accelerates cell death. Survival signaling by MEK most likely results from the activation of ERKs since expression of a constitutively active form of ERK2 was as effective in protecting NIH 3T3 fibroblasts against doxorubicin-induced cell death as oncogenic MEK. The survival effect of activated MEK in 32D cells is achieved by both MEK- and PI3K-dependent mechanisms and results in the activation of PI3K and in the phosphorylation of AKT. MEK and PI3K dependence is also observed in 32D cells protected from apoptosis by oncogenic Raf-1. Additionally, we also could extend these findings to the IL-3-dependent pro-B-cell line BaF3, suggesting that recruitment of MEK is a common mechanism for survival signaling by activated Raf. Requirement for the PI3K effector AKT in this process is further demonstrated by the inhibitory effect of a dominant negative AKT mutant on Raf-1-induced cell survival. Moreover, a constitutively active form of AKT synergizes with Raf-1 in apoptosis suppression. In summary these data strongly suggest a Raf effector pathway for cell survival that is mediated by MEK and AKT.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号