首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Livers from male and female BB Wistar spontaneously diabetic rats were perfused in vitro to determine the effects of spontaneously occurring insulin-dependent diabetes on the metabolism of fatty acid. The secretion of triglyceride and the incorporation of [1-14C] oleic acid into perfusate and hepatic triglyceride was reduced by the diabetic state, whereas beta-hydroxybutyrate production and output of total ketone bodies were increased. The spontaneous diabetic Wistar rat clearly is a suitable model to study the derangements induced in lipid/plasma lipoprotein metabolism by the insulin-dependent diabetic state; the data obtained with this model confirm our earlier observations on experimental insulin deficiency induced with alloxan, streptozotocin, and anti-insulin serum.  相似文献   

2.
Hepatic glucose fluxes and intracellular movement of glucokinase (GK) in response to increased plasma glucose and insulin were examined in 10-wk-old, 6-h-fasted, conscious Zucker diabetic fatty (ZDF) rats and lean littermates. Under basal conditions, plasma glucose (mmol/l) and glucose turnover rate (GTR; micromol.kg(-1).min(-1)) were slightly higher in ZDF (8.4 +/- 0.3 and 53 +/- 7, respectively) than in lean rats (6.2 +/- 0.2 and 45 +/- 4, respectively), whereas plasma insulin (pmol/l) was higher in ZDF (1,800 +/- 350) than in lean rats (150 +/- 14). The ratio of hepatic uridine 5'-diphosphate-glucose 3H specific activity to plasma glucose 3H specific activity ([3H]UDP-G/[3H]G; %), total hepatic glucose output (micromol.kg(-1).min(-1)), and hepatic glucose cycling (micromol.kg(-1).min(-1)) were higher in ZDF (35 +/- 5, 87 +/- 16, and 33 +/- 10, respectively) compared with lean rats (18 +/- 3, 56 +/- 6, and 11 +/- 2, respectively). [3H]glucose incorporation into glycogen (micromol glucose/g liver) was similar in lean (1.0 +/- 0.7) and ZDF (1.6 +/- 0.8) rats. GK was predominantly located in the nucleus in both rats. With elevated plasma glucose and insulin, GTR (micromol.kg(-1).min(-1)), [3H]UDP-G/[3H]G (%), and [3H]glucose incorporation into glycogen (micromol glucose/g liver) were markedly higher in lean (191 +/- 22, 62 +/- 3, and 5.0 +/- 1.4, respectively) but similar in ZDF rats (100 +/- 6, 37 +/- 3, and 1.4 +/- 0.4, respectively) compared with basal conditions. GK translocation from the nucleus to the cytoplasm occurred in lean but not in ZDF rats. The unresponsiveness of hepatic glucose flux to the rise in plasma glucose and insulin seen in prediabetic ZDF rats was associated with impaired GK translocation.  相似文献   

3.
Recirculating organ perfusion in vitro was conducted with hearts from control rats, animals given a single dose of streptozotocin (65 mg/kg) 48 h earlier, and streptozotocin-treated rats administered insulin (5 units), 2 h prior to organ perfusion. During 45-min perfusions, the lipolysis of very low density lipoprotein (VLDL) triglyceride was significantly less in hearts from diabetics than in controls (41.9 +/- 7.3% of control). This was associated with significant reductions in heparin-releasable (functional) lipoprotein lipase and tissue lipoprotein lipase of perfused hearts. The decreases in VLDL triglyceride metabolism and the levels of myocardial lipoprotein lipase were completely reversed by treatment of diabetic rats with insulin 2 h prior to study. Similar improvement of VLDL triglyceride metabolism and increases in myocardial lipoprotein lipase activity were observed in hearts from diabetic rats by direct addition of 100 milliunits/ml of insulin to the recirculating perfusion media. Under these conditions, the increase in both fractions of lipoprotein lipase in response to insulin was completely inhibited, and utilization of VLDL triglyceride was partially inhibited by pre-perfusion with cycloheximide for 10 min. The data derived from either VLDL triglyceride lipolysis in organ perfusion or direct measurement of myocardial lipoprotein lipase demonstrate a direct effect of insulin on myocardial lipoprotein lipase activity, and suggest that the response to insulin may be due in part to effects on protein synthesis.  相似文献   

4.
The pituitary-testicular axis was investigated in the streptozotocin diabetic male rat to determine the relationship between hormonal alterations and steroidogenic activity. Male Sprague-Dawley rats weighing 250-300 g were used in all experiments. Diabetes was induced by intraperitoneal injection (40 mg/kg body wt.) of streptozotocin and they were studied with non-diabetic controls. The observations on these animals were compared to those from diabetic rats treated with 1-5 IU protamine zinc insulin. Steroidogenic activity was determined by measuring the per cent of [4-14C]-cholesterol converted to [4-14C]-pregnenolone and [4-14C]-progesterone. Plasma concentrations of LH, FSH and prolactin were measured by RIA. Streptozotocin induced diabetes resulted in significantly reduced plasma LH (34%, p less than 0.20) and prolactin (53%, p less than 0.001) but did not modify FSH concentrations. Insulin treatment completely and partially restored abnormal LH and prolactin release. The activity of the enzyme cleaving the side-chain of cholesterol (rate limiting step in steroidogenesis) was considerably reduced in the diabetic state (59%, p less than 0.002) and insulin treatment restored it to even supranormal levels (not significant). Our findings suggest that insulin may play a physiological and differential role in regulating the secretory activity of the anterior pituitary. The insulin is needed for normal LH and prolactin release and Leydig cells function but its role in FSH release and Sertoli cells function is not clear.  相似文献   

5.
A possible mechanism for the anti-ketogenic action of alanine in the rat   总被引:6,自引:6,他引:0  
1. The anti-ketogenic effect of alanine has been studied in normal starved and diabetic rats by infusing l-alanine for 90min in the presence of somatostatin (10μg/kg body wt. per h) to suppress endogenous insulin and glucagon secretion. 2. Infusion of alanine at 3mmol/kg body wt. per h caused a 70±11% decrease in [3-hydroxybutyrate] and a 58±9% decrease in [acetoacetate] in 48h-starved rats. [Glucose] and [lactate] increased, but [non-esterified fatty acid], [glycerol] and [3-hydroxybutyrate]/[acetoacetate] were unchanged. 3. Infusion of alanine at 1mmol/kg body wt. per h caused similar decreases in [ketone body] (3-hydroxybutyrate plus acetoacetate) in 24h-starved normal and diabetic rats, but no change in other blood metabolites. 4. Alanine [3mmol/kg body wt. per h] caused a 72±9% decrease in the rate of production of ketone bodies and a 57±8% decrease in disappearance rate as assessed by [3-14C]acetoacetate infusion. Metabolic clearance was unchanged, indicating that the primary effect of alanine was inhibition of hepatic ketogenesis. 5. Aspartate infusion at 6mmol/kg body wt. per h had similar effects on blood ketone-body concentrations in 48h-starved rats. 6. Alanine (3mmol/kg body wt. per h) caused marked increases in hepatic glutamate, aspartate, malate, lactate and citrate, phosphoenolpyruvate, 2-phosphoglycerate and glucose concentrations and highly significant decreases in [3-hydroxybutyrate] and [acetoacetate]. Calculated [oxaloacetate] was increased 75%. 7. Similar changes in hepatic [malate], [aspartate] and [ketone bodies] were found after infusion of 6mmol of aspartate/kg body wt. per h. 8. It is suggested that the anti-ketogenic effect of alanine is secondary to an increase in hepatic oxaloacetate and hence citrate formation with decreased availability of acetyl-CoA for ketogenesis. The reciprocal negative-feedback cycle of alanine and ketone bodies forms an important non-hormonal regulatory system.  相似文献   

6.
To evaluate whether the moderately elevated human growth hormone concentration, seen in insulin dependent diabetic patients, has any impact on lipoproteins, human growth hormone was given to nondiabetic persons in doses which would bring their plasma human growth hormone concentration up in the same level as seen in insulin dependent diabetic patients. After one week of treatment with human growth hormone we found total plasma triglyceride to be significantly raised (0.98 mmol/l +/- 0.28 mmol/l (mean +/- SD) before versus 1.27 mmol/l +/- 0.38 mmol/l (mean +/- SD) after treatment). Very low density lipoprotein (VLDL) was separated into two fractions (VLDL-1 and VLDL-2) of which VLDL-2 is regarded as a VLDL-remnant which is suggested to be of importance for development of atherosclerosis. After one week of human growth hormone treatment there were no changes in VLDL-1 concentrations whereas a significant raise in VLDL-2 triglyceride and VLDL-2 cholesterol was seen.  相似文献   

7.
In rats fed a semisynthetic diet, streptozotocin-induced diabetes [45 mg/kg, 17 days] led to hypertriglyceridaemia [6.4 mmol/l], to a marked increase in the proportion of plasma cholesterol present in the very low density lipoproteins [VLDL] [to 40 %] and to a decrease in the amount present in the high density lipoproteins [HDL] [to 34 %]. The addition of 0.25 % cholesterol to the above diet led in healthy rats to hypercholesterolaemia [4.3 mmol/l] and to similar changes in the distribution of cholesterol in the lipoproteins. In diabetic rats, the same diet led to pronounced hypertriglyceridaemia [13.8 mmol/l] and hypercholesterolaemia [18.9 mmol/l], while the proportion of HDL-borne plasma cholesterol fell still further to 6 % and rose in the VLDL to 70 %. The addition of pectin to the diet in 6 % concentration markedly inhibited triglyceridaemia [3.3 mmol/l] and cholesterolaemia [4.4 mmol/l] and raised the proportion of HDL plasma cholesterol to 47 %.  相似文献   

8.
1. Non-anaesthetized normal and diabetic rats were fasted for 1 day, and [U-14C]glycine, or [U-14C]serine, or [U-14C]- plus [3-3H]-glucose was injected intra-arterially. The rates of synthesis de novo/irreversible disposal for glycine, serine and glucose, as well as the contribution of carbon atoms by the amino acids to plasma glucose, were calculated from the integrals of the specific-radioactivity-versus-time curves in plasma. 2. The concentrations of both glycine and serine in blood plasma were lower in diabetic than in fasted normal animals. 3. The rates of synthesis de novo/irreversible disposal of both amino acids tended to be lower in diabetic animals, but the decrease was statistically significant only for serine (14.3 compared with 10.5 mumol/min per kg). 4. Of the carbon atoms of plasma glucose, 2.9% arose from glycine in both fasted normal and diabetic rats, whereas 4.46% of glucose carbon originated from serine in fasted normal and 6.77% in diabetic rats. 5. As judged by their specific radioactivities, plasma serine and glycine exchange carbon atoms rapidly and extensively. 6. It was concluded that the turnover of glycine remains essentially unchanged, whereas that of serine is decreased in diabetic as compared with fasted normal rats. The plasma concentration of both amino acids was lower in diabetic rats. Both glycine and serine are glucogenic. In diabetic rats the contribution of carbon atoms from glycine to glucose increases in direct proportion to the increased glucose turnover, whereas the contribution by serine becomes also proportionally higher.  相似文献   

9.
1. The effect of tumour burden on lipid metabolism was examined in virgin, lactating and litter-removed rats. 2. No differences in food intake or plasma insulin concentrations were observed between control animals and those bearing the Walker-256 carcinoma (3-5% of body wt.) in any group studied. 3. In virgin tumour-bearing animals, there was a significant increase in liver mass, blood glucose and lactate, and plasma triacylglycerol; the rate of oxidation of oral [14C]lipid to 14CO2 was diminished, and parametrial white adipose tissue accumulated less [14C]lipid compared with pair-fed controls. 4. These findings were accompanied by increased accumulation of lipid in plasma and decreased white-adipose-tissue lipoprotein lipase activity. 5. In lactating animals, tumour burden had little effect on the accompanying hyperphagia or on pup weight gain; tissue lipogenesis was unaffected, as was tissue [14C]lipid accumulation, plasma [triacylglycerol] and white-adipose-tissue and mammary-gland lipoprotein lipase activity. 6. On removal (24 h) of the litter, the presence of the tumour resulted in decreased rates of lipogenesis in the carcass, liver and white and brown adipose tissue, decreased [14C]lipid accumulation in white adipose tissue, but increased accumulation in plasma and liver, increased plasma [triacylglycerol] and decreased lipoprotein lipase activity in white adipose tissue. 7. The rate of triacylglycerol/fatty acid substrate cycling was significantly decreased in white adipose tissue of virgin and litter-removed rats bearing the tumour, but not in lactating animals. 8. These results demonstrate no functional impairment of lactation, despite the presence of tumour, and the relative resistance of the lactating mammary gland to the disturbance of lipid metabolism that occurs in white adipose tissue of non-lactating rats with tumour burden.  相似文献   

10.
OBJECTIVE--To compare high fibre diet, basal insulin supplements and a regimen of insulin four times daily in non-insulin dependent (type II) diabetic patients who were poorly controlled with sulphonylureas. DESIGN--Run in period lasting 2-3 months during which self monitoring of glucose concentration was taught, followed by six months on a high fibre diet, followed by six months'' treatment with insulin in those patients who did not respond to the high fibre diet. SETTING--Teaching hospital diabetic clinics. PATIENTS--33 patients who had had diabetes for at least two years and had haemoglobin A1 concentrations over 10% despite receiving nearly maximum doses of oral hypoglycaemic agents. No absolute indications for treatment with insulin. INTERVENTIONS--During the high fibre diet daily fibre intake was increased by a mean of 16 g (95% confidence interval 12 to 20 g.) Twenty five patients were then started on once daily insulin. After three months 14 patients were started on four injections of insulin daily. ENDPOINT--Control of diabetes (haemoglobin A1 concentration less than or equal to 10% and fasting plasma glucose concentration less than or equal to 6 mmol/l) or completion of six months on insulin treatment. MEASUREMENTS AND MAIN RESULTS-- No change in weight, diet, or concentrations of fasting glucose or haemoglobin A1 occurred during run in period. During high fibre diet there were no changes in haemoglobin A1 concentrations, but mean fasting glucose concentrations rose by 1.7 mmol/l (95% confidence interval 0.9 to 2.5, p less than 0.01). With once daily insulin mean concentrations of fasting plasma glucose fell from 12.6 to 7.6 mmol/l (p less than 0.001) and haemoglobin A1 from 14.6% to 11.2% (p less than 0.001). With insulin four times daily concentrations of haemoglobin A1 fell from 11.5% to 9.6% (p less than 0.02). Lipid concentrations were unchanged by high fibre diet. In patients receiving insulin the mean cholesterol concentrations fell from 7.1 to 6.4 mmol/l (p less than 0.0001), high density lipoprotein concentrations rose from 1.1 to 1.29 mmol/l (p less than 0.01), and triglyceride concentrations fell from 2.67 to 1.86 mmol/l (p less than 0.05). Patients taking insulin gained weight and those taking it four times daily gained an average of 4.2 kg. CONCLUSIONS--High fibre diets worsen control of diabetes in patients who are poorly controlled with oral hypoglycaemic agents. Maximum improvements in control of diabetes were achieved by taking insulin four times daily.  相似文献   

11.
PURPOSE: Recently, our laboratory group has reported that rats with Type 1 diabetes have decreased plasma homocysteine and cysteine levels compared to non-diabetic controls and that organic vanadium treatment increased plasma homocysteine concentrations to non-diabetic concentrations. However, to date, no studies have been done investigating the effects of organic vanadium compounds on plasma homocysteine and its metabolites in Type 2 diabetic animal model. These studies examined the effect of organic vanadium compounds [bis(maltolato)oxovanadium(IV) and bis(ethylmaltolato)oxovanadium(IV); BMOV and BEOV] administered orally on plasma concentrations of homocysteine and its metabolites (cysteine and cysteinylglycine) in lean, Zucker fatty (ZF) and Zucker diabetic fatty (ZDF) rats. ZF rats are a model of pre-diabetic Type 2 diabetes characterized by hyperinsulinemia and normoglycemia. The ZDF rat is a model of Type 2 diabetes characterized by relative hypoinsulinemia and hyperglycemia. METHODS: Zucker lean and ZF rats received BMOV in the drinking water at a dose of 0.19 +/- 0.02 mmol/kg/day. Lean and ZDF rats received BEOV by oral gavage daily at dose of 0.1 mmol/kg. The treatment period for both studies was 21 days. At termination, animals were fasted overnight (approximately 16 h) and blood samples were collected by cardiac puncture for determination of plasma glucose, insulin and homocysteine levels. Plasma homocysteine and its metabolites levels were determined using high-pressure liquid chromatography. Plasma glucose was determined using a Glucose Analyzer 2. Plasma insulin levels were determined by radioimmunoassay. Plasma triglycerides were determined by an enzymatic assay methodology. RESULTS: ZF (n = 4) and ZDF (n = 10) rats had significantly lower plasma homocysteine as compared to their respective lean groups (ZF 0.78 +/- 0.1 micromol/L vs. Zucker lean 2.19 +/- 0.7 micromol/L; ZDF 1.71 +/- 0.2 micromol/L vs. Zucker lean 3.02 +/- 0.3 micromol/L; p < 0.05). BMOV treatment in ZF rats restored plasma homocysteine levels to those observed in lean untreated rats (ZF treated: 2.04 +/- 0.2 micromol/L; lean 2.19 +/- 0.7 micromol/L). There was a modest effect of BMOV treatment on plasma glucose levels in ZF rats. BEOV treatment significantly decreased the elevated plasma glucose levels in the ZDF rats (lean 7.9 +/- 0.1 mmol/L; lean + vanadium 7.7 +/- 0.2 mmol/L; ZDF 29.9 +/- 0.4 mmol/L; ZDF + vanadium 17.4 +/- 0.3 mmol/L, p < 0.05). Organic vanadium treatment reduced cysteine levels in both ZF and ZDF rats. No differences in total plasma cysteinylglycine concentrations were observed. CONCLUSION: Plasma homocysteine levels are significantly reduced in a pre-diabetic model of Type 2 diabetes, which was restored to lean levels upon vanadium treatment; however, this restoration of plasma homocysteine levels was not seen in ZDF Type 2 diabetic rats following vanadium treatment. In the latter case vanadium treatment may not have totally overcome the insulin resistance seen in these animals.  相似文献   

12.
Nascent high density lipoprotein (HDL) and nascent very low density lipoprotein (VLDL) were isolated from rat livers that had been perfused with [3H]glycerol to label the triglyceride. When injected into intact rats, the labeled HDL-triglyceride disappeared as rapidly as the VLDL-triglyceride, with only 10% of the injected label remaining in the plasma after 30 min. The protein moiety of nascent HDL was labeled with [35S]methionine in a similar fashion and the labeled nascent HDL was separated into nonretained (NR) and retained (R) fractions by heparin-Sepharose affinity chromatography. When injected into rats, 55% of the injected label in nascent fraction NR and 72% of that in nascent fraction R was recovered from plasma at 30 min, compared to only 10% of the triglyceride label from unfractionated nascent HDL, indicating dissociation of triglyceride and apolipoprotein clearance. The plasma decay curves for both triglyceride and protein were biexponential. By 5 min, 15% of the 35S label remaining in plasma represented apoE and apoC that had been transferred from nascent HDL fractions NR and R to the d less than 1.063 g/ml fraction of plasma. Plasma HDL was labeled in vivo with [35S]methionine, separated into fractions NR and R, and the clearance of the two plasma HDL fractions was compared with that of the corresponding nascent HDL fractions. Except for a faster rate of removal of the nascent HDL fractions during the first 5 min, the serum decay curves were very similar.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The effect of alloxan-induced insulin deficiency on high density lipoprotein (HDL) metabolism was studied in rabbits. Rabbits with alloxan-induced diabetes had significantly higher (P less than 0.001, mean +/- SEM) plasma concentrations of glucose (541 +/- 13 vs. 130 +/- 2 mg/dl), triglyceride (2851 +/- 332 vs. 101 +/- 10 mg/dl), and total plasma cholesterol (228 +/- 55 vs. 42 +/- 4 mg/dl) than did normal control rabbits. However, diabetic rabbits had lower plasma HDL-cholesterol (7.2 +/- 1 vs. 51.3 +/- 1.3 mg/dl, P less than 0.001) and HDL apoA-I (38.3 +/- 6.0 vs. 87.2 +/- 4.3 mg/dl, P less than 0.001) concentrations. HDL kinetics were compared in diabetic and normal rabbits, using either 125I-labeled HDL or HDL labeled with 125I-labeled apoA-I, and it was demonstrated that HDL fractional catabolic rate (FCR) was slower and residence time was longer in the diabetic rabbits when either tracer was used. The slow FCR and the low apoA-I pool size led to reduced apoA-I/HDL synthetic rate in diabetic rabbits (0.97 +/- 0.11 vs. 0.34 +/- 0.07 mg per kg per hr). Thus, the reduced plasma HDL-cholesterol concentrations seen in rabbits with alloxan-induced insulin deficiency was associated with a lower total apoA-I/HDL synthetic rate. Since insulin treatment restored to normal all of the changes in plasma lipoprotein concentration and kinetics seen in diabetic rabbits, it is unlikely that the phenomena observed were secondary to a nonspecific toxic effect of alloxan. These data strongly support the view that insulin plays an important role in regulation of HDL metabolism.  相似文献   

14.
The effects of insulin-like growth factor I (IGF-I) and insulin on free fatty acid (FFA) and glucose metabolism were compared in eight control and eight type 2 diabetic subjects, who received a two-step euglycemic hyperinsulinemic (0.25 and 0.5 mU x kg(-1) x min(-1)) clamp and a two-step euglycemic IGF-I (26 and 52 pmol x kg(-1) x min(-1)) clamp with [3-(3)H]glucose, [1-(14)C]palmitate, and indirect calorimetry. The insulin and IGF-I infusion rates were chosen to augment glucose disposal (R(d)) to a similar extent in control subjects. In type 2 diabetic subjects, stimulation of R(d) (second clamp step) in response to both insulin and IGF-I was reduced by approximately 40-50% compared with control subjects. In control subjects, insulin was more effective than IGF-I in suppressing endogenous glucose production (EGP) during both clamp steps. In type 2 diabetic subjects, insulin-mediated suppression of EGP was impaired, whereas EGP suppression by IGF-I was similar to that of controls. In both control and diabetic subjects, IGF-I-mediated suppression of plasma FFA concentration and inhibition of FFA turnover were markedly impaired compared with insulin (P < 0.01-0.001). During the second IGF-I clamp step, suppression of plasma FFA concentration and FFA turnover was impaired in diabetic vs. control subjects (P < 0.05-0.01). CONCLUSIONS: 1) IGF-I is less effective than insulin in suppressing EGP and FFA turnover; 2) insulin-resistant type 2 diabetic subjects also exhibit IGF-I resistance in skeletal muscle. However, suppression of EGP by IGF-I is not impaired in diabetic individuals, indicating normal hepatic sensitivity to IGF-I.  相似文献   

15.
1. The overall metabolic changes in lactating mammary gland in alloxan-diabetic and anti-insulin-serum-treated rats were assessed by measurement of the incorporation of (14)C from specifically labelled glucose, pyruvate and acetate into carbon dioxide and lipid, together with measurements of enzymes concerned with the pentose phosphate pathway and with citrate metabolism. 2. Alloxan-diabetes depressed the rate of formation of (14)CO(2) from [1-(14)C]glucose and [2-(14)C]glucose to approx. 10% of the control rate; this was partially reversed by addition of insulin in vitro. The quotient Oxidation of [1-(14)C]glucose/Oxidation of [6-(14)C]glucose fell from a value of 17.6 in the control group to 3.9 in the diabetic group and was restored to 14.3 in the presence of insulin in vitro. In keeping with these results it was shown that glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase activities were significantly decreased in alloxan-diabetic rats. 3. Alloxan-diabetes depressed the decarboxylation and the oxidation of labelled pyruvate, but not the oxidation of labelled acetate. 4. The synthesis of lipid from specifically labelled glucose was greatly decreased, that from [2-(14)C]pyruvate was almost unchanged and that from [1-(14)C]acetate alone was increased in alloxandiabetic rats. However, the stimulation of lipid synthesis from acetate by glucose was small in the alloxan-diabetic rats compared with the controls. Insulin in vitro partially reversed all these effects. Both citrate-cleavage enzyme and acetate thiokinase activities were decreased in alloxan-diabetic rats. 5. Treatment of rats with anti-insulin serum depressed the formation of (14)CO(2) from [1-(14)C]glucose and [2-(14)C]glucose, but increased that from [6-(14)C]glucose. This was completely restored by the presence of insulin in vitro. The quotient Oxidation of [1-(14)C]glucose/Oxidation of [6-(14)C]glucose fell from a value of 17.6 in the control group to 3.8 in the anti-insulin-serum-treated group. There were no changes in the activity of glucose 6-phosphate dehydrogenase or 6-phosphogluconate dehydrogenase, but the hexokinase distribution changed and the content of the soluble fraction increased significantly. 6. The synthesis of lipid from specifically labelled glucose was depressed in anti-insulin-serum-treated rats; this effect was completely reversed by addition of insulin in vitro to the tissue slices.  相似文献   

16.
Contrary to normal rats, diabetic rats are known to develop marked hypercholesterolemia when fed a cholesterol-enriched diet. The triggering factor involved in this hyperresponse has not been identified. With the aim of clarifying the role of the intestinal acyl-CoA:cholesterol acyltransferase (ACAT), we studied the effects of a high fat diet and the changes of intestinal ACAT activity during the early development of streptozotocin-diabetes in rats. Feeding diabetic rats with a diet enriched in cholesterol and saturated fat produced an increase in plasma and in tissue cholesterol as early as 3 days after streptozotocin injection in the absence of hyperphagia. Under these experimental conditions, treatment with insulin or with the ACAT inhibitor CL-277082 significantly reduced the plasma cholesterol to levels measured in nondiabetic rats fed the same high fat diet. An increase in [14C]cholesterol in plasma very low density lipoprotein was observed after oral administration of labeled cholesterol to 3-day diabetic rats. In parallel experiments, the direct measurement of small intestine microsomal ACAT activity revealed an increase, averaging 288% in diabetic rats 3 days after diabetes induction. This change in ACAT activity occurred simultaneously with an increase in plasma glucagon and was normalized by insulin treatment. The induction of intestinal ACAT activity in diabetic rats, its modulation by insulin, and the hypocholesterolemic effects of insulin or CL-277082 treatment clearly indicate that ACAT activity plays a major role in the initiation of diabetes-associated hypercholesterolemia.  相似文献   

17.
The current study assessed in vivo the effect of insulin on triglyceride-rich lipoprotein (TRL) production by rat liver. Hepatic triglyceride and apolipoprotein B (apoB) production were measured in anesthetized, fasted rats injected intravenously with Triton WR-1339 (400 mg/kg). After intravascular catabolism was blocked by detergent treatment, glucose (500 mg/kg) was injected to elicit insulin secretion, and serum triglyceride and apoB accumulation were monitored over the next 3 h. In glucose-injected rats, triglyceride secretion averaged 22.5 +/- 2.1 microg.ml(-1).min(-1), which was significantly less by 30% than that observed in saline-injected rats, which averaged 32.1 +/- 1.4 microg.ml(-1).min(-1). ApoB secretion was also significantly reduced by 66% in glucose-injected rats. ApoB immunoblotting indicated that both B100 and B48 production were significantly reduced after glucose injection. Results support the conclusion that insulin acts in vivo to suppress hepatic very low density lipoprotein (VLDL) triglyceride and apoB secretion and strengthen the concept of a regulatory role for insulin in VLDL metabolism postprandially.  相似文献   

18.
Relying on methods other than the determination of turnover rate of triglyceride from the curve of plasma triglyceride radioactivity after administration of labeled precursor, we have confirmed that the endogenous hypertriglyceridemia induced by estrogenization of the chick is accompanied by increased production of triglyceride. Chicks estrogenized with diethylstilbestrol became grossly hypertriglyceridemic and had elevated levels of plasma free fatty acid. Within 5 min of administration of labeled palmitate, estrogenized hypertriglyceridemic birds converted approximately 10 times more plasma free fatty acid to hepatic triglyceride than did controls. In addition, 2 hr after intraperitoneal injection of [14-C]acetate or [U-14-C]glucose, the specific activity of very low density lipoprotein triglyceride (VLDL-TG) of estrogenized birds reached or exceeded that of the untreated controls, and the rapid enrichment of the vastly expanded plasma VLDL-TG pool with labeled triglyceride further indicated that increased production of triglyceride occurs with estrogenization. Furthermore, [14-C]acetate incorporation into VLDL-TG was calculated to be 1.6 and 6.6% of the injected dose in estrogenized birds compared with 0.1 and 0.2% in untreated birds. Increased production of plasma VLDL-TG was confirmed by a kinetic study of VLDL-TG metabolism, employing reinjected, endogenously prepared [14-C]triglyceride-labeled VLDL. The fractional turnover rate of VLDL-TG in estrogenized hypertriglyceridemic birds was substantially less than that in untreated controls (0.32 plus or minus 0.03 vs 0.71 plus or minus 0.03/hr), but the total turnover rate was nearly 50 times greater (244 plus or minus 52 vs. 5 plus or minus 1 mg/hr).  相似文献   

19.
Administration of supplemental glucose and/or insulin is postulated to improve the outcome from myocardial ischemia by increasing the heart's relative utilization of glucose as an energy substrate. To examine the degree to which circulating glucose and insulin levels actually influence myocardial substrate preference in vivo, we infused conscious, chronically catheterized rats with D-[1-(13)C]glucose and compared steady-state (13)C enrichment of plasma glucose with that of myocardial glycolytic ([3-(13)C]alanine) and oxidative ([4-(13)C]glutamate) intermediary metabolites. In fasting rats, [3-(13)C]alanine-to-[1-(13)C]glucose and [4-(13)C]glutamate-to-[3-(13)C]alanine ratios averaged 0.16 +/- 0.12 and 0.14 +/- 0.03, respectively, indicating that circulating glucose contributed 32% of myocardial glycolytic flux, whereas subsequent flux through pyruvate dehydrogenase contributed 14% of total tricarboxylic acid (TCA) cycle activity. Raising plasma glucose to 11 mmol/l, or insulin to 500 pmol/l, increased these contributions equivalently. At supraphysiological (>6,500 pmol/l) insulin levels, the plasma glucose contribution to glycolysis increased further, and addition of hyperglycemia made it the sole glycolytic substrate, yet [4-(13)C]glutamate-to-[3-(13)C]alanine ratios remained /=40% of myocardial TCA cycle flux.  相似文献   

20.
L-[U-14C]Threonine was infused at a steady rate to non-anaesthetized rats starved for 1 or 3 days and to diabetic rats starved for 1 day. The rates of turnover of threonine, calculated from the equilibrium specific radioactivity (SA) of plasma threonine, were 5.79 +/- 1.00, 11.67 +/- 1.43 and 13.35 +/- 1.85 mumol/min per kg body wt. in 1-day-starved, 3-day-starved and diabetic rats respectively. The calculated turnover rate of threonine agreed well with the rate expected from the rate of protein turnover reported in the literature. The equilibrium SA of plasma alanine was 5.1-9.8% of that of threonine in the three groups of rats. The equilibrium SA of glucose was 1.42 and 2.90% of that of threonine in 1-day- and 3-day-starved rats respectively. From the non-equilibrium SA of glucose, it is estimated that a higher percentage of 14C atoms is transferred from threonine to glucose in diabetic than in non-diabetic rats. In spite of increases in gluconeogenesis from threonine in long-starved or diabetic rats, we conclude that threonine remains a minor contributor to plasma glucose. Since it is an essential amino acid, its turnover and contribution to the formation of plasma glucose is an index of catabolism and gluconeogenesis from tissue protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号