首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Virus infection may induce host cell death by apoptosis, but some DNA viruses are capable of preventing this process. RNA viruses were thought not to display anti-apoptotic activities, as their spread appears to benefit from a rapid induction of cell death. Here, we report an antiapoptotic activity in the Picornavirus Coxsackievirus B4 (CVB4). CVB4 infection of HeLa cells induced negligible apoptosis over a period of 10 h. However, infected cells developed resistance to drug-induced apoptosis using staurosporine and actinomycin D and to death receptor-induced apoptosis using tumor necrosis factor-related apoptosis-inducing ligand. Despite this resistance, the apoptotic machinery was nonetheless fully activated in these drug-treated infected cells because the levels of pro-caspase-3 processing to its active form were similar to control cells. However, the DEVDase (Asp-Glu-Val-Asp protease) activity of the processed caspase was significantly inhibited in the virus-infected staurosporine-treated cells compared with drug treatment alone. Likewise, extracts of CVB4-infected cells suppressed recombinant caspase-3 activity in vitro. Immunoprecipitation of activated caspase-3 from radiolabeled virus-infected cells revealed the co-precipitation of a 48-kDa protein that was tentatively identified as viral protein 2BC. Recombinant caspase-3 was found to co-precipitate with virus protein 2BC. Finally, when protein 2BC was expressed in HeLa cells, both staurosporine-induced apoptosis and in vitro caspase-3 DEVDase activity were significantly reduced. Taken together these data imply that CVB4 infection suppresses apoptosis through virus protein 2BC associating with caspase-3 and inhibiting its function. Thus, 2BC is the first reported RNA virus inhibitor of apoptosis protein.  相似文献   

2.
Coxsackievirus B3 (CVB3), an enterovirus in the family Picornaviridae, induces cytopathic changes in cell culture systems and directly injures multiple susceptible organs and tissues in vivo, including the myocardium, early after infection. Biochemical analysis of the cell death pathway in CVB3-infected HeLa cells demonstrated that the 32-kDa proform of caspase 3 is cleaved subsequent to the degenerative morphological changes seen in infected HeLa cells. Caspase activation assays confirm that the cleaved caspase 3 is proteolytically active. The caspase 3 substrates poly(ADP-ribose) polymerase, a DNA repair enzyme, and DNA fragmentation factor, a cytoplasmic inhibitor of an endonuclease responsible for DNA fragmentation, were degraded at 9 h following infection, yielding their characteristic cleavage fragments. Inhibition of caspase activation by benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (ZVAD.fmk) did not inhibit the virus-induced cytopathic effect, while inhibition of caspase activation by ZVAD.fmk in control apoptotic cells induced by treatment with the porphyrin photosensitizer benzoporphyrin derivative monoacid ring A and visible light inhibited the apoptotic phenotype. Caspase activation and cleavage of substrates may not be responsible for the characteristic cytopathic effect produced by picornavirus infection yet may be related to late-stage alterations of cellular homeostatic processes and structural integrity.  相似文献   

3.
Clostridium difficile toxin B (TcdB) inactivates the small GTPases Rho, Rac and Cdc42 during intoxication of mammalian cells. In the current work, we show that TcdB has the potential to stimulate caspase-dependent and caspase-independent apoptosis. The apoptotic pathways became evident when caspase-3-processed-vimentin was detected in TcdB-treated HeLa cells. Caspase-3 activation was subsequently confirmed in TcdB-intoxicated HeLa cells. Interestingly, caspase inhibitor delayed TcdB-induced cell death, but did not alter the time-course of cytopathic effects. A similar effect was also observed in MCF-7 cells, which are deficient in caspase-3 activity. The time-course to cell death was almost identical between cells treated with TcdB plus caspase inhibitor and cells intoxicated with the TcdB enzymatic domain (TcdB1-556). Unlike TcdB treated cells, intoxication with TcdB1-556 or expression of TcdB1-556 in a transfected cell line, did not stimulate caspase-3 activation yet cells exhibited cytopathic effects and cell death. Although TcdB1-556 treated cells did not demonstrate caspase-3 activation these cells were apoptotic as determined by differential annexin-V/propidium iodide staining and nucleosomal DNA fragmentation. These data indicate TcdB triggers caspase-independent apoptosis as a result of substrate inactivation and may evoke caspase-dependent apoptosis due to a second, yet undefined, activity of TcdB. This is the first example of a bacterial virulence factor with the potential to stimulate multiple apoptotic pathways in host cells.  相似文献   

4.
Zhu XF  Liu ZC  Xie BF  Li ZM  Feng GK  Xie HH  Wu SJ  Yang RZ  Wei XY  Zeng YX 《Life sciences》2002,70(11):1259-1269
Annonaceous acetogenins have potent antitumor effect in vitro and in vivo. Squamocin is one of the annonaceous acetogenins and has been reported to have antiproliferative effect on cancer cells. Our results from this study showed that squamocin inhibited proliferation of HL-60 cells with IC50 value of 0.17 microg/ml and induced apoptosis of HL-60 cells. Investigation of the mechanism of squamocin-induced apoptosis revealed that treatment of HL-60 cells with squamocin resulted in extensive nuclear condensation. DNA fragmentation, cleavage of the death substrate poly (ADP-ribose) polymerase (PARP) and induction of caspase-3 activity. Pretreatment of HL-60 cells with caspase-3 specific inhibitor DEVD-CHO prevented squamocin-induced DNA fragmentation, PARP cleavage and cell death. The expression levels of protein bcl-2, bax have no change in response to squamocin treatment in HL-60 cells, whereas stress-activated protein kinase (SAPK/JNK) was activated after treatment with squamocin in HL-60 cells. These results suggest that apoptosis of HL-60 cells induced by squamocin requires caspase-3 activation and is related to SAPK activation.  相似文献   

5.
Coxsackievirus B3 (CVB3), a common human pathogen for viral myocarditis, induces a direct cytopathic effect (CPE) and apoptosis on infected cells. To elucidate the mechanisms that contribute to these processes, we studied the role of glycogen synthase kinase 3beta (GSK3beta). GSK3beta activity was significantly increased after CVB3 infection and addition of tyrosine kinase inhibitors blocked CVB3-triggered GSK3beta activation. Inhibition of caspase activity had no inhibitory effect on CVB3-induced CPE; however, blockage of GSK3beta activation attenuated both CVB3-induced CPE and apoptosis. We further showed that CVB3 infection resulted in reduced beta-catenin protein expression, and GSK3beta inhibition led to the accumulation and nuclear translocation of beta-catenin. Finally, we found that CVB3-induced CPE and apoptosis were significantly reduced in cells stably overexpressing beta-catenin. Taken together, our results demonstrate that CVB3 infection stimulates GSK3beta activity via a tyrosine kinase-dependent mechanism, which contributes to CVB3-induced CPE and apoptosis through dysregulation of beta-catenin.  相似文献   

6.
Coxsackievirus B3 (CVB3) is a common human pathogen for acute myocarditis, pancreatitis, non-septic meningitis, and encephalitis; it induces a direct cytopathic effect (CPE) and apoptosis on infected cells. The Phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT/PKB)/mammalian target of Rapamycin (mTOR) signaling pathway regulates several cellular processes and it is one of the most important pathways in human networks. However, the effect and mechanism of PI3K/AKT/mTOR signaling pathway in CVB3 infected cells are poorly understood. In this study, we demonstrate that inhibition of PI3K/AKT/mTOR signaling pathway increased CVB3-induced CPE and apoptosis in HeLa cells. The activity of downstream targets of PI3K and mTOR is attenuated after CVB3 infection and inhibitors of PI3K and mTOR made their activity to decrease more significantly. We further show that LY294002 and Rapamycin, the inhibitor of PI3K and mTOR respectively, promote CVB3-induced CPE and apoptosis. Taken together, these data illustrate a new and imperative role for PI3K/AKT/mTOR signaling in CVB3 infection in HeLa cells and suggest an useful approach for the therapy of CVB3 infection.  相似文献   

7.
Exposure of neurons to H(2)O(2) results in both necrosis and apoptosis. Caspases play a pivotal role in apoptosis, but exactly how they are involved in H(2)O(2)-mediated cell death is unknown. We examined H(2)O(2)-induced toxicity in neuronal PC12 cells and the effects of inducible overexpression of the H(2)O(2)-scavenging enzyme catalase on this process. H(2)O(2) caused cell death in a time- and concentration-dependent manner. Cell death induced by H(2)O(2) was found to be mediated in part through an apoptotic pathway as H(2)O(2)-treated cells exhibited cell shrinkage, nuclear condensation and marked DNA fragmentation. H(2)O(2) also triggered activation of caspase 3. Genetic up-regulation of catalase not only significantly reduced cell death but also suppressed caspase 3 activity and DNA fragmentation. While the caspase 3 inhibitor DEVD inhibited both caspase 3 activity and DNA fragmentation induced by H(2)O(2) it did not prevent cell death. Treatment with the general caspase inhibitor ZVAD, however, resulted in complete attenuation of H(2)O(2)-mediated cellular toxicity. These results suggest that DNA fragmentation induced by H(2)O(2) is attributable to caspase 3 activation and that H(2)O(2) may be critical for signaling leading to apoptosis. However, unlike inducibly increased catalase expression and general caspase inhibition both of which protect cells from cytotoxicity, caspase 3 inhibition alone did not improve cell survival suggesting that prevention of DNA fragmentation is insufficient to prevent H(2)O(2)-mediated cell death.  相似文献   

8.
9.
Earlier reports have shown that herpes simplex virus 1 (HSV-1) mutants induce programmed cell death and that wild-type HSV blocks the execution of the cell death program triggered by viral gene products, by the effectors of the immune system such as the Fas and tumor necrosis factor pathways, or by nonspecific stress agents such as either osmotic shock induced by sorbitol or thermal shock. A report from this laboratory showed that caspase inhibitors do not block DNA fragmentation induced by infection with the HSV-1 d120 mutant. To identify the events in programmed cell death induced and blocked by HSV-1, we examined cells infected with wild-type virus or the d120 mutant or cells infected and exposed to sorbitol. We report that: (i) the HSV-1 d120 mutant induced apoptosis by a caspase-3-independent pathway inasmuch as caspase 3 was not activated and DNA fragmentation was not blocked by caspase inhibitors even though the virus caused cytochrome c release and depolarization of the inner mitochondrial membrane. (ii) Cells infected with wild-type HSV-1 exhibited none of the manifestations associated with programmed cell death assayed in these studies. (iii) Uninfected cells exposed to osmotic shock succumbed to caspase-dependent apoptosis inasmuch as cytochrome c was released, the inner mitochondrial potential was lost, caspase-3 was activated, and chromosomal DNA was fragmented. (iv) Although caspase-3 was activated in cells infected with wild-type HSV-1 and exposed to sorbitol, cytochrome c outflow, depolarization of the inner mitochondrial membrane, and DNA fragmentation were blocked. We conclude that although d120 induces apoptosis by a caspase-3-independent pathway, the wild-type virus blocks apoptosis induced by this pathway and also blocks the caspase-dependent pathway induced by osmotic shock. The block in the caspase-dependent pathway may occur downstream of caspase-3 activation.  相似文献   

10.
Kim SM  Park JH  Chung SK  Kim JY  Hwang HY  Chung KC  Jo I  Park SI  Nam JH 《Journal of virology》2004,78(24):13479-13488
Coxsackievirus B3 (CVB3), an enterovirus in the Picornavirus family, is the most common human pathogen associated with myocarditis and idiopathic dilated cardiomyopathy. We found upregulation of the cysteine-rich protein gene (cyr61) after CVB3 infection in HeLa cells with a cDNA microarray approach, which is confirmed by Northern blot analysis. It is also revealed that the extracellular amount of Cyr61 protein was increased after CVB3 infection in HeLa cells. cyr61 is an early-transcribed gene, and the Cyr61 protein is secreted into the extracellular matrix. Its function is related to cell adhesion, migration, and neuronal cell death. Here, we show that activation of the cyr61 promoter by CVB3 infection is dependent on JNK activation induced by CVB3 replication and viral protein expression in infected cells. To explore the role of Cyr61 protein in infected HeLa cells, we transiently overexpressed cyr61 and infected HeLa cells with CVB3. This increased CVB3 growth in the cells and promoted host cell death by viral infection, whereas down-expression of cyr61 with short interfering RNA reduced CVB3 growth and showed resistance to cell death by CVB3 infection. In conclusion, we have demonstrated a new role for cyr61 in HeLa cells infected with CVB3, which is associated with the cell death induced by virus infection. These data thus expand our understanding of the physiological functions of cyr61 in virus-induced cell death and provide new insights into the cellular factors involved.  相似文献   

11.
Intracellular acidification is known to be involved in the initiation phase of apoptosis. However, the necessity of intracellular acidic conditions in the execution phase of apoptosis remains unknown. In this study, we found that in HL-60 cells imidazole induces cell death, associated with intracellular acidification, caspase-3 activation and DFF-45 cleavage, but not oligonucleosomal DNA fragmentation. A caspase inhibitor prevented cell death but not intracellular acidification. When pHi was neutralized by changing from imidazole-containing medium to fresh medium, oligonucleosomal DNA fragmentation and increased caspase-3 activity was observed in the imidazole-treated HL-60 cells. Furthermore, the DNA fragmentation induced by intracellular neutralization was inhibited by caspase inhibitor treatment. These results indicate that imidazole induces caspase-dependent cell death, and suggest that maintaining pHi in the neutral range is essential for the induction of oligonucleosomal DNA fragmentation in the execution phase of apoptosis.  相似文献   

12.
C. Liu  H. Y. Xu    D. X. Liu 《Journal of virology》2001,75(14):6402-6409
Avian coronavirus infectious bronchitis virus (IBV) is the causative agent of chicken infectious bronchitis, an acute, highly contagious viral respiratory disease. Replication of IBV in Vero cells causes extensive cytopathic effects (CPE), leading to destruction of the entire monolayer and the death of infected cells. In this study, we investigated the cell death processes during acute IBV infection and the underlying mechanisms. The results show that both necrosis and apoptosis may contribute to the death of infected cells in lytic IBV infection. Caspase-dependent apoptosis, as characterized by chromosomal condensation, DNA fragmentation, caspase-3 activation, and poly(ADP-ribose) polymerase degradation, was detected in IBV-infected Vero cells. Addition of the general caspase inhibitor z-VAD-FMK to the culture media showed inhibition of the hallmarks of apoptosis and increase of the release of virus to the culture media at 16 h postinfection. However, neither the necrotic process nor the productive replication of IBV in Vero cells was severely affected by the inhibition of apoptosis. Screening of 11 IBV-encoded proteins suggested that a 58-kDa mature cleavage product could induce apoptotic changes in cells transiently expressing the protein. This study adds one more example to the growing list of animal viruses that induce apoptosis during their replication cycles.  相似文献   

13.
The role of caspase-3 (CPP32) protease in the molecular pathways of genistein-induced cell death in TM4 cells was investigated. Fluorescence microscopy with Hoechst-33258-PI nuclear stain was used to distinguish between apoptosis and necrosis pathways of cell death. The viability of the test cells was assessed with both the trypan blue exclusion and MTT tetrazolium (3-[4,5-dimethyl-thiazol-2-yl]-2,5-diphenyltetralzolium bromide, 2.5 mg/mL) assays. Caspase-3 enzymatic activity was determined using CasPASE Apoptosis Assay Kit. The overall results from all the data demonstrated that: i) genistein exerts dose- and time-dependent effects on TM4 testis cells; ii) apoptosis is induced by lower concentrations of genistein and necrosis induced by higher concentrations of genistein; iii) genistein induced activation caspase-3 enzymatic activity; iv) genistein-induction of apoptosis and necrosis was significantly inhibited by the caspase-3 inhibitor, z-DEV-FMK; v) sodium azide induced necrosis without activation of CPP32 enzymatic activity, and induction of apoptosis; and vi) genistein-induced apoptosis was associated with activation of CPP32 enzymatic activity in the cells. The overall results indicate a strong evidence of caspase-3 (CPP332) mediation in the molecular pathways of genistein-induced apoptosis in testicular cells. Apoptosis is the physiologically programmed cell death in which intrinsic mechanisms participate in the death of the cell, in contrast to necrosis, which induces inflammatory response in the affected cell. The fact that the chemopreventive role of several cancer drugs is due to induction of apoptosis augments the biotherapeutic potential of genistein for the treatment of malignant diseases including prostate and testicular cancers. It is therefore inevitable that identification of the apoptotic pathways and the points at which regulation occurs could be instrumental in the design of genistein biotherapy for such diseases.  相似文献   

14.
We identified apoptosis as being a significant mechanism of toxicity following the exposure of HeLa cell cultures to abrin holotoxin, which is in addition to its inhibition of protein biosynthesis by N-glycosidase activity. The treatment of HeLa cell cultures with abrin resulted in apoptotic cell death, as characterized by morphological and biochemical changes, i.e., cell shrinkage, internucleosomal DNA fragmentation, the occurrence of hypodiploid DNA, chromatin condensation, nuclear breakdown, DNA single strand breaks by TUNEL assay, and phosphatidylserine (PS) externalization. This apoptotic cell death was accompanied by caspase-9 and caspase-3 activation, as indicated by the cleavage of caspase substrates, which was preceded by mitochondrial cytochrome c release. The broad-spectrum caspase inhibitor, benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone (zVADfmk), prevented abrin-triggered caspase activation and partially abolished apoptotic cell death, but did not affect mitochondrial cytochrome c release. These results suggest that the release of mitochondrial cytochrome c, and the sequential caspase-9 and caspase-3 activations are important events in the signal transduction pathway of abrin-induced apoptotic cell death in the HeLa cell line.  相似文献   

15.
Cell death resulting from cadmium (Cd) intoxication has been confirmed to induce both necrosis and apoptosis. The ratio between both types of cell death is dose- and cell-type-dependent. This study used the human keratinocytes HaCaT expressing a mutated p53 and the rat glial cells C6 expressing a wild p53 as models to characterize Cd-induced apoptosis, using sub-lethal and lethal doses. At these concentrations, features of apoptosis were observed 24 h after C6 cell treatment: apoptotic DNA fragmentation and caspase-9 activation, whereas Cd did not induce caspase-3. In HaCaT, Cd did not induce apoptotic DNA fragmentation or caspase-9 and -3 activation. The results also showed that the inhibition of p53 led to a resistance of the C6 cells to 20 µm Cd, decreased the apoptosis and increased the metallothioneins in these cells. p53 restoration increased the sensitivity of HaCaT cells to Cd but did not affect the MT expression. The results suggest that Cd induced apoptosis in C6 cells but a non-apoptotic cellular death in HaCaT cells.  相似文献   

16.
L-Canavanine, a natural L-arginine analog, is known to possess cytotoxicity to tumor cells in culture and experimental tumors in vivo. In this study, we first show that apoptotic cell death is associated with antitumor activity of L-canavanine against human acute leukemia Jurkat T cells. When Jurkat T cells were treated with 1.25-5.0mM L-canavanine for 36 h, apoptotic cell death accompanying several biochemical events such as caspase-3 activation, degradation of poly(ADP-ribose) polymerase (PARP), and apoptotic DNA fragmentation was induced in a dose-dependent manner; however, cytochrome c release from mitochondria was not detected. Under these conditions, the expression of Bcl-2 and its functional homolog Bcl-xL was markedly upregulated. The L-canavanine-induced caspase-3 activation, degradation of PARP, and apoptotic DNA fragmentation were suppressed by ectopic expression of Bcl-2 or Bcl-xL, both of which are known to play roles as anti-apoptotic regulators. These results demonstrate that the cytotoxic effect of L-canavanine on Jurkat T cells is attributable to the induced apoptosis and that L-canavanine-induced apoptosis is mediated by a cytochrome c-independent caspase-3 activation pathway that can be interrupted by Bcl-2 or Bcl-xL.  相似文献   

17.
Cell death resulting from cadmium (Cd) intoxication has been confirmed to induce both necrosis and apoptosis. The ratio between both types of cell death is dose- and cell-type-dependent. This study used the human keratinocytes HaCaT expressing a mutated p53 and the rat glial cells C6 expressing a wild p53 as models to characterize Cd-induced apoptosis, using sub-lethal and lethal doses. At these concentrations, features of apoptosis were observed 24 h after C6 cell treatment: apoptotic DNA fragmentation and caspase-9 activation, whereas Cd did not induce caspase-3. In HaCaT, Cd did not induce apoptotic DNA fragmentation or caspase-9 and -3 activation. The results also showed that the inhibition of p53 led to a resistance of the C6 cells to 20 µm Cd, decreased the apoptosis and increased the metallothioneins in these cells. p53 restoration increased the sensitivity of HaCaT cells to Cd but did not affect the MT expression. The results suggest that Cd induced apoptosis in C6 cells but a non-apoptotic cellular death in HaCaT cells.  相似文献   

18.
Enhancing apoptosis to remove abnormal cells has potential in reversing cancerous processes. Caspase-3 activation generally accompanies apoptosis and its substrates include enzymes responsible for DNA fragmentation and isozymes of protein kinase C (PKC). Recent data, however, question its obligatory role in apoptosis. We have examined whether modulation of PKC activity induces apoptosis in COLO 205 cells and the role of caspase-3. Proliferation ([3H]thymidine) and apoptosis (DNA fragmentation and FACS) of COLO 205 cells were measured in response to PKC activation and inhibition. Caspase-3 activity was assayed and the effects of its inhibition with Ac-DEVD-cmk, and the effect of other protease inhibitors, on apoptosis were determined. PKC activation and inhibition both reduced DNA synthesis and induced DNA fragmentation. As PKC inhibitors induced DNA fragmentation more rapidly than PKC activators and failed to block activator effects, we conclude that it is PKC down-regulation (i.e., inhibition) after activator exposure that mediates apoptosis. Increases in caspase-3 activity occurred during apoptosis but apoptosis was not blocked by caspase inhibition. By contrast, the cysteine protease inhibitor, E-64d, blocked apoptosis. Cysteine proteases not of the caspase family may either act more closely to the apoptotic process than caspases or lie on an alternative, more active pathway.  相似文献   

19.
Parviflorene F (1), a novel sesquiterpenoid dimer isolated from Curcuma parviflora Wall, is a cytotoxic compound. In this study, we examined the mechanism of its cytotoxic effect in HeLa cells. Treatment with 1 enhanced the mRNA and protein expression of TRAIL-R2 (tumor necrosis factor alpha-related apoptosis inducing ligand receptor 2). Apoptosis was induced by 1 as revealed by the distribution of DNA and Annexin V/PI staining using flow cytometry. In addition, 1-induced apoptosis was inhibited by human recombinant TRAIL-R2/Fc chimera protein, TRAIL-neutralizing fusion protein. Also, we found that 1 induced the activation of caspase-8, caspase-9, and caspase-3, indicating that the cytotoxic effect of 1 is correlated with apoptosis by a caspase-dependent mechanism through TRAIL-R2. In addition, 1 enhanced TRAIL-induced cell death against HeLa and TRAIL-resistant DLD1 cells. Taken together, up-regulation of TRAIL-R2 by 1 may contribute to sensitization of TRAIL-induced cell death.  相似文献   

20.
We examined molecular events and morphological features associated with apoptosis induced by anthraquinone anticancer drugs aclarubicin, mitoxantrone and doxorubicin in two spontaneously immortalized cell lines (NIH 3T3 and B14) in relation to cytotoxicity of these drugs. The investigated cells showed similar sensitivity to aclarubicin but different sensitivity to doxorubicin and mitoxantrone: mitoxantrone was the most cytotoxic drug in both cell lines. All three drugs triggered both apoptosis and necrosis but none of these processes was positively correlated with their cytotoxicity. Apoptosis was the prevalent form of cell kill by aclarubicin, while doxorubicin and mitoxantrone induced mainly the necrotic mode of cell death. The extent and the timing of apoptosis were strongly dependent on the cell line, the type of the drug and its dose, and were mediated by caspase-3 activation. A significant increase in caspase-3 activity and the percentage of apoptotic cells, oligonucleosomal DNA fragmentation, chromatin condensation and formation of apoptotic bodies was observed predominantly in B14 cells. NIH 3T3 cells showed lesser changes and a lack of DNA fragmentation. Aclarubicin was the fastest acting drug, inducing DNA fragmentation 12 h earlier than doxorubicin, and 24 h earlier than mitoxantrone. Caspase-3 inhibitor Ac-DEVD-CHO did not show any significant effect on drug cytotoxicity and DNA nucleosomal fragmentation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号