首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cellular expression of Angiopoietin-2 (Ang2) was studied during lymphatic development in mouse by immunohistochemistry and compared to that of lymphatic endothelial markers. At the earliest stage of lymphvasculogenesis, Prox1-identified lymphatic precursor cells of the cardinal vein displayed an intense immunoreaction for Ang2 in their cytoplasm, implying that Ang2 may adjust lymphatic specification and sprouting from the veins under the control of Prox1. Thereafter, Ang2 was constantly expressed in Prox1 and/or LYVE-1-immunopositive endothelial cells of lymphatic sacs and vessels, ranging from lymphatic capillaries to collectors, throughout embryonic and neonatal development, and the lymphatic endothelial cells simultaneously exhibited immunoreactivity to Tie2, a primary receptor for angiopoietins. These results suggest that lymphatic endothelial cells may regulate lymphatic development via their own Ang2-Tie2 signaling. Ang2 is further immunolocalized in the developing blood vessels including hepatic sinusoids, adrenal medullary vasculature and postnatal pulmonary vessels, thereby indicating that the blood vessels, which undergo vascular remodeling and sudden alteration of blood flow during the development, are also likely to express Ang2. The present study is first to demonstrate Ang2 expression in the lymphatic endothelial cells during development, and consequently Ang2 is regarded as a molecular profile of the developing lymphatic endothelial cells required for lymphatic vascular organization.  相似文献   

2.
Blood vessels are mainly composed of intraluminal endothelial cells (ECs) and mural cells adhering to the ECs on their basal side. Immature blood vessels lacking mural cells are leaky; thus, the process of mural cell adhesion to ECs is indispensable for stability of the vessels during physiological angiogenesis. However, in the tumor microenvironment, although some blood vessels are well-matured, the majority is immature. Because mural cell adhesion to ECs also has a marked anti-apoptotic effect, angiogenesis inhibitors that destroy immature blood vessels may not affect mature vessels showing more resistance to apoptosis. Activation of Tie2 receptor tyrosine kinase expressed in ECs mediates pro-angiogenic effects via the induction of EC migration but also facilitates vessel maturation via the promotion of cell adhesion between mural cells and ECs. Therefore, inhibition of Tie2 has the advantage of completely inhibiting angiogenesis. Here, we isolated a novel small molecule Tie2 kinase inhibitor, identified as 2-methoxycinnamaldehyde (2-MCA). We found that 2-MCA inhibits both sprouting angiogenesis and maturation of blood vessels, resulting in inhibition of tumor growth. Our results suggest a potent clinical benefit of disrupting these two using Tie2 inhibitors.  相似文献   

3.
α-Tocopheryl succinate (TS) is a tocopherol derivative and has multifaceted anti-cancer effects; TS not only causes cancer cell-specific apoptosis but also inhibits tumor angiogenesis. Although TS has the potential to be used as a well-tolerated anti-angiogenic drug, it is still unclear which step of the angiogenic process is inhibited by TS. Here, we show that TS inhibits the expression of angiopoietin (Ang)-2, which induces destabilization of vascular structure in the initial steps of the angiogenic process. In mouse melanoma cells, TS treatment decreased mRNA and extracellular protein levels of Ang-2; however, the mRNA level of Ang-1, which stabilizes the vascular structure, remained unchanged. Furthermore, aorta ring and Matrigel plug angiogenesis assays indicated that the conditioned medium from TS-treated cells (CM-TS) inhibited neovascularization and blood leakage from the existing blood vessels, respectively. Following immunohistochemical staining of the vessels treated with CM-TS, imaging studies showed that the vascular endothelial cells were highly packed with pericytes. In conclusion, we found that TS inhibits Ang-2 expression and, consequently, stabilizes the vascular structure during the initial step of tumor angiogenesis.  相似文献   

4.
Tie2受体研究进展及其在抗肿瘤治疗中的应用   总被引:2,自引:0,他引:2  
Tie2是胚胎血管发育和肿瘤血管形成都需要的内皮细胞酪氨酸激酶受体,血管生成素(Ang)是其配体。正常成人组织中,Ang/Tie2受体水平较低,用于维持成熟的血管结构;一般癌组织中Ang/Tie2的表达较为活跃。本综述了Ang/Tie2的结构和功能研究的最新进展,Ang/Tie2在血管形成中的重要调节作用,以及可溶性Tie2在治疗肿瘤方面的前景。  相似文献   

5.
Abnormal angiogenesis is associated with a broad range of medical conditions, including cancer. The formation of neovasculature with functionally defective blood vessels significantly impacts tumor progression, metastasis, and the efficacy of anticancer therapies. Vascular endothelial growth factor (VEGF) potently induces vascular permeability and vessel growth in the tumor microenvironment, and its inhibition normalizes tumor vasculature. In contrast, the signaling of the small GTPase R-Ras inhibits excessive angiogenic growth and promotes the maturation of regenerating blood vessels. R-Ras signaling counteracts VEGF-induced vessel sprouting, permeability, and invasive activities of endothelial cells. In this study, we investigated the effect of R-Ras on VEGF receptor 2 (VEGFR2) activation by VEGF, the key mechanism for angiogenic stimulation. We show that tyrosine phosphorylation of VEGFR2 is significantly elevated in the tumor vasculature and dermal microvessels of VEGF-injected skin in R-Ras knockout mice. In cultured endothelial cells, R-Ras suppressed the internalization of VEGFR2, which is required for full activation of the receptor by VEGF. Consequently, R-Ras strongly suppressed autophosphorylation of the receptor at all five major tyrosine phosphorylation sites. Conversely, silencing of R-Ras resulted in increased VEGFR2 phosphorylation. This effect of R-Ras on VEGFR2 was, at least in part, dependent on vascular endothelial cadherin. These findings identify a novel function of R-Ras to control the response of endothelial cells to VEGF and suggest an underlying mechanism by which R-Ras regulates angiogenesis.  相似文献   

6.
Angiogenesis, a process by which the preexisting blood vasculature gives rise to new capillary vessels, is associated with a variety of physiologic and pathologic conditions. However, the molecular mechanism underlying this important process remains poorly understood. Here we show that histone deacetylase 6 (HDAC6), a microtubule-associated enzyme critical for cell motility, contributes to angiogenesis by regulating the polarization and migration of vascular endothelial cells. Inhibition of HDAC6 activity impairs the formation of new blood vessels in chick embryos and in angioreactors implanted in mice. The requirement for HDAC6 in angiogenesis is corroborated in vitro by analysis of endothelial tube formation and capillary sprouting. Our data further show that HDAC6 stimulates membrane ruffling at the leading edge to promote cell polarization. In addition, microtubule end binding protein 1 (EB1) is important for HDAC6 to exert its activity towards the migration of endothelial cells and generation of capillary-like structures. These results thus identify HDAC6 as a novel player in the angiogenic process and offer novel insights into the molecular mechanism governing endothelial cell migration and angiogenesis.  相似文献   

7.
Formation of embryonic vasculature involves vasculogenesis as endothelial cells differentiate and aggregate into vascular cords and angiogenesis which includes branching from the existing vessels. In the zebrafish which has emerged as an advantageous model to study vasculogenesis, cranial vasculature is thought to originate by a combination of vasculogenesis and angiogenesis, but how these processes are coordinated is not well understood. To determine how angioblasts assemble into cranial vasculature, we generated an etsrp:GFP transgenic line in which GFP reporter is expressed under the promoter control of an early regulator of vascular and myeloid development, etsrp/etv2. By utilizing time-lapse imaging we show that cranial vessels originate by angiogenesis from angioblast clusters, which themselves form by the mechanism of vasculogenesis. The two major pairs of bilateral clusters include the rostral organizing center (ROC) which gives rise to the most rostral cranial vessels and the midbrain organizing center (MOC) which gives rise to the posterior cranial vessels and to the myeloid and endocardial lineages. In Etsrp knockdown embryos initial cranial vasculogenesis proceeds normally but endothelial and myeloid progenitors fail to initiate differentiation, migration and angiogenesis. Such angioblast cluster-derived angiogenesis is likely to be involved during vasculature formation in other vertebrate systems as well.  相似文献   

8.
Mechanisms of angiogenesis   总被引:8,自引:0,他引:8  
Tissue activity of angiogenesis depends on the balance of many stimulating or inhibiting factors. The key signaling system that regulates proliferation and migration of endothelial cells forming the basis of any vessel are vascular endothelium growth factors (VEGF) and their receptors. The VEGF-dependent signaling system is necessary for formation of the embryonic vascular system. Neoangiogenesis during tumor growth is also associated with activation of this signaling system. The biological significance of the effect of such system on the cells depends on the content in tissue of various factors of the VEGF family and their receptors, while in the case of VEGFA it is defined by the ratio of different isoforms of this growth factor. A number of other signaling systems are also involved in regulation of the main steps of vessel formation. The signaling system Dll4/Notch regulates selection of endothelial cells for beginning of angiogenic expansion by endowing particular properties to endothelial cells leading in this process. An important step in vessel stabilization and maturation is vascular wall formation. Signaling system PDGFB/PDGFRbeta as well as angiopoietins Ang1, Ang2, and their receptor Tie2 are involved in recruiting mural cells (pericytes and smooth muscle cells). Identification of key molecules involved in the regulation of angiogenesis may provide new possibilities for development of drugs suitable for inhibition of angiogenesis or its stimulation in various pathologies.  相似文献   

9.
In embryogenesis, coronary blood vessels are formed by vasculogenesis from epicardium-derived progenitors. Subsequently, growing or regenerating myocardium increases its vasculature by angiogenesis, forming new vessels from the pre-existing ones. Recently, cell therapies for myocardium ischemia that used different protocols have given promising results, using either extra-cardiac blood vessel cell progenitors or stimulating the cardiac angiogenesis. We have questioned whether cardiomyocytes could sustain both vasculogenesis and angiogenesis. We used a 3D culture model of tissue-like spheroids in co-cultures of cardiomyocytes supplemented either with endothelial cells or with bone marrow-derived mesenchymal stroma cells. Murine foetal cardiomyocytes introduced into non-adherent U-wells formed 3D contractile structures. They were coupled by gap junctions. Cardiomyocytes segregated inside the 3D structure into clumps separated by connective tissue septa, rich in fibronectin. Three vascular endothelial growth factor isoforms were produced (VEGF 120, 164 and 188). When co-cultured with human umbilical cord endothelial cells, vascular structures were produced in fibronectin-rich external layer and in radial septa, followed by angiogenic sprouting into the cardiomyocyte microtissue. Presence of vascular structures led to the maintenance of long-term survival and contractile capacity of cardiac microtissues. Conversely, bone marrow mesenchymal cells formed isolated cell aggregates, which progressively expressed the endothelial markers von Willebrand's antigen and CD31. They proceeded to typical vasculogenesis forming new blood vessels organised in radial pattern. Our results indicate that the in vitro 3D model of cardiomyocyte spheroids provides the two basic elements for formation of new blood vessels: fibronectin and VEGF. Within the myocardial environment, endothelial and mesenchymal cells can proceed to formation of new blood vessels either through angiogenesis or vasculogenesis, respectively.  相似文献   

10.
形成血管和淋巴管内层的内皮细胞是脉管系统的重要组成部分,并参与血管和淋巴系统疾病的发病机制。内皮细胞上的血管生成素(Angiopoietin,Ang)-具有免疫球蛋白和表皮生长因子同源性结构域的酪氨酸蛋白激酶(Tyrosine kinase receptors with immunoglobulin and EGF homology domains,Tie)轴是除了血管内皮生长因子受体途径外胚胎心血管和淋巴发育所必需的第二种内皮细胞特异性配体-受体信号传导系统。Ang-Tie轴参与调节产后血管生成与重塑、血管通透性和炎症,以维持血管平衡,因此,该系统在许多血管和淋巴系统疾病中发挥重要的作用。针对近年来Ang-Tie轴在血管和淋巴系统相关疾病中作用的研究进展,文中系统论述了Ang-Tie轴在炎症诱导的血管通透性、血管重塑、眼部新生脉管、剪切应力反应、动脉粥样硬化和肿瘤血管生成和转移中的作用,并总结了涉及Ang-Tie轴的相关治疗性抗体、重组蛋白和小分子药物。  相似文献   

11.
The genes that regulate the formation of blood vessels in adult tissues represent promising therapeutic targets because angiogenesis plays a role in many diseases, including cancer. We wished to develop a mouse model allowing characterization of gene function in adult angiogenic vasculature while minimizing effects on embryonic vasculature or adult quiescent vasculature. Here we describe a transgenic mouse model that allows expression of proteins in the endothelial cells of newly forming blood vessels in the adult using a selective retroviral gene delivery system. We generated transgenic mouse lines that express the TVA receptor for the RCAS avian-specific retrovirus from Flk1 gene regulatory elements that drive expression in proliferating endothelial cells. Several of these Flk1-TVA lines expressed TVA mRNA in the embryonic vasculature and TVA protein in new blood vessels growing into subcutaneous extracellular matrix implants in adult mice. In a Flk1-TVA line that was crossed with the MMTV-PyMT transgenic mammary tumor model, tumor endothelial cells also expressed the TVA protein. Furthermore, endothelial cells in extracellular matrix implants and the tumors of Flk1-TVA mice were susceptible to RCAS infection, as determined by expression of green fluorescent protein encoded by the virus. The Flk1-TVA mouse model in conjunction with the RCAS gene delivery system will be useful to study molecular mechanisms underlying adult forms of angiogenesis.  相似文献   

12.
In recent years, gene-targeting studies in mice have elucidated many molecular mechanisms in vascular biology. However, it has been difficult to apply this approach to the study of postnatal animals because mutations affecting the vasculature are often embryonically lethal. We have therefore generated transgenic mice that express a tamoxifen-inducible form of Cre recombinase (iCreER(T2)) in vascular endothelial cells using a phage artificial chromosome (PAC) containing the Pdgfb gene (Pdgfb-iCreER mice). This allows the genetic targeting of the vascular endothelium in postnatal animals. We tested efficiency of tamoxifen-induced iCre recombinase activity with ROSA26-lacZ reporter mice and found that in newborn animals recombination could be achieved in most capillary and small vessel endothelial cells in most organs including the central nervous system. In adult animals, recombination activity was also widespread in capillary beds of skeletal muscle, heart, skin, and gut but not in the central nervous system where only a subpopulation of endothelial cells was labeled. We also tested recombination efficiency in a subcutaneous tumor model and found recombination activity in all detectable tumor blood vessels. Thus, Pdgfb-iCreER mice are a valuable research tool to manipulate endothelial cells in postnatal mice and study tumor angiogenesis.  相似文献   

13.
The potential for avoiding acquired resistance to therapy has been proposed as one compelling theoretical advantage of antiangiogenic therapy based on the normal genetic status of the target vasculature. However, previous work has demonstrated that tumors may resume growth after initial inhibition if antiangiogenic blockade is continued for an extended period. The mechanisms of this recurrent growth are unclear. In these studies, we characterized molecular changes in vasculature during apparent resumption of xenograft growth after initial inhibition by vascular endothelial growth factor blockade, "metronome" topotecan chemotherapy, and combined agents in a xenograft murine model of human Wilms' tumor. Tumors that grew during antiangiogenic blockade developed as viable clusters surrounding strikingly remodeled vessels. These vessels displayed significant increases in diameter and active proliferation of vascular mural cells and expressed platelet-derived growth factor-B, a factor that functions to enhance vascular integrity via stromal cell recruitment. In addition, remodeled vessels were marked by expression of ephrinB2, required for proper assembly of stromal cells into vasculature. Thus, enhanced vascular stability appears to characterize tumor vessel response to chronic antiangiogenesis, features that potentially support increased perfusion and recurrent tumor growth.  相似文献   

14.
New blood vessels are initially formed through the assembly or sprouting of endothelial cells, but the recruitment of supporting pericytes and vascular smooth muscle cells (mural cells) ensures the formation of a mature and stable vascular network. Defective mural-cell coverage is associated with the poorly organized and leaky vasculature seen in tumors or other human diseases. Here we report that mural cells require ephrin-B2, a ligand for Eph receptor tyrosine kinases, for normal association with small-diameter blood vessels (microvessels). Tissue-specific mutant mice display perinatal lethality; vascular defects in skin, lung, gastrointestinal tract, and kidney glomeruli; and abnormal migration of smooth muscle cells to lymphatic capillaries. Cultured ephrin-B2-deficient smooth muscle cells are defective in spreading, focal-adhesion formation, and polarized migration and show increased motility. Our results indicate that the role of ephrin-B2 and EphB receptors in these processes involves Crk-p130(CAS) signaling and suggest that ephrin-B2 has some cell-cell-contact-independent functions.  相似文献   

15.

Background

Blood vessels comprise endothelial cells, mural cells (pericytes/vascular smooth muscle cells) and basement membrane. During angiogenesis, mural cells are recruited to sprouting endothelial cells and define a stabilizing context, comprising cell-cell contacts, secreted growth factors and extracellular matrix components, that drives vessel maturation and resistance to anti-angiogenic therapeutics.

Methods and Findings

To better understand the basis for mural cell regulation of angiogenesis, we conducted high content imaging analysis on a microtiter plate format in vitro organotypic blood vessel system comprising primary human endothelial cells co-cultured with primary human mural cells. We show that endothelial cells co-cultured with mural cells undergo an extensive series of phenotypic changes reflective of several facets of blood vessel formation and maturation: Loss of cell proliferation, pathfinding-like cell migration, branching morphogenesis, basement membrane extracellular matrix protein deposition, lumen formation, anastamosis and development of a stabilized capillary-like network. This phenotypic sequence required endothelial-mural cell-cell contact, mural cell-derived VEGF and endothelial VEGFR2 signaling. Inhibiting formation of adherens junctions or basement membrane structures abrogated network formation. Notably, inhibition of mural cell VEGF expression could not be rescued by exogenous VEGF.

Conclusions

These results suggest a unique role for mural cell-associated VEGF in driving vessel formation and maturation.  相似文献   

16.
We present a 3D multi-cell simulation of a generic simplification of vascular tumor growth which can be easily extended and adapted to describe more specific vascular tumor types and host tissues. Initially, tumor cells proliferate as they take up the oxygen which the pre-existing vasculature supplies. The tumor grows exponentially. When the oxygen level drops below a threshold, the tumor cells become hypoxic and start secreting pro-angiogenic factors. At this stage, the tumor reaches a maximum diameter characteristic of an avascular tumor spheroid. The endothelial cells in the pre-existing vasculature respond to the pro-angiogenic factors both by chemotaxing towards higher concentrations of pro-angiogenic factors and by forming new blood vessels via angiogenesis. The tumor-induced vasculature increases the growth rate of the resulting vascularized solid tumor compared to an avascular tumor, allowing the tumor to grow beyond the spheroid in these linear-growth phases. First, in the linear-spherical phase of growth, the tumor remains spherical while its volume increases. Second, in the linear-cylindrical phase of growth the tumor elongates into a cylinder. Finally, in the linear-sheet phase of growth, tumor growth accelerates as the tumor changes from cylindrical to paddle-shaped. Substantial periods during which the tumor grows slowly or not at all separate the exponential from the linear-spherical and the linear-spherical from the linear-cylindrical growth phases. In contrast to other simulations in which avascular tumors remain spherical, our simulated avascular tumors form cylinders following the blood vessels, leading to a different distribution of hypoxic cells within the tumor. Our simulations cover time periods which are long enough to produce a range of biologically reasonable complex morphologies, allowing us to study how tumor-induced angiogenesis affects the growth rate, size and morphology of simulated tumors.  相似文献   

17.
In cancer patients, the development of resistance to anti-angiogenic agents targeting the VEGF pathway is common. Increased pericyte coverage of the tumor vasculature undergoing VEGF targeted therapy has been suggested to play an important role in resistance. Therefore, reducing the pericytes coverage of the tumor vasculature has been suggested to be a therapeutic approach in breaking the resistance to and increasing the efficacy of anti-angiogenic therapies. To screen compound libraries, a simple in vitro assay of blood vessel maturation demonstrating endothelial cells and pericytes association while forming lumenized vascular structures is needed. Unfortunately, previously described 3-dimensional, matrix based assays are laborious and challenging from an image and data acquisition perspective. For these reasons they generally lack the scalability needed to perform in a high-throughput environment. With this work, we have developed a novel in vitro blood vessel maturation assay, in which lumenized, vascular structures form in one optical plane and mesenchymal progenitor cells (10T1/2) differentiate into pericyte-like cells, which associate with the endothelial vessels (HUVECs). The differentiation of the 10T1/2 cells into pericyte-like cells is visualized using a GFP reporter controlled by the alpha smooth muscle actin promoter (SMP-8). The organization of these vascular structures and their recruited mural cells in one optical plane allows for automated data capture and subsequent image analysis. The ability of this assay to screen for inhibitors of pericytes recruitment was validated. In summary, this novel assay of in vitro blood vessel maturation provides a valuable tool to screen for new agents with therapeutic potential.  相似文献   

18.
Angiogenesis, the formation of new blood vessels, is involved in a variety of diseases including the tumor growth. In response to various angiogenic stimulations, a number of proteins on the surface of vascular endothelial cells are activated to coordinate cell proliferation, migration, and spreading processes to form new blood vessels. Plasma membrane localization of these angiogenic proteins, which include vascular endothelial growth factor receptors and integrins, are warranted by intracellular membrane trafficking. Here, by using a siRNA library, we screened for the sorting nexin family that regulates intracellular trafficking and identified sorting nexin 9 (SNX9) as a novel angiogenic factor in human umbilical vein endothelial cells (HUVECs). SNX9 was essential for cell spreading on the Matrigel, and tube formation that mimics in vivo angiogenesis in HUVECs. SNX9 depletion significantly delayed the recycling of integrin β1, an essential adhesion molecule for angiogenesis, and reduced the surface levels of integrin β1 in HUVECs. Clinically, we showed that SNX9 protein was highly expressed in tumor endothelial cells of human colorectal cancer tissues. High-level expression of SNX9 messenger RNA significantly correlated with poor prognosis of the patients with colorectal cancer. These results suggest that SNX9 is an angiogenic factor and provide a novel target for the development of new antiangiogenic drugs.  相似文献   

19.
Angiopoietin-2 plays an important role in retinal angiogenesis   总被引:13,自引:0,他引:13  
Angiopoietin 2 (Ang2) expression in the retina is increased during physiologic and pathologic neovascularization suggesting that it may be involved. In this study, we used Ang2-deficient mice to test that hypothesis. Mice deficient in Ang2 showed delayed and incomplete development of the superficial vascular bed of the retina, which develops primarily by vasculogenesis, and complete absence of the intermediate and deep vascular beds which develop by angiogenesis. In addition to incomplete retinal vascular development, Ang2-deficient mice showed lack of regression of the hyaloid vasculature, resulting in a phenotype that mimics infants with persistent fetal vasculature (PFV), a relatively common congenital abnormality. Exposure to high levels of oxygen resulted in partial regression of the retinal vessels, indicating that oxygen-induced regression of retinal vessels does not require Ang2. When these oxygen-exposed mice with few retinal vessels were moved to room air, there was no ischemia-induced retinal neovascularization. These data support the hypothesis that Ang2 plays a critical role in physiologic and pathologic angiogenesis, and physiologic, but not oxygen-induced vascular regression. The data also suggest that infants with PFV should be examined for genetic modifications that would be expected to cause perturbations in Tie2 signaling.  相似文献   

20.
Blood vessel development and network patterning are controlled by several signaling molecules, including VEGF, FGF, TGF‐ß, and Ang‐1,2. Among these, the role of VEGF‐A signaling in vessel morphogenesis is best understood. The biological activity of VEGF‐A depends on its reaction with specific receptors Flt1 and Flk1. Roles of VEGF‐A signaling in endothelial cell proliferation, migration, survival, vascular permeability, and induction of tip cell filopodia have been reported. In this study, we have generated Flt1‐tdsRed BAC transgenic (Tg) mice to monitor Flt1 gene expression during vascular development. We show that tdsRed fluorescence is observed within blood vessels of adult mice and embryos, indicative of retinal angiogenesis and tumor angiogenesis. Flt1 expression recapitulated by Flt1‐tdsRed BAC Tg mice overlapped well with Flk1, while Flt1 was expressed more abundantly in endothelial cells of large blood vessels such as dorsal aorta and presumptive stalk cells in retina, providing a unique model to study blood vessel development. genesis 50:561–571, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号