首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The hyperpolarization-activated current (If) plays an important role in determining the spontaneous rate of cardiac pacemaker cells. The automatic rhythmicity also exists in working cells of embryonic heart,therefore we studied developmental changes in functional expression and β-adrenergic regulation of If in embryonic mouse heart. The expression of If is high in early developmental stage (EDS) (10.5 d after coitus) ventricular myocytes, low in intermediate developmental stage (IDS) (13.5 d) atrial or ventricular myocytes and even lower in late developmental stage (LDS) (16.5 d) atrial or ventricular myocytes, indicating that these cells of the EDS embryonic heart have some properties of pacemaker cells, β-adrenergic agonist isoproterenol (ISO) stimulates If in LDS but not in EDS cardiomyocytes, indicating that the β-adrenergic regulation of If is not mature in EDS embryonic heart. But forskolin (a direct activator of adenylate cyclase) and 8-Br-cAMP (a membrane-permeable analogue of cAMP) increase the amplitude of If in EDS cells,indicating that adenylate cyclase and cAMP function fairly well at early stage of development. Furthermore,the results demonstrate that If is modulated by phosphorylation via cAMP dependent PKA both in EDS and LDS cells.  相似文献   

2.
3.
Jeong MH  Jin YH  Kang EY  Jo WS  Park HT  Lee JD  Yoo YJ  Jeong SJ 《Cell research》2004,14(4):295-302
Ionizing radiation is one of the most effective tools in cancer therapy. In a previous study, we reported that protein tyrosine kinase (PTK) inhibitors modulate the radiation responses in the human chronic myelogenous leukemia (CML) cell line K562. The receptor tyrosine kinase inhibitor, genistein, delayed radiation-induced cell death, while non-recepter tyrosine kinase inhibitor, herbimycin A (HMA) enhances radiation-induced apoptosis. In this study, we focused on the modulation of radiation-induced cell death by genistein and performed PCR-select suppression subtractive hybridization (SSH) to understand its molecular mechanism. We identified human thymidine kinase 1 (TK1), which is cell cycle regulatory gene and confirmed expression of TK1 mRNA by Northern blot analysis. Expression ofTK1 mRNA and TK 1 enzymatic activity were parallel in their increase and decrease. TK1 is involved in G1-S phase transition of cell cycle progression. In cell cycle analysis, we showed that radiation induced G2 arrest in K562 cells but it was not able to sustain. However, the addition of genistein to irradiated cells sustained a prolonged G2 arrest up to 120 h. In addition, the expression of cell cycle-related proteins, cyclin A and cyclin B 1, provided the evidences of G I/S progression and G2-arrest, and their relationship with TKI in cells treated with radiation and genistein. These results suggest that the activation of TK1 may be critical to modulate the radiation-induced cell death and cell cycle progression in irradiated K562 cells.  相似文献   

4.
The hyperpolarization-activated current (If) plays an important role in determining the spontaneousrate of cardiac pacemaker cells. The automatic rhythmicity also exists in working cells of embryonic heart,therefore we studied developmental changes in functional expression and β-adrenergic regulation of If inembryonic mouse heart. The expression of If is high in early developmental stage (EDS) (10.5 d after coitus)ventricular myocytes, low in intermediate developmental stage (IDS) (13.5 d) atrial or ventricular myocytesand even lower in late developmental stage (LDS) (16.5 d) atrial or ventricular myocytes, indicating thatthese cells of the EDS embryonic heart have some properties of pacemaker cells. β-adrenergic agonistisoproterenol (ISO) stimulates If in LDS but not in EDS cardiomyocytes, indicating that theβ-adrenergicregulation of If is not mature in EDS embryonic heart. But forskolin (a direct activator of adenylate cyclase)and 8-Br-cAMP (a membrane-permeable analogue of cAMP) increase the amplitude of If in EDS cells,indicating that adenylate cyclase and cAMP function fairly well at early stage of development. Furthermore,the results demonstrate that If is modulated by phosphorylation via cAMP dependent PKA both in EDSand LDS cells.  相似文献   

5.
6.
Understanding the ultrastructural response of cells to the freezing process is important for designing cryopreservation strategies for cells and tissues. The cellular structures of attached cells are targets of cryopreservation-induced damage. Specific fluorescence staining was used to assess the status of the actin filaments (F-actin) of murine osteoblasts attached to hydroxyapatite discs and plastic coverslips for a two-step freezing process. The F-actin of dead cells was depolymerized and distorted in the freezing process, whereas that of live cells had little change. The results suggest that the cytoskeleton may support the robustness of cells during cryopreservation. The present study helps to investigate the damage mechanism of attached cells during the freezing process.  相似文献   

7.
In the field of stem cell research, SP (side population) phenotype is used to define the property that cells maintain a high efflux capability for some fluorescent dye, such as Hoechst 33342. Recently, many researches proposed that SP phenotype is a phenotype shared by some stem cells and some pro- genitor cells, and that SP phenotype is regarded as a candidate purification marker for stem cells. In this research, murine fertilized ova (including conjugate and single nucleus fertilized ova), 2-cell stage and 8-cell stage blastomeres, morulas and blastocysts were isolated and directly stained by Hoechst 33342 dye. The results show that fertilized ovum, blastomere and morula cells do not demonstrate any ability to efflux the dye. However, the inner cell mass (ICM) cells of blastocyst exhibit SP phenotype, which is consistent with the result of embryonic stem cells (ESCs) in vitro. These results indicate that the SP phenotype of ICM-derived ESCs is an intrinsic property and independent of the culture condition in vitro, and that SP phenotype is one of the characteristics of at least some pluripotent stem cells, but is not shared by totipotent stem cells. In addition, the result that the SP phenotype of ICM cells disap- peared when the inhibitor verapamil was added into medium implies that the SP phenotype is directly associated with ABCG2. These results suggest that not all the stem cells demonstrate SP phenotype, and that SP phenotype might act as a purification marker for partial stem cells such as some pluripo- tent embryonic stem cells and multipotent adult stem cells, but not for all stem cells exampled by the totipotent stem cells in the very early stage of mouse embryos.  相似文献   

8.
The hyperpolarization-activated current (If) plays an important role in determining the spontaneous rate of cardiac pacemaker cells. The automatic rhythmicity also exists in working cells of embryonic heart, therefore we studied developmental changes in functional expression and β-adrenergic regulation of Iy in embryonic mouse heart. The expression of If is high in early developmental stage (EDS) (10.5 d after coitus) ventricular myocytes, low in intermediate developmental stage (IDS) (13.5 d) atrial or ventricular myocytes and even lower in late developmental stage (LDS) (16.5 d) atrial or ventricular myocytes, indicating that these cells of the EDS embryonic heart have some properties of pacemaker cells.β-adrenergic agonist isoproterenol (ISO) stimulates If in LDS but not in EDS cardiomyocytes, indicating that the β-adrenergic regulation of If is not mature in EDS embryonic heart. But forskolin (a direct activator of adenylate cyclase) and 8-Br-cAMP (a membrane-permeable analogue of cAMP) increase t  相似文献   

9.
This study investigated the regulation of major light harvesting chlorophyll a/b protein (LHCⅡ) phosphorylation by hypoosmotic shock in dark-adapted Dunaliella salina cells. When the external NaCI concentration decreased in darkness, D. salina LHCⅡ phosphorylation levels transiently dropped within 20 min and then restored gradually to basal levels. The transient decrease in LHCII phosphorylation levels was insensitive to NaF, a phosphatase inhibitor. Inhibition of intracellular ATP production by addition of an uncoupler or an ATP synthase inhibitor increased LHCⅡ phosphorylation levels in D. salina cells exposed to hypoosmotic shock. Taken together, these results indicate that hypoosmotic shock inhibits the LHCⅡ phosphorylation process. The related mechanism and physiological significance are discussed.  相似文献   

10.
In recent years,various serious diseases caused by Zika virus (ZIKV) have made it impossible to be ignored.Confirmed existence of ZIKV in semen and sexually transmission of ZIKV suggested that it can break the blood–testis barrier (BTB),or Sertoli cell barrier (SCB).However,little is known about the underlying mechanism.In this study,interaction between actin,an important component of the SCB,and ZIKV envelope (E) protein domain Ⅲ (EDⅢ) was inferred from coimmunoprecipitation (Co-IP) liquid chromatography–tandem mass spectrometry (LC–MS/MS) analysis.Confocal microscopy confirmed the role of actin filaments (F-actin) in ZIKV infection,during which part of the stress fibers,the bundles that constituted by paralleled actin filaments,were disrupted and presented in the cell periphery.Colocalization of E and reorganized actin filaments in the cell periphery of transfected Sertoli cells suggests a participation of ZIKV E protein in ZIKV-induced F-actin rearrangement.Perturbation of F-actin by cytochalasin D (CytoD) or Jasplakinolide (Jas)enhanced the infection of ZIKV.More importantly,the transepithelial electrical resistance (TEER) of an in vitro mouse SCB (mSCB) model declined with the progression of ZIKV infection or overexpression of E protein.Co-IP and confocal microscopy analyses revealed that the interaction between F-actin and tight junction protein ZO-1 was reduced after ZIKV infection or E protein overexpression,highlighting the role of E protein in ZIKV-induced disruption of the BTB.We conclude that the interaction between ZIKV E and F-actin leads to the reorganization of F-actin network,thereby compromising BTB integrity.  相似文献   

11.
This study describes a quantitative analysis of the enhancement in anion permeability through swelling-activated Cl- channels, using the halide-sensitive fluorescent dye 6-methoxy-N-(3-sulfopropyl)quinolinium (SPQ). Cultured bovine corneal endothelial monolayers perfused with NO3- Ringer's were exposed to I- pulses under isosmotic and, subsequently, hyposmotic conditions. Changes in SPQ fluorescence due to I- influx were significantly faster under hyposmotic than under isosmotic conditions. Plasma membrane potential (Em) was -58 and -32 mV under isosmotic and hyposmotic conditions, respectively. An expression for the ratio of I- permeability under hyposmotic condition to that under isosmotic condition (termed enhancement ratio or ER) was derived by combining the Stern-Volmer equation (for modeling SPQ fluorescence quenching by I-) and the Goldman flux equation (for modeling the electrodiffusive unidirectional I- influx). The fluorescence values and slopes at the inflection points of the SPQ fluorescence profile during I- influx, together with Em under isosmotic and hyposmotic conditions, were used to calculate ER. Based on this approach, endothelial cells were shown to express swelling-activated Cl- channels with ER = 4.9 when the hyposmotic shock was 110 +/- 10 mosM. These results illustrate the application of the SPQ-based method for quantitative characterization of swelling-activated Cl- channels in monolayers.  相似文献   

12.
Activation of p38 mitogen-activated protein (MAP) kinase (MAPK) has been implicated in the mechanism of cardiomyocyte (CMC) protection and injury. The p38 MAPK controversy may be related to differential effects of this kinase on apoptosis and necrosis. We have hypothesized that p38 MAPK-mediated F-actin reorganization promotes apoptotic cell death, whereas it protects from osmotic stress-induced necrotic cell death. Cultured neonatal rat CMCs were subjected to 2 h of simulated ischemia followed by reoxygenation. p38 MAPK activity measured by phosphorylation of MAP kinase-activated protein (MAPKAP) kinase 2 was increased during simulated ischemia and reoxygenation. This was associated with translocation of heat shock protein 27 (HSP27) from the cytosolic to the cytoskeletal fraction and F-actin reorganization. Cytochrome c release from mitochondria, caspase-3 activation, and DNA fragmentation were increased during reoxygenation. Robust lactate dehydrogenase (LDH) release was observed under hyposmotic (140 mosM) reoxygenation. The p38 MAPK inhibitor SB-203580 abrogated activation of p38 MAPK, translocation of HSP27, and F-actin reorganization and prevented cytochrome c release, caspase-3 activation, and DNA fragmentation. Conversely, SB-203580 enhanced LDH release during hyposmotic reoxygenation. The F-actin disrupting agent cytochalasin D inhibited F-actin reorganization and prevented cytochrome c release, caspase-3 activation, and DNA fragmentation, whereas it enhanced LDH release during hyposmotic reoxygenation. When CMCs were incubated under the isosmotic condition for the first 15 min of reoxygenation, SB-203580 and cytochalasin D increased ATP content of CMCs and prevented LDH release after the conversion to the hyposmotic condition. These results suggest that F-actin reorganization mediated by activation of p38 MAPK plays a differential role in apoptosis and protection against osmotic stress-induced necrosis during reoxygenation in neonatal rat CMCs; however, the sarcolemmal fragility caused by p38 MAPK inhibition can be reversed during temporary blockade of physical stress during reoxygenation.  相似文献   

13.
14.
Previously, we reported that hyposmotic swelling evoked transient vascular smooth muscle cell (SMC) contraction that was completely abolished by L-type Ca(2+) channel blockers. In contrast, sustained contraction revealed in hyper- and isoosmotically-shrunken SMCs was insensitive to L-type channel blockers and was diminished in Ca(2+)-free medium by only 30-50%. Several research groups reported cell volume-dependent cytoskeleton network rearrangements. This study examines the role of cytoskeleton proteins in cell volume-dependent contraction of endothelium-denuded vascular smooth muscle rings (VSMR) from the rat thoracic aorta. Hyperosmotic shrinkage and hyposmotic swelling were triggered by modulation of medium osmolality; isosmotic shrinkage was induced by VSMR transfer from hypo- to isosmotic medium. The relative content of globular (G) and fibrillar (F) actin was estimated by fluorescence microscopy. Hyperosmotic shrinkage and hyposmotic swelling led to elevation of the F-actin/G-actin ratio by 2.5- and 1.8-fold respectively. Contraction of shrunken and swollen VSMR was insensitive to modulators of microtubules such as vinblastine, colchicine and docetaxel. Microfilament disassembly by cytochalasin B resulted in dramatic attenuation of the maximal amplitude of contraction of hyperosmotically-shrunken and hyposmotically-swollen VSMR, and almost completely abolished the contraction triggered by isosmotic shrinkage. These data suggest that both L-type Ca(2+) channel-mediated contraction of swollen vascular SMC and Ca(2+)(o)-insensitive contractions of shrunken cells are triggered by reorganization of the microfilament network caused by elevation of the F-actin/G-actin ratio.  相似文献   

15.
The integrity ofF-actin and its association with the activation of aCl current(ICl) incultured chick cardiac myocytes subjected to hyposmotic challenge weremonitored by whole cell patch clamp and fluorescence confocalmicroscopy. Disruption of F-actin by 25 µM cytochalasin B augmentedhyposmotic cell swelling by 51% (from a relative volume of 1.54 ± 0.10 in control to 2.33 ± 0.21), whereas stabilization of F-actinby 20 µM phalloidin attenuated swelling by 15% (relative volume of1.31 ± 0.05). Trace fluorochrome-labeled (fluoresceinisothiocyanate or tetramethylrhodamine isothiocyanate) phalloidinrevealed an intact F-actin conformation in control cells underhyposmotic conditions despite the considerable changes in cell volume.Sarcoplasmic F-actin was very disorganized and occurred only randomlybeneath the sarcolemma in cells treated with cytochalasin B, whereas nochanges in F-actin distribution occurred under either isosmotic orhyposmotic conditions in cells treated with phalloidin.Swelling-activatedICl (68.0 ± 6.0 pA/pF at +60 mV) was suppressed by both cytochalasin B (22.7 ± 5.1 pA/pF) and phalloidin (22.5 ± 3.5 pA/pF). On the basis of theseresults, we suggest that swelling of cardiac myocytes initiates dynamic changes in the cytoarchitecture of F-actin, which may be involved inthe volume transduction processes associated with activation ofICl.

  相似文献   

16.
To understand how vascular endothelial growth factor (VEGF) production is activated in malignant glioma cells, we employed protein tyrosine kinase (PTK) and protein kinase C (PKC) inhibitors to evaluate the extent to which these protein kinases were involved in signal transduction leading to VEGF production. PTK inhibitors blocked glioma proliferation and epidermal growth factor (EGF)-induced VEGF secretion, while H-7, a PKC inhibitor, inhibited both EGF-induced and baseline VEGF secretion. Phorbol 12-myristate 13-acetate (PMA), a non-specific activator of PKC, induced VEGF secretion by glioma cells, which was enhanced by calcium ionophore A23187, but completely blocked after prolonged treatment of cells with 1 microM PMA, by presumably depleting PKC. All inhibitors (genistein, AG18, AG213, H-7, prolonged PMA treatment) which inhibited EGF-induced VEGF secretion in glioma cells also inhibited cell proliferation at similar concentrations. However, PKC inhibition only blocked 50% of the VEGF secretion induced by growth factors (EGF, platelet-derived growth factor-BB, or basic fibroblast growth factor). This reserve capacity could be ascribed to a PKC-independent effect, or to PKC isoenzymes not down-regulated by PMA. These findings extend our previous assertion that VEGF secretion is tightly coupled with proliferation by suggesting that activation of convergent growth factor signaling pathways will lead to increased glioma VEGF secretion. Understanding of signal transduction of growth factor-induced VEGF secretion should provide a rational basis for the development of novel strategies for therapy.  相似文献   

17.
Cui YF  Li L  Yu YC  Jin ZY  Li ZL  Xu WX 《生理学报》2003,55(1):96-100
利用全细胞膜片钳技术在急性分离的胃窦平滑肌细胞上记录离子电流的方法 ,探讨外源性不饱和脂肪酸是否参与低渗牵张加强毒蕈碱电流的过程。在豚鼠胃窦平滑肌细胞上膜电位被钳制在 - 2 0 0mV等渗状态时 ,5 0 μmol/L卡巴胆碱 (carbachol,CCh)引起的毒蕈碱电流 (ICCh)作为对照 ,发现低渗牵张可以使ICCh明显增加到对照的 2 2 6 0±2 1 0 %。当用含 5 μmol花生四烯酸 (arachidacid ,AA)、亚麻酸 (linoleicacid ,LA)或亚油酸 (oleicacid,OA)细胞外液灌流时 ,ICCh分别被抑制在对照的 3 8± 0 6%、3 5 2± 0 8%和 66 6± 0 6%。在这种情况下 ,低渗牵张刺激可以使ICCh分别增加到 10 6 0± 2 5 %、173 2± 6 8%和 2 2 2 1± 11 0 %。 5 μmol/LAA抑制低渗牵张增加的毒蕈碱电流 5 1 2± 3 8% ,而在等渗状态下抑制ICCh为 96 2± 1 6%。上述结果提示 ,不饱和脂肪酸中双键数目越多 ,抑制效应越强 ;但不饱和脂肪酸不参与低渗刺激加强毒蕈碱电流的过程。  相似文献   

18.
Regulation of swelling-activated Cl(-) current (I(Cl,swell)) is complex, and multiple signaling cascades are implicated. To determine whether protein tyrosine kinase (PTK) modulates I(Cl,swell) and to identify the PTK involved, we studied the effects of a broad-spectrum PTK inhibitor (genistein), selective inhibitors of Src (PP2, a pyrazolopyrimidine) and epidermal growth factor receptor (EGFR) kinase (PD-153035), and a protein tyrosine phosphatase (PTP) inhibitor (orthovanadate). I(Cl,swell) evoked by hyposmotic swelling was increased 181 +/- 17% by 100 microM genistein, and the genistein-induced current was blocked by the selective I(Cl,swell) blocker tamoxifen (10 microM). Block of Src with PP2 (10 microM) stimulated tamoxifen-sensitive I(Cl,swell) by 234 +/- 27%, mimicking genistein, whereas the inactive analog of PP2, PP3 (10 microM), had no effect. Moreover, block of PTP by orthovanadate (1 mM) inhibited I(Cl,swell) and prevented its stimulation by PP2. In contrast with block of Src, block of EGFR kinase with PD-153035 (20 nM) inhibited I(Cl,swell). Several lines of evidence argue that the PP2-stimulated current was I(Cl,swell): 1) the stimulation was volume dependent, 2) the current was blocked by tamoxifen, 3) the current outwardly rectified with both symmetrical and physiological Cl(-) gradients, and 4) the current reversed near the Cl(-) equilibrium potential. To rule out contributions of other currents, Cd(2+) (0.2 mM) and Ba(2+) (1 mM) were added to the bath. Surprisingly, Cd(2+) suppressed the decay of I(Cl,swell), and Cd(2+) plus Ba(2+) eliminated time-dependent currents between -100 and +100 mV. Nevertheless, these divalent ions did not eliminate I(Cl,swell) or prevent its stimulation by PP2. The results indicate that tyrosine phosphorylation controls I(Cl,swell), and regulation of I(Cl,swell) by the Src and EGFR kinase families of PTK is antagonistic.  相似文献   

19.
The objective of this study was to examine the interplay between osmotic and oxidative stress as well as to determine mechanisms by which osmotic stress increases superoxide generation in spermatozoa of horses. Superoxide production, as measured by dihydroethidium (DHE), increased when spermatozoa of horses were incubated under either hyperosmotic or hyposmotic conditions. This increase in superoxide production was inhibited by the MAP kinase p38 inhibitor, SB203580, and by the superoxide scavenger, tiron. Incubation of spermatozoa under hyperosmotic conditions increased overall protein tyrosine phosphorylation as measured by western blotting techniques; however, a similar increase was not detected when spermatozoa were incubated under hyposmotic conditions. The general protein kinase C (PKC) and protein tyrosine kinase (PTK) inhibitor staurosporine inhibited (P < 0.05) tyrosine phosphorylation in samples from cells under hyperosmotic conditions. In addition, the NADPH oxidase inhibitor diphenyleneiodonium (DPI) also inhibited (P < 0.05) protein tyrosine phosphorylation in cells under hyperosmotic conditions. In summary, these data indicate that incubation of equine spermatozoa under both hyposmotic and hyperosmotic conditions can increase superoxide anion generation. Under hyperosmotic conditions, this increased generation of superoxide anion was accompanied by increased protein tyrosine phosphorylation.  相似文献   

20.
Exposure of cardiac myocytes to hyposmotic solution stimulates slowly-activating delayed-rectifying K(+) current (I(Ks)) via unknown mechanisms. In the present study, I(Ks) was measured in guinea-pig ventricular myocytes that were pretreated with modulators of cell signaling processes, and then exposed to hyposmotic solution. Pretreatment with compounds that (i) inhibit serine/threonine kinase activity (10-100 microM H89; 200 microM H8; 50 microM H7; 1 microM bisindolylmaleimide I; 10 microM LY294002; 50 microM PD98059), (ii) stimulate serine/threonine kinase activity (1-5 microM forskolin; 0.1 microM phorbol-12-myristate-13-acetate; 10 microM acetylcholine; 0.1 microM angiotensin II; 20 microM ATP), (iii) suppress G-protein activation (10 mM GDPbetaS), or (iv) disrupt the cytoskeleton (10 microM cytochalasin D), had little effect on the stimulation of I(Ks) by hyposmotic solution. In marked contrast, pretreatment with tyrosine kinase inhibitor tyrphostin A25 (20 microM) strongly attenuated both the hyposmotic stimulation of I(Ks) in myocytes and the hyposmotic stimulation of current in BHK cells co-expressing Ks channel subunits KCNQ1 and KCNE1. Since attenuation of hyposmotic stimulation was not observed in myocytes and cells pretreated with inactive tyrphostin A1, we conclude that TK has an important role in the response of cardiac Ks channels to hyposmotic solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号