共查询到20条相似文献,搜索用时 0 毫秒
1.
Kaczynski Z Karapetyan G Evidente A Iacobellis NS Holst O 《Carbohydrate research》2006,341(2):285-288
A putative capsular polysaccharide containing d-rhamnose was isolated from the phytopathogenic bacterium Burkholderia gladioli pv. agaricicola by phenol/water extraction followed by ultracentrifugation of the separated water phase and gel-permeation chromatography of the thus obtained supernatant. By means of chemical analyses and NMR spectroscopy, the repeating unit of the polymer was shown to be a linear tetrasaccharide with the structure. 相似文献
2.
Karapetyan G Kaczynski Z Iacobellis NS Evidente A Holst O 《Carbohydrate research》2006,341(7):930-934
A neutral O-specific polysaccharide containing d-mannose, d-rhamnose and d-galactose was obtained by mild acid hydrolysis of the lipopolysaccharide of the plant pathogenic bacterium Burkholderia gladioli pv. agaricicola. By means of compositional analyses and NMR spectroscopy, the chemical repeating unit of the polymer was identified as a linear trisaccharide of the structure shown below, in which the mannose residue was quantitatively acetylated at C-2. [carbohydrate structure: see text] 相似文献
3.
Development of a Real‐time Fluorescence Loop‐mediated Isothermal Amplification Assay for Detection of Burkholderia gladioli pv. alliicola 下载免费PDF全文
Weigang Kuang Laixin Luo Wenna Gao Yahong Lei Qingyang lv Jianqiang Li 《Journal of Phytopathology》2017,165(2):82-90
Burkholderia gladioli pv. alliicola is a causal agent of rot on a wide range of hosts including onion and tulip. It is one of quarantine phytopathogenic bacteria in China. To reduce the economic losses associated with this pathogen, simple and rapid detection methods are needed. In this study, an efficient loop‐mediated isothermal amplification (LAMP) assay with a real‐time fluorometer was developed. The analysis of 16S‐23S rRNA intergenic transcribed spacer (ITS) sequences showed considerable variability between different Burkholderia species and B. gradioli pathovars. A set of LAMP primers was designed based on the ITS region. The sensitivity and specificity of the developed assay were evaluated at the optimal temperature of 65°C. The primers were specific for B. gladioli pv. alliicola and did not react to strains of others species and other pathovars in the species B. gladioli. The sensitivity of the real‐time LAMP assay was 1 fg DNA which was 100 times higher than that of conventional PCR. The method was verified by testing natural samples and inoculated onion seeds, and it showed effectiveness. The real‐time LAMP assay established in this study is an effective method for detection of B. gladioli pv. alliicola. 相似文献
4.
Activating mutations in the RasGTPases are the most common oncogenic lesions in human cancer. Similarly, elevated STAT3 expression and/or phosphorylation are observed in the majority of human cancers. We recently found that activated Ras requires a mitochondrial rather than a nuclear activity of STAT3 to support cellular transformation. This mitochondrial activity of STAT3 was supported by phosphorylation on serine 727 (S727) in the carboxyl-terminus of STAT3. In this study we show that the H-Ras oncoprotein engages the MEK-ERK pathway to drive phosphorylation of STAT3 on S727, while phosphoinositide 3-kinase (PI3K) and mTOR activity were superfluous. Moreover, pharmacological inhibition of MEK reduced transformation by H-, K- or N-Ras. However, cells expressing a mitochondrially restricted STAT3 with a phospho-mimetic mutation at S727 were partially resistant to inhibition of the ERK pathway, exhibiting a partial rescue of anchorage-independent cell growth in the presence of MEK inhibitor. This study shows that the MEK-ERK pathway is required for activated Ras-induced phosphorylation of STAT3 on S727, that inhibition of STAT3 S727 phosphorylation contributes to the anti-oncogenic potential of MEK inhibitors, and that mitochondrial STAT3 is one of the critical substrates of the Ras-MEK-ERK- axis during cellular transformation. 相似文献
5.
6.
7.
8.
9.
Jacques Amar Céline Lange Ga?lle Payros Celine Garret Chantal Chabo Olivier Lantieri Michael Courtney Michel Marre Marie Aline Charles Beverley Balkau Rémy Burcelin D.E.S.I.R. Study Group 《PloS one》2013,8(1)
Aim
We recently described a human blood microbiome and a connection between this microbiome and the onset of diabetes. The aim of the current study was to assess the association between blood microbiota and incident cardiovascular disease.Methods and Results
D.E.S.I.R. is a longitudinal study with the primary aim of describing the natural history of the metabolic syndrome and its complications. Participants were evaluated at inclusion and at 3-, 6-, and 9-yearly follow-up visits. The 16S ribosomal DNA bacterial gene sequence, that is common to the vast majority of bacteria (Eubac) and a sequence that mostly represents Proteobacteria (Pbac), were measured in blood collected at baseline from 3936 participants. 73 incident cases of acute cardiovascular events, including 30 myocardial infarctions were recorded. Eubac was positively correlated with Pbac (r = 0.59; P<0.0001). In those destined to have cardiovascular complications, Eubac was lower (0.14±0.26 vs 0.12±0.29 ng/µl; P = 0.02) whereas a non significant increase in Pbac was observed. In multivariate Cox analysis, Eubac was inversely correlated with the onset of cardiovascular complications, (hazards ratio 0.50 95% CI 0.35–0.70) whereas Pbac (1.56, 95%CI 1.12–2.15) was directly correlated.Conclusion
Pbac and Eubac were shown to be independent markers of the risk of cardiovascular disease. This finding is evidence for the new concept of the role played by blood microbiota dysbiosis on atherothrombotic disease. This concept may help to elucidate the relation between bacteria and cardiovascular disease. 相似文献10.
Fumiko Taguchi Tomoko Suzuki Yoshishige Inagaki Kazuhiro Toyoda Tomonori Shiraishi Yuki Ichinose 《Journal of bacteriology》2010,192(1):117-126
To investigate the role of iron uptake mediated by the siderophore pyoverdine in the virulence of the plant pathogen Pseudomonas syringae pv. tabaci 6605, three predicted pyoverdine synthesis-related genes, pvdJ, pvdL, and fpvA, were mutated. The pvdJ, pvdL, and fpvA genes encode the pyoverdine side chain peptide synthetase III l-Thr-l-Ser component, the pyoverdine chromophore synthetase, and the TonB-dependent ferripyoverdine receptor, respectively. The ΔpvdJ and ΔpvdL mutants were unable to produce pyoverdine in mineral salts-glucose medium, which was used for the iron-depleted condition. Furthermore, the ΔpvdJ and ΔpvdL mutants showed lower abilities to produce tabtoxin, extracellular polysaccharide, and acyl homoserine lactones (AHLs), which are quorum-sensing molecules, and consequently had reduced virulence on host tobacco plants. In contrast, all of the mutants had accelerated swarming ability and increased biosurfactant production, suggesting that swarming motility and biosurfactant production might be negatively controlled by pyoverdine. Scanning electron micrographs of the surfaces of tobacco leaves inoculated with the mutant strains revealed only small amounts of extracellular polymeric matrix around these mutants, indicating disruption of the mature biofilm. Tolerance to antibiotics was drastically increased for the ΔpvdL mutant, as for the ΔpsyI mutant, which is defective in AHL production. These results demonstrated that pyoverdine synthesis and the quorum-sensing system of Pseudomonas syringae pv. tabaci 6605 are indispensable for virulence in host tobacco infection and that AHL may negatively regulate tolerance to antibiotics.Phytopathogenic bacteria employ a variety of virulence mechanisms to overcome the defense systems of plants. Pseudomonas syringae pv. tabaci 6605 is a gram-negative bacterium that causes wildfire disease on host tobacco plants. Previously, we demonstrated that flagellin, a component of the flagellar filament of this organism, is a major elicitor of the hypersensitive reaction and is posttranslationally modified by glycosylation (26, 28-30). A genetic region composed of three open reading frames (ORFs), namely, fgt1, fgt2, and orf3, was previously identified in a flagellum gene cluster. fgt1 and fgt2 encode flagellin glycosyltransferase, and orf3 shows significant homology to the 3-oxoacyl-(acyl carrier protein [ACP]) synthase III in the fatty acid elongation cycle, required for the synthesis of acyl homoserine lactones (AHLs) (11, 30, 31). Analysis of an orf3 deletion (Δorf3) mutant revealed that orf3 played no role in the glycosylation of flagellin, although the virulence of the Δorf3 mutant on tobacco plants was remarkably reduced.Many virulence factors of bacteria have been reported to be under the regulation of a cell density-dependent system called quorum sensing. AHLs are synthesized by the coupling of the homoserine lactone ring from S-adenosylmethionine and acyl chains from the acyl-ACP by PsyI in P. syringae (9, 11). P. syringae pv. tabaci 6605 secretes three types of AHLs as signal molecules: N-hexanoyl-l-homoserine lactone, N-(3-oxohexanoyl)-l-homoserine lactone, and N-octanoyl-l-homoserine lactone (31). Our previous study indicated that the Δorf3 mutant and the quorum-sensing molecule-defective ΔpsyI mutant had significantly reduced abilities to produce AHLs and to take up iron (31). Furthermore, a scanning electron micrograph revealed little extracellular polymeric substance matrix surrounding the inoculated Δorf3 and ΔpsyI mutants on the tobacco leaf surface, indicating a lack of biofilm development (31). Iron acquisition has been reported to affect biofilm formation (2), and iron uptake is also involved in biofilm development under the regulation of quorum sensing in P. syringae pv. tabaci 6605 (2, 3, 11, 31).Iron is indispensable for the growth of almost all organisms, and the ability to acquire iron is thought to be an important factor in virulence (27). Because the concentration of Fe(III) in the environment is quite low, owing to its insolubility under environmental conditions, the fluorescent Pseudomonas group produces a yellow-green Fe(III)-chelating siderophore called pyoverdine in order to acquire iron effectively (24). The genes required for pyoverdine synthesis are well characterized in the Pseudomonas aeruginosa strain PAO1 (33), and pyoverdine biosynthesis mutants of this pathogen exhibit reduced virulence (20, 33). For the regulation of iron homeostasis, it was reported that Fur (ferric uptake regulator) is a global regulator that controls the expression of siderophore-mediated iron uptake in P. syringae pv. tabaci 11528 (6).In the present study, two genes predicted to be involved in pyoverdine synthesis, encoding the pyoverdine side chain peptide synthetase III l-Thr-l-Ser component (pvdJ) and the pyoverdine chromophore synthetase (pvdL), and the TonB-dependent ferripyoverdine receptor gene (fpvA) were disrupted in order to elucidate the roles of the pyoverdine-mediated iron acquisition system in the virulence of P. syringae pv. tabaci 6605. By use of these mutants, several important virulence factors, flagellum-dependent motility, the production of tabtoxin and extracellular polysaccharide (EPS), and biofilm formation were investigated. Although the ΔpvdJ and ΔpvdL mutants had reduced ability to produce EPS, the antibiotic tolerance of these mutants was drastically increased. The correlations among the pyoverdine-mediated iron uptake system, quorum-sensing regulation, and multidrug efflux are also discussed. 相似文献
11.
Desma M. Grice Irina Vetter Helen M. Faddy Paraic A. Kenny Sarah J. Roberts-Thomson Gregory R. Monteith 《The Journal of biological chemistry》2010,285(48):37458-37466
Calcium signaling is a key regulator of pathways important in tumor progression, such as proliferation and apoptosis. Most studies assessing altered calcium homeostasis in cancer cells have focused on alterations mediated through changes in cytoplasmic free calcium levels. Here, we show that basal-like breast cancers are characterized by an alteration in the secretory pathway calcium ATPase 1 (SPCA1), a calcium pump localized to the Golgi. Inhibition of SPCA1 in MDA-MB-231 cells produced pronounced changes in cell proliferation and morphology in three-dimensional culture, without alterations in sensitivity to endoplasmic reticulum stress induction or changes in global calcium signaling. Instead, the effects of SPCA1 inhibition in MDA-MB-231 cells reside in altered regulation of calcium-dependent enzymes located in the secretory pathway, such as proprotein convertases. Inhibition of SPCA1 produced a pronounced alteration in the processing of insulin-like growth factor receptor (IGF1R), with significantly reduced levels of functional IGF1Rβ and accumulation of the inactive trans-Golgi network pro-IGF1R form. These studies identify for the first time a calcium transporter associated with the basal-like breast cancer subtype. The pronounced effects of SPCA1 inhibition on the processing of IGF1R in MDA-MB-231 cells independent of alterations in global calcium signaling also demonstrate that some calcium transporters can regulate the processing of proteins important in tumor progression without major alterations in cytosolic calcium signaling. Inhibitors of SPCA1 may offer an alternative strategy to direct inhibitors of IGF1R and attenuate the processing of other proprotein convertase substrates important in basal breast cancers. 相似文献
12.
The Metabolic Pathway of 4-Aminophenol in Burkholderia sp. Strain AK-5 Differs from That of Aniline and Aniline with C-4 Substituents 总被引:1,自引:0,他引:1 下载免费PDF全文
Shinji Takenaka Susumu Okugawa Maho Kadowaki Shuichiro Murakami Kenji Aoki 《Applied microbiology》2003,69(9):5410-5413
Burkholderia sp. strain AK-5 utilized 4-aminophenol as the sole carbon, nitrogen, and energy source. A pathway for the metabolism of 4-aminophenol in strain AK-5 was proposed based on the identification of three key metabolites by gas chromatography-mass spectrometry analysis. Strain AK-5 converted 4-aminophenol to 1,2,4-trihydroxybenzene via 1,4-benzenediol. 1,2,4-Trihydroxybenzene 1,2-dioxygenase cleaved the benzene ring of 1,2,4-trihydroxybenzene to form maleylacetic acid. The enzyme showed a high dioxygenase activity only for 1,2,4-trihydroxybenzene, with Km and Vmax values of 9.6 μM and 6.8 μmol min−1 mg of protein−1, respectively. 相似文献
13.
14.
Borja Cascales-Mi?ana Jesús Mu?oz-Bertomeu María Flores-Tornero Armand Djoro Anoman José Pertusa Manuel Alaiz Sonia Osorio Alisdair R. Fernie Juan Segura Roc Ros 《The Plant cell》2013,25(6):2084-2101
This study characterizes the phosphorylated pathway of Ser biosynthesis (PPSB) in Arabidopsis thaliana by targeting phosphoserine phosphatase (PSP1), the last enzyme of the pathway. Lack of PSP1 activity delayed embryo development, leading to aborted embryos that could be classified as early curled cotyledons. The embryo-lethal phenotype of psp1 mutants could be complemented with PSP1 cDNA under the control of Pro35S (Pro35S:PSP1). However, this construct, which was poorly expressed in the anther tapetum, did not complement mutant fertility. Microspore development in psp1.1/psp1.1 Pro35S:PSP1 arrested at the polarized stage. The tapetum from these lines displayed delayed and irregular development. The expression of PSP1 in the tapetum at critical stages of microspore development suggests that PSP1 activity in this cell layer is essential in pollen development. In addition to embryo death and male sterility, conditional psp1 mutants displayed a short-root phenotype, which was reverted in the presence of Ser. A metabolomic study demonstrated that the PPSB plays a crucial role in plant metabolism by affecting glycolysis, the tricarboxylic acid cycle, and the biosynthesis of amino acids. We provide evidence of the crucial role of the PPSB in embryo, pollen, and root development and suggest that this pathway is an important link connecting primary metabolism with development. 相似文献
15.
Natalia Gottig Betiana S. Garavaglia Cecilia G. Garofalo Elena G. Orellano Jorgelina Ottado 《PloS one》2009,4(2)
Xanthomonas axonopodis pv. citri, the phytopathogen responsible for citrus canker has a number of protein secretion systems and among them, at least one type V protein secretion system belonging to the two-partner secretion pathway. This system is mainly associated to the translocation of large proteins such as adhesins to the outer membrane of several pathogens. Xanthomonas axonopodis pv. citri possess a filamentous hemagglutinin-like protein in close vicinity to its putative transporter protein, XacFhaB and XacFhaC, respectively. Expression analysis indicated that XacFhaB was induced in planta during plant-pathogen interaction. By mutation analysis of XacFhaB and XacFhaC genes we determined that XacFhaB is involved in virulence both in epiphytic and wound inoculations, displaying more dispersed and fewer canker lesions. Unexpectedly, the XacFhaC mutant in the transporter protein produced an intermediate virulence phenotype resembling wild type infection, suggesting that XacFhaB could be secreted by another partner different from XacFhaC. Moreover, XacFhaB mutants showed a general lack of adhesion and were affected in leaf surface attachment and biofilm formation. In agreement with the in planta phenotype, adhesin lacking cells moved faster in swarming plates. Since no hyperflagellation phenotype was observed in this bacteria, the faster movement may be attributed to the lack of cell-to-cell aggregation. Moreover, XacFhaB mutants secreted more exopolysaccharide that in turn may facilitate its motility. Our results suggest that this hemagglutinin-like protein is required for tissue colonization being mainly involved in surface attachment and biofilm formation, and that plant tissue attachment and cell-to-cell aggregation are dependent on the coordinated action of adhesin molecules and exopolysaccharides. 相似文献
16.
17.
《Anaerobe》2002,8(2):79-87
A wide range of animals suffer from periodontal disease. However, there is very little reported on disease and oral micro-biota of Australian animals. Therefore, the oral cavity of 90 marsupials was examined for oral health status. Plaque samples were collected from the subgingival margins using curettes or swabs. Plaque samples were plated onto non-selective trypticase soy agar plates, selective trypticase soy agar, non-selective and selective Wilkens Chalgrens Agar. Plates were incubated in an anaerobic atmosphere and examined after 7–14 days for the presence of black–brown-pigmented colonies. A combination of morphological and biochemical tests were used (colonial morphology, pigmentation, aerobic growth, Gram reaction, fluorescence under long-wave UV light (360 nm), production of catalase, enzymatic activity with fluorogenic substrates and haemagglutination of sheep red cells) to identify these organisms. Black-pigmented bacteria were cultivated from the plaque of 32 animals including six eastern grey kangaroos, a musky rat kangaroo, a whiptail and a red-necked wallaby, 18 koalas, a bandicoot and five brushtail possums. No black-pigmented colonies were cultivated from squirrel or sugar gliders or quokkas or from marsupial mice. The majority of isolates were identified as Porphyromonas gingivalis -like species with the higher prevalence of isolation from the oral cavity of macropods (the kangaroos and wallabies). Oral diseases, such as gingivitis can be found in native Australian animals with older koalas having an increase in disease indicators and black-pigmented bacteria. Non-selective Wilkens Chalgren Agar was the medium of choice for the isolation of black-pigmented bacteria. 相似文献
18.
《American anthropologist》1966,68(6):1545-1546
19.
Ashima Bhattacharjee Haojun Yang Megan Duffy Emily Robinson Arianrhod Conrad-Antoville Ya-Wen Lu Tony Capps Lelita Braiterman Michael Wolfgang Michael P. Murphy Ling Yi Stephen G. Kaler Svetlana Lutsenko Martina Ralle 《The Journal of biological chemistry》2016,291(32):16644-16658
Copper-transporting ATPase ATP7A is essential for mammalian copper homeostasis. Loss of ATP7A activity is associated with fatal Menkes disease and various other pathologies. In cells, ATP7A inactivation disrupts copper transport from the cytosol into the secretory pathway. Using fibroblasts from Menkes disease patients and mouse 3T3-L1 cells with a CRISPR/Cas9-inactivated ATP7A, we demonstrate that ATP7A dysfunction is also damaging to mitochondrial redox balance. In these cells, copper accumulates in nuclei, cytosol, and mitochondria, causing distinct changes in their redox environment. Quantitative imaging of live cells using GRX1-roGFP2 and HyPer sensors reveals highest glutathione oxidation and elevation of H2O2 in mitochondria, whereas the redox environment of nuclei and the cytosol is much less affected. Decreasing the H2O2 levels in mitochondria with MitoQ does not prevent glutathione oxidation; i.e. elevated copper and not H2O2 is a primary cause of glutathione oxidation. Redox misbalance does not significantly affect mitochondrion morphology or the activity of respiratory complex IV but markedly increases cell sensitivity to even mild glutathione depletion, resulting in loss of cell viability. Thus, ATP7A activity protects mitochondria from excessive copper entry, which is deleterious to redox buffers. Mitochondrial redox misbalance could significantly contribute to pathologies associated with ATP7A inactivation in tissues with paradoxical accumulation of copper (i.e. renal epithelia). 相似文献