首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previously, it has been shown that heat shock protein 70 (HSP70) can prevent inflammatory damage in experimental autoimmune disease models. Various possible underlying working mechanisms have been proposed. One possibility is that HSP70 induces a tolerogenic phenotype in dendritic cells (DCs) as a result of the direct interaction of the antigen with the DC. Tolerogenic DCs can induce antigen-specific regulatory T cells and dampen pathogenic T cell responses. We show that treatment of murine DCs with either mycobacterial (Mt) or mouse HSP70 and pulsed with the disease-inducing antigen induced suppression of proteoglycan-induced arthritis (PGIA), although mouse HSP70-treated DCs could ameliorate PGIA to a greater extent. In addition, while murine DCs treated with Mt- or mouse HSP70 had no significantly altered phenotype as compared to untreated DCs, HSP70-treated DCs pulsed with pOVA (ovalbumin peptide 323–339) induced a significantly increased production of IL-10 in pOVA-specific T cells. IL-10-producing T cells were earlier shown to be involved in Mt HSP70-induced suppression of PGIA. In conclusion, this study indicates that Mt- and mouse HSP70-treated BMDC can suppress PGIA via an IL-10-producing T cell-dependent manner.  相似文献   

2.
We have developed a molecular chaperone-based tumor vaccine that reverses the immune tolerance of cancer cells. Heat shock protein (HSP) 70 extracted from fusions of dendritic (DC) and tumor cells (HSP70.PC-F) possess superior properties such as stimulation of DC maturation and T cell proliferation over its counterpart from tumor cells. More importantly, immunization of mice with HSP70.PC-F resulted in a T cell-mediated immune response including significant increase of CD8 T cells and induction of the effector and memory T cells that was able to break T cell unresponsiveness to a nonmutated tumor Ag and provide protection of mice against challenge with tumor cells. By contrast, the immune response to vaccination with HSP70-PC derived from tumor cells is muted against such nonmutated tumor Ag. HSP70.PC-F complexes differed from those derived from tumor cells in a number of key manners, most notably, enhanced association with immunologic peptides. In addition, the molecular chaperone HSP90 was found to be associated with HSP70.PC-F as indicated by coimmunoprecipitation, suggesting ability to carry an increased repertoire of antigenic peptides by the two chaperones. Significantly, activation of DC by HSP70.PC-F was dependent on the presence of an intact MyD88 gene, suggesting a role for TLR signaling in DC activation and T cell stimulation. These experiments indicate that HSP70-peptide complexes (PC) derived from DC-tumor fusion cells have increased their immunogenicity and therefore constitute an improved formulation of chaperone protein-based tumor vaccine.  相似文献   

3.
Toxoplasma gondii-derived heat shock protein 70 (T.g.HSP70) induced maturation of bone marrow-derived dendritic cells (DCs) of wild-type (WT) C57BL/6 mice as evidenced by an increase in surface expression of MHC class I and II molecules and costimulatory molecules such as CD40, CD80, and CD86. Functionally, decreased phagocytic ability and increased alloreactive T cell stimulatory ability were observed in T.g.HSP70-stimulated DCs. These phenotypic and functional changes of T.g.HSP70-stimulated DCs were demonstrated in Toll-like receptor (TLR) 2- and myeloid differentiation factor 88 (MyD88)-deficient but not TLR4-deficient C57BL/6 mice. DCs from WT and TLR2-deficient but not TLR4-deficient mice produced IL-12 after T.g.HSP70 stimulation. T.g.HSP70-stimulated DCs from WT, TLR2-deficient, and MyD88-deficient, but not TLR4-deficient mice expressed IFN-beta mRNA. Thus, T.g.HSP70 stimulates murine DC maturation via TLR4 through the MyD88-independent signal transduction cascade.  相似文献   

4.
Our study demonstrates that tumor-derived heat shock protein (HSP)70 chaperones a tyrosinase peptide and mediates its transfer to human immature dendritic cells (DCs) by receptor-dependent uptake. Human tumor-derived HSP70 peptide complexes (HSP70-PC) thus have the immunogenic potential to instruct DCs to cross-present endogenously expressed, nonmutated, and tumor antigenic peptides that are shared among tumors of the melanocytic lineage for T cell recognition. T cell stimulation by HSP70-instructed DCs is dependent on the Ag bound to HSP70 in that only DCs incubated with HSP70-PC purified from tyrosinase-positive (HSP70-PC/tyr(+)) but not from tyrosinase-negative (HSP70-PC/tyr(-)) melanoma cells resulted in the specific activation of the HLA-A*0201-restricted tyrosinase peptide-specific cytotoxic T cell clone. HSP70-PC-mediated T cell stimulation is very efficient, delivering the tyrosinase peptide at concentrations as low as 30 ng/ml of HSP70-PC for T cell recognition. Receptor-dependent binding of HSP70-PC and active cell metabolism are prerequisites for MHC class I-restricted cross-presentation and T cell stimulation. T cell stimulation does not require external DC maturation signals (e.g., exogenously added TNF-alpha), suggesting that signaling DC maturation is an intrinsic property of the HSP70-PC itself and related to receptor-mediated binding. The cross-presentation of a shared human tumor Ag together with the exquisite efficacy are important new aspects for HSP70-based immunotherapy in clinical anti-cancer vaccination strategies, and suggest a potential extension of HSP70-based vaccination protocols from a patient-individual treatment modality to its use in an allogeneic setting.  相似文献   

5.
One essential immunoregulatory function of heat shock protein (HSP) is activation of the innate immune system. We investigated the activation of human monocytes and monocyte-derived dendritic cells (DC) by recombinant human HSP60, human inducible HSP72, and preparations of human gp96 and HSP70 under stringent conditions, in the absence of serum and with highly purified monocytes. HSP60 induced human DC maturation and activated human DC to secrete proinflammatory cytokines. HSP72 induced DC maturation to a lesser extent, but activated human monocytes and immature DC as efficiently as HSP60 to release proinflammatory cytokines. The independence of the effects of HSP60 and HSP72 from endotoxin or another copurifying bacterial component was shown by the resistance of these effects to polymyxin B, their sensitivity to heat treatment, the inactivity of endotoxin controls at concentrations up to 100-fold above the endotoxin contents of the HSP, and the inactivity of a recombinant control protein. Preparations of HSP70, which consisted mainly of the constitutively expressed HSP73, induced only marginal cytokine release from monocytes. The gp96 preparations did not have significant effects on human monocytes and monocyte-derived DC, indicating that these human APC populations were not susceptible to gp96 signaling under the stringent conditions applied in this study. The biological activities of gp96 and HSP70 preparations were confirmed by their peptide binding activity. These findings show that HSP can differ considerably in the capacity to activate monocyte-derived APC under certain conditions and underline the potential of HSP60 and HSP72 as activation signals for the innate immune system.  相似文献   

6.
Tumor-derived heat shock protein70-peptide complexes (HSP70.PC-Tu) have shown great promise in tumor immunotherapy due to numerous advantages. However, large-scale phase III clinical trials showed that the limited immunogenicity remained to be enhanced. In previous research, we demonstrated that heat shock protein 70-peptide complexes (HSP70.PC-Fc) derived from dendritic cell (DC)-tumor fusions exhibit enhanced immunogenicity compared with HSP70.PCs from tumor cells. However, the DCs used in our previous research were obtained from healthy donors and not from the patient population. In order to promote the clinical application of these complexes, HSP70.PC-Fc was prepared from patient-derived DC fused directly with patient-derived tumor cells in the current study. Our results showed that compared with HSP70.PC-Tu, HSP70.PC-Fc elicited much more powerful immune responses against the tumor from which the HSP70 was derived, including enhanced T cell activation, and CTL responses that were shown to be antigen specific and HLA restricted. Our results further indicated that the enhanced immunogenicity is related to the activation of CD4+ T cells and increased association with other heat shock proteins, such as HSP90. Therefore, the current study confirms the enhanced immunogenicity of HSP70.PC derived from DC-tumor fusions and may provide direct evidence promoting their future clinical use.  相似文献   

7.
The 70-kDa microbial heat shock protein (mHSP70) has a profound effect on the immune system, interacting with the CD40 receptor on DC and monocytes to produce cytokines and chemokines. The mHSP70 also induces maturation of dendritic cells (DC) and thus acts as an alternative ligand to CD40L on T cells. In this investigation, we have identified a cytokine-stimulating epitope (peptide 407-426), by activating DC with overlapping synthetic peptides (20-mers) derived from the sequence of mHSP70. This peptide also significantly enhances maturation of DC stimulated by mHSP70 or CD40L. The epitope is located at the base of the peptide-binding groove of HSP70 and has five critical residues. Furthermore, an inhibitory epitope (p457-496) was identified downstream from the peptide-binding groove that inhibits cytokine production and maturation of DC stimulated by HSP70 or CD40L. The p38 MAP kinase phosphorylation is critical in the alternative CD40-HSP70 pathway and is inhibited by p457-496 but enhanced by p407-426.  相似文献   

8.
Polyamine compound deoxyspergualin (DSG) is a potent immunosuppressive agent that has been applied clinically for protecting graft rejection and treatment of Wegener's granulomatosis. Though DSG can bind to heat-shock proteins (HSPs) in cells, its mechanism of immunosuppressive action remains unknown. It is widely accepted that extracellular HSPs are capable of stimulating dendritic cells (DC) through cell surface receptors, leading to DC activation and cytokine release. In this study, we examined if DSG analogs could inhibit HSP70-induced DC activation. Bone marrow derived immature mouse DCs and peripheral blood mononuclear cell-derived immature human DCs were generated and incubated with Alexa 488-labeled Hsp70 in the presence of methoxyDSG (Gus-1) that had comparable HSP70-binding affinity to DSG or DSG analog GUS-7, which had much more reduced binding affinity for HSP70. The binding of HSP70 to immature DCs was analyzed by laser microscopy and flow cytometry. HSP70-induced DC activation was assessed by TNF-α release by enzyme-linked immunosorbent assay. Binding of Hsp70 to the cell surface of immature DCs was inhibited under the presence of Gus-1, but not under the presence of Gus-7. Immature DCs were activated and released TNF-α by the stimulation with HSP70 for 12 hours; however, the HSP70-induced TNF-α release was suppressed under the presence of Gus-1, and partially suppressed under the presence of Gus-7. Similar results were observed when immature human DCs were stimulated under the same conditions. Immunosuppressive mechanism of DSG may be explained, at least in part, by the inhibition of extracellular HSP70-DC interaction and HSP70-induced activation of immature DCs. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

9.
We recently elucidated a novel function for the 70-kDa heat shock protein (HSP70) as a chaperone and a cytokine, a chaperokine in human monocytes. Here we show that peptide-bearing and peptide-negative HSP70 preparations isolated from EMT6 mammary adenocarcinoma cells (EMT6-HSP70) act as chaperokines when admixed with murine splenocytes. EMT6-HSP70 bound with high affinity to the surface of splenocytes recovered from naive BALB/c mice. The [Ca2+]i inhibitor BAPTA dose dependently inhibited HSP70- but not LPS-induced NF-kappaB activity and subsequent augmentation of proinflammatory cytokine TNF-alpha, IL-1beta, and IL-6 production. Taken together, these results suggest that presence of peptide in the HSP70 preparation is not required for spontaneous activation of cells of the innate immune system.  相似文献   

10.
Toxoplasma gondii-derived heat shock protein 70 (T.g.HSP70) is a tachyzoite-specific virulent molecule. The DNA vaccine with T.g.HSP70 gene targeting peripheral epidermal or dermal dendritic cells (DC) induces in vivo DC maturation and successive early Th1 polarization at the draining lymph nodes (dLN) of C57BL/6 mice. In the present study, induction of cytotoxic T lymphocytes (CTL) has been explored. The CTL specific for a syngeneic DC line, DC2.4, either transfected with T. g.HSP70 gene or pulsed with recombinant T. g.HSP70 are induced in the spleen of the vaccinated mice. This CTL lyses T. gondii-infected, but not uninfected, DC2.4. Both CD8+ and CD4+ CTL are induced by the vaccine, and Fas/Fas ligand-mediated cytolysis dominantly participates in their CTL activities. Adoptive transfer experiments reveal that the vaccine-induced CD8+ or CD4+ T cells possess a protective role for toxoplasmosis at both acute and chronic phases of infection.  相似文献   

11.
12.
13.
Heat shock proteins (HSPs) can be induced by various stresses and play an important role in cell cycle progression. HSP70 has been shown to act as an inhibitor of apoptosis. We studied HSP70 expression in bronchial epithelial cells of C57BL/6 mice and homozygous HPS70 knockout mice (hsp70.1-/-) exposed to chronic hypoxic stress. We also investigated changes in cellular proliferation and apoptosis in relation to HSP70. Lungs were removed from mice after a three-week period of exposure to 10 % O(2). Immunoblots for HSP70 and immunohistochemical staining for HSP70 and Ki-67 were performed. Apoptosis was assessed using the TUNEL assay. The three-week period of hypoxic stress did not change HSP70 levels in total lung tissue, but a significant reduction in HSP70 expression was observed in bronchiolar epithelial cells. In wild type mice, both HSP70 and Ki-67 expression were significantly reduced in bronchiolar epithelial cells. In homozygous HPS70 knockout mice (hsp70.1-/-), apoptosis of bronchiolar epithelial cells was significantly increased. Our results suggest that HSP70 may exert anti-apoptotic effects in mouse bronchiolar epithelial cells.  相似文献   

14.
The efficacy of a vaccine is generally dependent on an adjuvant, which enhances the immune functions and alum has been widely used in human immunization. Alum activates the intracellular stress sensors inflammasomes, but whether these are responsible for the adjuvanticity is controversial. The objectives of this investigation were to examine the hypothesis that alum-mediated adjuvanticity is a function of stress and conversely that stress agents will elicit adjuvanticity. The investigation was carried out in BALB/c mice by SC immunization with ovalbumin (OVA) mixed with alum. This elicited inflammasomes, with significant activation of caspase 1, production of IL-1β, and adjuvanticity, demonstrated by enhancing OVA-specific serum IgG antibodies, CD4(+) T cells, and proliferation. The novel finding that alum induced HSP70 suggests that stress is involved in the mechanism of adjuvanticity. This was confirmed by inhibition studies with PES (phenylethynesulfonamide), which disrupts inducible HSP70 function, and inhibited both inflammasomes and the adjuvant function. Parallel studies were pursued with an oxidative agent (sodium arsenite), K-releasing agent (Gramicidin) and a metal ionophore (dithiocarbamate). All 3 stress agents induced HSP70, inflammasomes, and the adjuvant functions. Furthermore, up-regulation of membrane associated IL-15 on DC and CD40L on T cells in the animals treated with alum or the stress agents mediate the interactions between splenic CD11c DC and CD4(+) or CD8(+) T cells. The results suggest that the three stress agents elicit HSP70, a hallmark of stress, as well as inflammasomes and adjuvanticity, commensurate with those of alum, which may provide an alternative strategy in developing novel adjuvants.  相似文献   

15.
We have utilized a free-solution-isoelectric focusing technique (FS-IEF) to obtain chaperone-rich cell lysates (CRCL) fractions from clarified tumor homogenates. The FS-IEF technique for enriching multiple chaperones from tumor lysate is relatively easy and rapid, yielding sufficient immunogenic material for clinical use. We have shown that tumor-derived CRCL carry antigenic peptides. Dendritic cells (DCs) uptake CRCL and cross-present the chaperoned peptides to T cells. Tumor-derived CRCL induce protective immune responses against a diverse range of murine tumor types in different genetic backgrounds. When compared to purified heat shock protein 70 (HSP70), single antigenic peptide or unfractionated lysate, CRCL have superior ability to activate/mature DCs and are able to induce potent, long lasting and tumor specific T-cell-mediated immunity. While CRCL vaccines were effective as stand-alone therapies, the enhanced immunogenicity arising from CRCL-pulsed DC as a vaccine indicates that CRCL could be the antigen source of choice for DC-based anti-cancer immunotherapies. The nature of CRCL's enhanced immunogenicity may lie in the broader antigenic peptide repertoire as well as the superior immune activation capacity of CRCL. Exongenous CRCL also supply danger signals in the context of apoptotic tumor cells and enhance the immunogenicity of apoptotic tumor cells, leading to tumor-specific T cell dependent long-term immunity. Moreover, CRCL based vaccines can be effectively combined with chemotherapy to treat cancer. Our findings indicate that CRCL have prominent adjuvant effects and are effective sources of tumor antigens for pulsing DCs. Tumor-derived CRCL are promising anti-cancer vaccines that warrant clinical research and development.  相似文献   

16.
Developing immunosuppressive therapies for autoimmune diseases comes with a caveat that immunosuppression may promote the risk of developing other conditions or diseases. We have previously shown that biolistic delivery of an expression construct encoding inducible HSP70 (HSP70i) with one amino acid modification in the dendritic cell (DC) activating moiety 435–445 (HSP70iQ435A) to mouse skin resulted in significant immunosuppressive activity of autoimmune vitiligo, associated with fewer tissue infiltrating T cells. To prepare HSP70iQ435A as a potential therapeutic for autoimmune vitiligo, in this study we evaluated whether and how biolistic delivery of HSP70iQ435A in mice affects anti-tumor responses. We found that HSP70iQ435A in fact supports anti-tumor responses in melanoma-challenged C57BL/6 mice. Biolistic delivery of the HSP70iQ435A-encoding construct to mice elicited significant anti-HSP70 titers, and anti-HSP70 IgG and IgM antibodies recognize surface-expressed and cytoplasmic HSP70i in human and mouse melanoma cells. A peptide scan revealed that the anti-HSP70 antibodies recognize a specific C-terminal motif within the HSP70i protein. The antibodies elicited surface CD107A expression among mouse NK cells, representative of antibody-mediated cellular cytotoxicity (ADCC), supporting the concept, that HSP70iQ435A-encoding DNA elicits a humoral response to the stress protein expressed selectively on the surface of melanoma cells. Thus, besides limiting autoimmunity and inflammation, HSP70iQ435A elicits humoral responses that limit tumor growth and may be used in conjunction with immune checkpoint inhibitors to not only control tumor but to also limit adverse events following tumor immunotherapy.Supplementary InformationThe online version contains supplementary material available at 10.1007/s12192-021-01229-x.  相似文献   

17.
Heat shock protein (HSP) 60 nonspecifically activates cells of the innate immune system. In the present study, we characterized the effects of human HSP60 maturation, cytokine release, and T cell-activating capacity of bone marrow-derived dendritic cells (DC). Furthermore, we analyzed HSP60-induced signal transduction in DC. HSP60 strongly stimulated DC for maturation and release of TNF-alpha, IL-12, and IL-1 beta. However, HSP60 elicited only a weak IL-10 response in DC suggesting a Th1 bias. HSP60-treated DC induced proliferation of allogeneic T cells. Again, a Th1 bias was noted in that cocultures of allogeneic T cells and HSP60-treated DC released IFN-gamma but only small amounts of IL-10 and no detectable IL-4. Signaling via Toll-like receptor 4 was involved in HSP60-induced cytokine release and maturation because DC of C3H/HeJ mice with a mutant Toll-like receptor 4 showed deficient response to HSP60. HSP60 was found to rapidly activate the mitogen-activated protein kinases p38, c-Jun N-terminal kinase, and extracellular signal-regulated kinase as well as I kappa B in DC. Phosphorylation of these signaling molecules was also mediated by LPS, but with much slower kinetics. Thus, HSP60 stimulates DC more rapidly than LPS and elicits a Th1-promoting phenotype. These results suggest that DC play a pivotal role in priming for destructive Th1-type responses at sites of local HSP60 release.  相似文献   

18.
The heat shock (stress) protein HSP70 has been shown to be a potent stimulator of cellular immune responses. In order to determine whether HSP70 has the ability to stimulate antibody responses, we constructed and expressed fusion proteins consisting of murine HSP70 or murine interleukin (IL)-4 covalently linked to a pneumococcal cell wall-associated protein antigen designated PpmA. Immunization of mice with the PpmA-HSP70 fusion protein (PpmA-70) failed to elicit an increased PpmA-specific serum antibody response. In contrast, mice immunized with PpmA fused to IL-4 (PpmA-IL4), or PpmA fused to both IL-4 and HSP70 (PpmA-IL4-70) fusion proteins elicited high levels of PpmA-specific antibody responses. These data suggest that HSP70 has a limited capacity to stimulate immune responses to heterologous antigens in vivo.  相似文献   

19.
MAGE-3, a member of melanoma antigen (MAGE) gene family, is recognized as an ideal candidate for tumor vaccine because it is expressed in a significant proportion of tumors of various histological types and can induce antigen-specific immune response in vivo. There is now substantial evidence that heat shock proteins (HSPs) isolated from cancer cells and virus-infected cells can be used as vaccines to produce cancer-specific or virus-specific immunity. In this research, we investigated whether M. tuberculosis HSP70 can be used as vehicle to elicit immune response to its accompanying MAGE-3 protein. A recombinant protein expression vector was constructed that permitted the production of fusion protein linking amino acids 195–314 of MAGE-3 to the C terminus of HSP70. We found that HSP70-MAGE-3 fusion protein can elicit stronger cellular and humoral immune responses against MAGE-3 expressing murine tumor than those elicited by MAGE-3 protein in vivo, which resulted in potent antitumor immunity against MAGE-3-expressing tumors. Covalent linkage of HSP70 to MAGE-3 was necessary to elicit immune response to MAGE-3. These results indicate that linkage of HSP70 to MAGE-3 enhanced immune responses to MAGE-3 in vivo and HSP70 can be exploited to enhance the cellular and humoral immune responses against any attached tumor-specific antigens.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号