共查询到20条相似文献,搜索用时 9 毫秒
1.
Matthew B. Bevers Eric Lawrence Margaret Maronski† Neasa Starr Michael Amesquita Robert W. Neumar 《Journal of neurochemistry》2009,108(5):1237-1250
The calpain family of cysteine proteases has a well-established causal role in neuronal cell death following acute brain injury. However, the relative contribution of calpain isoforms to the various forms of injury has not been determined as available calpain inhibitors are not isoform-specific. In this study, we evaluated the relative role of m-calpain and μ-calpain in a primary hippocampal neuron model of NMDA-mediated excitotoxicity. Baseline mRNA expression for the catalytic subunit of m-calpain ( capn2 ) was found to be 50-fold higher than for the μ-calpain catalytic subunit ( capn1 ) based on quantitative real-time PCR. Adeno-associated viral vectors designed to deliver short hairpin RNAs targeting capn1 or capn2 resulted in 60% and 90% knockdown of message respectively. Knockdown of capn2 but not capn1 increased neuronal survival after NMDA exposure at 21 days in vitro . Nuclear translocation of calpain substrates apoptosis inducing factor, p35/p25 and collapsin response mediator protein (CRMP) 2–4 was not detected after NMDA exposure in this model. However, nuclear translocation of CRMP-1 was observed and was prevented by capn2 knockdown. These findings provide insight into potential mechanisms of calpain-mediated neurodegeneration and have important implications for the development of isoform-specific calpain inhibitor therapy. 相似文献
2.
3.
We have previously shown that prolonged exposure to neurotrophins induces oxidative neuronal death. In the present study, we further examined the cascades involved in neurotrophin-4/5 (NT-4/5)-induced neuronal death. Exposure of mature cortical cultures for 48 h to NT-4/5 induced neuronal death through TrkB activation. The NT-4/5-induced neuronal death was largely attenuated by addition of MK-801, indicating a critical role for NMDA receptors. Western blots revealed the induction of NR2A by NT-4/5. In addition, levels of phospho-NR2A and 2B increased, suggesting the upregulation of the NMDA receptor function. Whereas glutamate levels in the media changed little, levels of D-serine and L-glycine, co-agonists at NMDA receptors, increased significantly following NT-4/5 treatment. Exposure to NT-4/5 resulted in the activation of Src and extracellular signal-regulated kinase-1/2 (Erk-1/2). Their inhibitors blocked NR2A induction and phosphorylation as well as neuronal death induced by NT-4/5. In addition, Egr-1 was induced in an Src- and Erk-1/2-dependent manner. Anti-sense oligodeoxynucleotides to egr-1 attenuated NR2A induction as well as neuronal death. Although induction of NADPH oxidase and neuronal nitric oxide synthase (nNOS) contributes to NT-4/5-induced neuronal death, inhibition of their activity did not reduce NR2A induction. Conversely, blockade of NMDA receptors did not attenuate induction of NADPH oxidase or nNOS. These results indicate that two events are largely independent of each other. Our results demonstrate that the signaling cascade of TrkB leads to increase in NMDA receptor activity. Whereas this cascade may play an important role in the modulation of NMDA receptors in physiologic conditions, in the context of TrkB overactivation, it may contribute to neuronal death. 相似文献
4.
Kasireddy Sudarshan Arun kumar Boda Shalini Dogra Ishani Bose Prem Narayan Yadav Indrapal Singh Aidhen 《Bioorganic & medicinal chemistry letters》2019,29(4):585-590
Isocoumarins are lactone ring-containing natural products, are quite abundant in microbes and higher plants, and have been shown to exhibit a broad range of pharmacological properties. However, the molecular mechanism or target of this class of molecules is not known. In this study, we have synthesized 14 isocoumarin derivatives and evaluated for their activity at TrkB receptor in transiently transfected HEK293T cells. We identified 8-hydroxy-3-aryl isocoumarin (1) as a high-affinity agonist at the TrkB receptor. We also demonstrated that isocoumarin 1 activated endogenously TrkB receptor in primary cortical neurons and modulated various markers of synaptic plasticity, and increased dendritic arborization. These results indicate therapeutic potential and molecular target of 8-hydroxy-3-aryl isocoumarin 1 for the treatment of various CNS disorders. 相似文献
5.
Chun-Hua Lin†‡ Chien-Chang Chen§ Chih-Ming Chou¶ Chen-Yu Wang† Chia-Chi Hung† Julia Y. Chen Heng-Wei Chang† Yung-Chuan Chen§ Gean Chan Yeh Yi-Hsuan Lee† 《Journal of neurochemistry》2009,111(3):777-789
NMDA receptors play dual and opposing roles in neuronal survival by mediating the activity-dependent neurotrophic signaling and excitotoxic cell death via synaptic and extrasynaptic receptors, respectively. In this study, we demonstrate that the aryl hydrocarbon receptor (AhR), also known as the dioxin receptor, is involved in the expression and the opposing activities of NMDA receptors. In primary cultured cortical neurons, we found that NMDA excitotoxicity is significantly enhanced by an AhR agonist 2,3,7,8-tetrachlorodibenzo- p -dioxin, and AhR knockdown with small interfering RNA significantly reduces NMDA excitotoxicity. AhR knockdown also significantly reduces NMDA-increases intracellular calcium concentration, NMDA receptor expression and surface presentation, and moderately decreases the NMDA receptor-mediated spontaneous as well as miniature excitatory post-synaptic currents. However, AhR knockdown significantly enhances the bath NMDA application– but not synaptic NMDA receptor-induced brain-derived neurotrophic factor (BDNF) gene expression, and activating AhR reduces the bath NMDA-induced BDNF expression. Furthermore, AhR knockdown reveals the calcium dependency of NMDA-induced BDNF expression and the binding activity of cAMP-responsive element binding protein (CREB) and its calcium-dependent coactivator CREB binding protein (CBP) to the BDNF promoter upon NMDA treatment. Together, our results suggest that AhR opposingly regulates NMDA receptor-mediated excitotoxicity and neurotrophism possibly by differentially regulating the expression of synaptic and extrasynaptic NMDA receptors. 相似文献
6.
Jonas Faijerson Annika Thorsell† Joakim Strandberg‡ Eric Hanse‡ Mats Sandberg§ Peter S. Eriksson Rogan B. Tinsley¶ 《Journal of neurochemistry》2009,109(3):858-866
Although the potential of adult neural stem cells to repair damage via cell replacement has been widely reported, the ability of endogenous stem cells to positively modulate damage is less well studied. We investigated whether medium conditioned by adult hippocampal stem/progenitor cells altered the extent of excitotoxic cell death in hippocampal slice cultures. Conditioned medium significantly reduced cell death following 24 h of exposure to 10 μM NMDA. Neuroprotection was greater in the dentate gyrus, a region neighboring the subgranular zone where stem/progenitor cells reside compared with pyramidal cells of the cornis ammonis. Using mass spectrometric analysis of the conditioned medium, we identified a pentameric peptide fragment that corresponded to residues 26–30 of the insulin B chain which we termed 'pentinin'. The peptide is a putative breakdown product of insulin, a constituent of the culture medium, and may be produced by insulin-degrading enzyme, an enzyme expressed by the stem/progenitor cells. In the presence of 100 pM of synthetic pentinin, the number of mature and immature neurons killed by NMDA-induced toxicity was significantly reduced in the dentate gyrus. These data suggest that progenitors in the subgranular zone may convert exogenous insulin into a peptide capable of protecting neighboring neurons from excitotoxic injury. 相似文献
7.
Belgin Küçükkaya Goncagül Haklar Prof. Dr. A. Süha Yalçin 《Neurochemical research》1996,21(12):1535-1538
NMDA, the specific agonist of glutamate gated ion channels permeable to calcium, is implicated as a causal factor in the pathogenesis
of several neurobiological disorders such as stroke, seizures, ischemia, and chronic neurodegenerative disease. On the other
hand, evidence on the roles of oxidative mechanisms involved in NMDA-induced neurotoxicity is accumulating. In this study,
we have used chemiluminescence measurements as an easy, rapid and sensitive assay to investigate the effects of NMDA and oxidative
stress on brain cell vulnerability. Rat brain homogenates were incubated with increasing concentrations of glutamate and NMDA.
Production of reactive oxygen species was followed by single photon emission measurements using the specific enhancers luminol
and lucigenin. Increases in emission were observed at excitotoxic concentrations of glutamate and NMDA. Other parameters of
oxidative stress such as diene conjugates, TBARS and carbonyl groups were also investigated. Our results indicated that chemiluminescence
measurements may be used to study involvement of oxidative stress in neurotoxicity. 相似文献
8.
Zhuravliova E Barbakadze T Natsvlishvili N Mikeladze DG 《Neurochemistry international》2007,50(7-8):976-982
The NMDA receptor is believed to be important in a wide range of nervous system functions including neuronal migration, synapse formation, learning and memory. In addition, it is involved in excitotoxic neuronal cell death that occurs in a variety of acute and chronic neurological disorders. Besides of agonist/coagonist sites, other modulator sites, including butyrophenone site may regulate the N-methyl-d-aspartate receptor. It has been shown that haloperidol, an antipsychotic neuroleptic drug, interacts with the NR2B subunit of NMDA receptor and inhibits NMDA response in neuronal cells. We found that NMDA receptor was co-immunoprecipitated by anti-Ras antibody and this complex, beside NR2 subunit of NMDA receptor contained haloperidol-binding proteins, nNOS and Ras-GRF. Furthermore, we have shown that haloperidol induces neurotoxicity of neuronal cells via NMDA receptor complex, accompanied by dissociation of Ras-GRF from membranes and activation of c-Jun-kinase. Inclusion of insulin prevented relocalization of Ras-GRF and subsequent neuronal death. Haloperidol-induced dissociation of Ras-GRF leads to inhibition of membrane-bound form of Ras protein and changes downstream regulators activity that results in the initiation of the apoptotic processes via the mitochondrial way. Our results suggest that haloperidol induces neuronal cell death by the interaction with NMDA receptor, but through the alternative from glutamate excitotoxicity signaling pathway. 相似文献
9.
The therapeutic mechanisms of lithium for treating bipolar mood disorder remain poorly understood. Recent studies demonstrate that lithium has neuroprotective actions against a variety of insults. Here, we studied neuroprotective effects of lithium against excitotoxicity in cultured cerebral cortical neurons. Glutamate-induced excitotoxicity in cortical neurons was exclusively mediated by NMDA receptors. Pre-treatment of cortical neurons with LiCl time-dependently suppressed excitotoxicity with maximal protection after 6 days of pre-treatment. Significant protection was observed at the therapeutic and subtherapeutic concentration of 0.2-1.6 mm LiCl with almost complete protection at 1 mM. Neuroprotection was also elicited by valproate, another major mood-stabilizer. The neuroprotective effects of lithium coincided with inhibition of NMDA receptor-mediated calcium influx. Lithium pre-treatment did not alter total protein levels of NR1, NR2A and NR2B subunits of NMDA receptors. However, it did markedly reduce the level of NR2B phosphorylation at Tyr1472 and this was temporally associated with its neuroprotective effect. Because NR2B tyrosine phosphorylation has been positively correlated with NMDA receptor-mediated synaptic activity and excitotoxicity, the suppression of NR2B phosphorylation by lithium is likely to result in the inactivation of NMDA receptors and contributes to neuroprotection against excitotoxicity. This action could also be relevant to its clinical efficacy for bipolar patients. 相似文献
10.
Akos A. Gerencser Karla A. Mark Alan E. Hubbard† Ajit S. Divakaruni Zara Mehrabian‡§ David G. Nicholls Brian M. Polster‡§¶ 《Journal of neurochemistry》2009,110(3):990-1004
Although calpain (EC 3.4.22) protease activation was suggested to contribute to excitotoxic delayed calcium deregulation (DCD) via proteolysis of Na+ /Ca2+ exchanger 3 (NCX3), cytoplasmic calpain activation in relation to DCD has never been visualized in real-time. We employed a calpain fluorescence resonance energy transfer substrate to simultaneously image calpain activation and calcium deregulation in live cortical neurons. A calpain inhibitor-sensitive decline in fluorescence resonance energy transfer was observed at 39 ± 5 min after the occurrence of DCD in neurons exposed to continuous glutamate (100 μM). Inhibition of calpain by calpeptin did not delay the onset of DCD, recovery from DCD-like reversible calcium elevations, or cell death despite inhibiting α-spectrin processing by > 90%. NCXs reversed during glutamate exposure, the NCX antagonist KB-R7943 prolonged the time to DCD, and significant NCX3 cleavage following 90 min of glutamate exposure was not observed. Our findings suggest that robust calpain activation associated with acute glutamate toxicity occurs only after a sustained loss in calcium homeostasis. Processing of NCX3 or other calpain substrates is unlikely to be the primary cause of acute excitotoxicity in cortical neurons. However, a role for calpain as a contributing factor or in response to milder glutamate insults is not excluded. 相似文献
11.
Prevention of NMDA-induced death of cortical neurons by inhibition of protein kinase Czeta 总被引:3,自引:0,他引:3
Koponen S Kurkinen K Akerman KE Mochly-Rosen D Chan PH Koistinaho J 《Journal of neurochemistry》2003,86(2):442-450
Excitotoxicity through stimulation of N-methyl-d-aspartate (NMDA) receptors contributes to neuronal death in brain injuries, including stroke. Several lines of evidence suggest a role for protein kinase C (PKC) isoforms in NMDA excitotoxicity. We have used specific peptide inhibitors of classical PKCs (alpha, beta, and gamma), novel PKCs delta and epsilon, and an atypical PKCzeta in order to delineate which subspecies are involved in NMDA-induced cell death. Neuronal cell cultures were prepared from 15-day-old mouse embryos and plated onto the astrocytic monolayer. After 2 weeks in vitro the neurons were exposed to 100 micro m NMDA for 5 min, and 24 h later the cell viability was examined by measuring the lactate dehydrogenase release and bis-benzimide staining. While inhibitors directed to classical (alpha, beta, and gamma) or novel PKCs (delta or epsilon) had no effect, the PKCzeta inhibitor completely prevented the NMDA-induced necrotic neuronal death. Confocal microscopy confirmed that NMDA induced PKCzeta translocation, which was blocked by the PKCzeta inhibitor. The NMDA-induced changes in intracellular free Ca2+ were not affected by the peptides. In situ hybridization experiments demonstrated that PKCzeta mRNA is induced in the cortex after focal brain ischemia. Altogether, the results indicate that PKCzeta activation is a downstream signal in NMDA-induced death of cortical neurons. 相似文献
12.
13.
Although oxygen/glucose deprivation (OGD) has been widely used as a model of ischemic brain damage, the mechanisms underlying acute neuronal death in this model are not yet well understood. We used OGD in acute hippocampal slices to investigate the roles of reactive oxygen species and of the mitogen-activated protein kinases (MAPKs) in neuronal death. In particular, we tested the neuroprotective effects of two synthetic superoxide dismutase/catalase mimetics, EUK-189 and EUK-207. Acute hippocampal slices prepared from 2-month-old or postnatal day 10 rats were exposed to oxygen and glucose deprivation for 2 h followed by 2.5 h reoxygenation. Lactate dehydrogenase (LDH) release in the medium and propidium iodide (PI) uptake were used to evaluate cell viability. EUK-189 or EUK-207 applied during the OGD and reoxygenation periods decreased LDH release and PI uptake in slices from 2-month-old rats. EUK-189 or EUK-207 also partly blocked OGD-induced ATP depletion and extracellular signal-regulated kinases 1 and 2 (ERK1/2) dephosphorylation, and completely eliminated reactive oxygen species generation. The MEK inhibitor U0126 applied together with EUK-189 or EUK-207 completely blocked ERK1/2 activation, but had no effect on their protective effects against OGD-induced LDH release. U0126 alone had no effect on OGD-induced LDH release. EUK-207 had no effect on OGD-induced p38 or c-Jun N-terminal kinase dephosphorylation, and when the p38 inhibitor SB203580 was applied together with EUK-207, it had no effect on the protective effects of EUK-207. SB203580 alone had no effect on OGD-induced LDH release either. In slices from p10 rats, OGD also induced high-LDH release that was partly reversed by EUK-207; however, neither OGD nor EUK-207 produced significant changes in ERK1/2 and p38 phosphorylation. OGD-induced spectrin degradation was not modified by EUK-189 or EUK-207 in slices from p10 or 2-month-old rats, suggesting that their protective effects was not mediated through inhibition of calpain activation. Thus, both EUK-189 and EUK-207 provide neuroprotection in acute ischemic conditions, and this effect is related to elimination of free radical formation and partial reversal of ATP depletion, but not mediated by the activation or inhibition of the MEK/ERK or p38 pathways, or inhibition of calpain activation. 相似文献
14.
Generation of constitutively active calcineurin by calpain contributes to delayed neuronal death following mouse brain ischemia 总被引:5,自引:0,他引:5
Calpain, a Ca(2+)-dependent cysteine protease, in vitro converts calcineurin (CaN) to constitutively active forms of 45 kDa and 48 kDa by cleaving the autoinhibitory domain of the 60 kDa subunit. In a mouse middle cerebral artery occlusion (MCAO) model, calpain converted the CaN A subunit to the constitutively active form with 48 kDa in vivo. We also confirmed increased Ca(2+)/CaM-independent CaN activity in brain extracts. The generation of constitutively active and Ca(2+)/CaM-independent activity of CaN peaked 2 h after reperfusion in brain extracts. Increased constitutively active CaN activity was associated with dephosphorylation of dopamine-regulated phosphoprotein-32 in the brain. Generation of constitutively active CaN was accompanied by translocation of nuclear factor of activated T-cells (NFAT) into nuclei of hippocampal CA1 pyramidal neurons. In addition, a novel calmodulin antagonist, DY-9760e, blocked the generation of constitutively active CaN by calpain, thereby inhibiting NFAT nuclear translocation. Together with previous studies indicating that NFAT plays a critical role in apoptosis, we propose that calpain-induced CaN activation in part mediates delayed neuronal death in brain ischemia. 相似文献
15.
16.
Pancreatic islets are enveloped by a sheath of Schwann cells, the glial cells of the peripheral nervous system (PNS). The fact that Schwann cells of the PNS become reactive and express nerve growth factor (NGF) and other growth factors following axotomy suggested the possibility that peri-islet Schwann cells could become activated by islet injury. To test this hypothesis, we examined two animal models of islet injury. The first model was mice and rats injected with streptozotocin (SZ), a specific β-cell toxin. The second model was NOD mice, a strain in which β cells are deleted by an autoimmune process. We found that peri-islet Schwann cells became reactive following islet injury and began to express increased levels of NGF and the neurotrophin receptor p75. Lesions to the pancreas also markedly induced NGF expression by exocrine and endocrine cells. Neurotrophin expression was not unique to adult tissues since pancreatic cells transiently expressed p75, the NGF receptor Trk A, and NGF during development. These observations suggest that NGF could play an important role in pancreas during embryogenesis and in processes leading to repair following islet injury in adults. © 1998 John Wiley & Sons, Inc. J Neurobiol 34: 304–318, 1998 相似文献
17.
Dan Lindholm Eero Castrn Maria Berzaghi Andrea Blchl Hans Thoenen 《Developmental neurobiology》1994,25(11):1362-1372
The neurotrophins exhibit neurotrophic effects on specific, partially overlapping populations of neurons both in the peripheral and the central nervous system (CNS). In the periphery, they are synthesized by a variety of nonneuronal cells, and their synthesis seems to be independent of the neuronal input. In contrast, in the CNS all neurotrophins are expressed under physiological conditions primarily by neurons. The production of NGF and BDNF is controlled by neuronal activity: up-regulation by glutamate and acetylcholine, down-regulation by gamma-aminobutyric acid. In contrast, NT-3 regulation is independent of neuronal activity, but it is up-regulated by thyroid hormones and BDNF. The latter observation suggests that NT-3 might be controlled indirectly by neuronal activity via BDNF. In peripheral nonneuronal tissues, glucocorticoid hormones down-regulate NGF mRNA levels both in vitro and in vivo. In contrast, in the CNS, neuronal production of NGF is enhanced by glucocorticoids. The rapid regulation of NGF and BDNF by subtle physiological stimuli together with the recent demonstration that the neurotrophin release neurotransmitters such as acetylcholine opens up interesting perspectives for the function of neurotrophins as mediators of neuronal plasticity. 1994 John Wiley & Sons, Inc. 相似文献
18.
3OH-Kynurenine and quinolinic acid are tryptophan metabolites able to cause, at relatively elevated concentrations, neuronal death in vitro and in vivo. In primary cultures of mixed cortical cells, the minimal concentration of these compounds leading to a significant degree of neurotoxicity decreased from 100 to 1 microM, when the exposure time was prolonged from 24 to 72 h. NMDA receptor antagonists and inhibitors of nitric oxide synthase or poly(ADP-ribose) polymerase reduced quinolinic acid, but not 3OH-kynurenine toxicity. In contrast, scavengers of free radicals, caspase inhibitors and cyclosporin preferentially reduced 3OH-kynurenine neurotoxicity. These observations suggest that quinolinic acid causes necrosis, whereas 3OH-kynurenine-exposed neurons primarily die in apoptosis. In line with this possibility, we found that ATP levels decreased more rapidly in quinolinate- than in 3OH-kynurenine-exposed cultures and that poly(ADP-ribose) polymer, the product of poly(ADP-ribose) polymerase activity, was more abundant in the nuclei of quinolinic acid than in those of 3OH-kynurenine-exposed neurons. Because minor changes in the physiological concentrations of 3OH-kynurenine and quinolinic acid may cause neuronal death, our data suggest that these metabolites play a key role in the pathogenesis of several neurological disorders. 相似文献
19.