首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Multiple myeloma (MM) comprises 1% of all malignancies and 10% of all hematological malignancies. MM is a malignancy of plasma cells in the bone marrow where complex and dynamic interactions with the bone marrow microenvironment lead to tumor progression, skeletal destruction and angiogenesis. Despite the discovery of several novel treatments against MM, including the proteasome inhibitor bortezomib, it is considered to be an incurable disease with an average 4–5 years overall survival.  相似文献   

2.
3.
Genetic inactivation of PTEN through either gene deletion or mutation is common in metastatic prostate cancer, leading to activation of the phosphoinositide 3-kinase (PI3K-AKT) pathway, which is associated with poor clinical outcomes. The PI3K-AKT pathway plays a central role in various cellular processes supporting cell growth and survival of tumor cells. To date, therapeutic approaches to develop inhibitors targeting the PI3K-AKT pathway have failed in both pre-clinical and clinical trials. We showed that a novel AKT inhibitor, AZD5363, inhibits the AKT downstream pathway by reducing p-MTOR and p-RPS6KB/p70S6K. We specifically reported that AZD5363 monotherapy induces G2 growth arrest and autophagy, but fails to induce significant apoptosis in PC-3 and DU145 prostate cancer cell lines. Blocking autophagy using pharmacological inhibitors (3-methyladenine, chloroquine and bafilomycin A1) or genetic inhibitors (siRNA targeting ATG3 and ATG7) enhances cell death induced by AZD5363 in these prostate cancer cells. Importantly, the combination of AZD5363 with chloroquine significantly reduces tumor volume compared with the control group, and compared with either drug alone in prostate tumor xenograft models. Taken together, these data demonstrate that AKT inhibitor AZD5363, synergizes with the lysosomotropic inhibitor of autophagy, chloroquine, to induce apoptosis and delay tumor progression in prostate cancer models that are resistant to monotherapy, with AZD5363 providing a new therapeutic approach potentially translatable to patients.  相似文献   

4.
Castration-resistant prostate cancer (CRPC) lacks effective treatment, and studies have shown that PARPi inhibitors, such as Olaparib, are somewhat effective; however, the efficacy of Olaparib in CRPC still needs to be further improved. Nitrogen permease regulator-like 2 (NPRL2) is reported to be a tumor suppressor candidate gene and is closely related to the DNA repair pathway, which can affect the sensitivity of many chemotherapeutic drugs. However, there is no research on whether NPRL2 is associated with sensitivity to Olaparib. Hence, in the present study, we examined the NPRL2 expression levels in several PCa cell lines (LNCaP, PC3, and enzalutamide-resistant LNCaP, named LNPER) by Western blot. In addition, we investigated the role of NPRL2 expression and silencing in cell proliferation and in the regulation of ataxia telangiectasia mutated (ATM), which can mediate DNA repair and sensitivity to Olaparib. Furthermore, we performed in vitro and in vivo experiments to determine the mechanism of action of NPRL2 in adjusting Olaparib sensitivity. Our findings demonstrated that the NPRL2 expression level was upregulated in PCa cells, especially CRPC cells. NPRL2 overexpression promoted growth and resistance to Olaparib, and NPRL2 silencing inhibited proliferation, enhanced sensitivity to Olaparib, and increased CRRL2 expression in PCa cells. In addition, the Olaparib-induced growth delay in NPRL2-silenced PC3 tumors in mice correlated with ATM signaling downregulation, an apoptosis increase and migration/invasion suppression. Our results indicate that NPRL2 silencing enhances sensitivity to Olaparib treatment in CRPC and that NPRL2 may serve as a potential therapeutic target and predict resistance to Olaparib in CRPC.  相似文献   

5.
Protein serine/threonine kinase casein kinase 2 (CK2) is a key player in cell growth and proliferation but is also a potent suppressor of apoptosis. CK2 has been found to be dysregulated in all the cancers that have been examined, including prostate cancer. Investigations of CK2 signaling in the prostate were originally initiated in this laboratory, and these studies have identified significant functional activities of CK2 in relation to normal prostate growth and to the pathobiology of androgen-dependent and -independent prostate cancer. We present a brief overview of these developments in the context of prostate biology. An important outcome of these studies is the emerging concept that CK2 can be effectively targeted for cancer therapy.  相似文献   

6.
There is increasing evidence that cancers are heterogeneous and contain a hierarchical organization consisting of cancer stem cells and their differentiated cell progeny. These cancer stem cells are at the core of the tumor as they represent the clonogenic cells within a tumor. Moreover, these cells are considered to contain selective therapy resistance, which suggests a pivotal role in therapy resistance and tumor relapse. Here we show that differentiated cells can re-acquire stemness through factors secreted from fibroblasts. This induced CSC state also coincides with re-acquisition of resistance to chemotherapy. Resistance induced in newly formed CSCs is mediated by the anti-apoptotic molecule BCLXL and inhibition of BCLXL with the BH3 mimetic ABT-737 sensitizes these cancer cells toward chemotherapy. These data point to an important interplay between tumor cells and their microenvironment in the regulation of stemness and therapy resistance.  相似文献   

7.
Background: Oridonin (ORI) could inhibit the proliferation and induce apoptosis in various cancer cell lines. However, the mechanism is not fully understood.Methods: Human prostate cancer (HPC) cells were cultured in vitro and cell viability was detected by the CCK-8 assay. The ultrastructure changes were observed under transmission electron microscope (TEM). Chemical staining with acridine orange (AO), MDC or DAPI was used to detect acidic vesicular organelles (AVOs) and alternation of DNA. Expression of LC3 and P21 was detected by Western Blot. Apoptotic rates and cell cycle arrest were detected by FACS.Results: Our study demonstrated that after ORI treatment, the proliferations of human prostate cancer (HPC) cell lines PC-3 and LNCaP were inhibited in a concentration and time-dependent manner. ORI induced cell cycle arrest at the G2/M phase. A large number of autophagosomes with double-membrane structure and acidic vesicular organelles (AVOs) were detected in the cytoplasm of HPC cells treated with ORI for 24 hours. ORI resulted in the conversion of LC3-I to LC3-II and recruitment of LC3-II to the autophagosomal membranes. Autophagy inhibitor 3-methyladenine (3-MA) reduced AVOs formation and inhibited LC3-I to LC3-II conversion. At 48 h, DNA fragmentation, chromatin condensation and disappearance of surface microvilli were detected in ORI-treated cells. ORI induced a significant increase in the number of apoptotic cells (PC-3: 5.4% to 27.0%, LNCaP: 5.3% to 31.0%). Promoting autophagy by nutrient starvation increased cell viability, while inhibition of autophagy by 3-MA promoted cell death. The expression of P21 was increased by ORI, which could be completely reversed by the inhibition of autophagy.Conclusions: Our findings indicated that autophagy occurred before the onset of apoptosis and protected cancer cells in ORI-treated HPC cells. P21 was involved in ORI-induced autophagy and apoptosis. Our results provide an experimental basis for understand the anti-tumor mechanism of ORI as treatment for prostate cancer.  相似文献   

8.
9.
Pristimerin is a natural product derived from the Celastraceae and Hippocrateaceae families that were used as folk medicines for anti inflammation in ancient times. Although it has been shown that pristimerin induces apoptosis in breast cancer cells, the involved mechanism of action is unknown. The purpose of the current study is to investigate the primary target of pristimerin in human cancer cells, using prostate cancer cells as a working model. Nucleophilic susceptibility and in silico docking studies show that C6 of pristimerin is highly susceptible towards a nucleophilic attack by the hydroxyl group of N-terminal threonine of the proteasomal chymotrypsin subunit. Consistently, pristimerin potently inhibits the chymotrypsin-like activity of a purified rabbit 20S proteasome (IC50 2.2 micromol/L) and human prostate cancer 26S proteasome (IC50 3.0 micromol/L). The accumulation of ubiquitinated proteins and three proteasome target proteins, Bax, p27 and I kappa B-alpha, in androgen receptor (AR)-negative PC-3 prostate cancer cells supports the conclusion that proteasome inhibition by pristimerin is physiologically functional. This observed proteasome inhibition subsequently led to the induction of apoptotic cell death in a dose- and kinetic-dependent manner. Furthermore, in AR-positive, androgen-dependent LNCaP and AR-positive, androgen-independent C4-2B prostate cancer cells, proteasome inhibition by pristimerin results in suppression of AR protein prior to apoptosis. Our data demonstrate, for the first time, that the proteasome is a primary target of pristimerin in prostate cancer cells and inhibition of the proteasomal chymotrypsin-like activity by pristimerin is responsible for its cancer cell death-inducing property.  相似文献   

10.
The molecular nature of calcium (Ca2+)-dependent mechanisms and the ion channels having a major role in the apoptosis of cancer cells remain a subject of debate. Here, we show that the recently identified Orai1 protein represents the major molecular component of endogenous store-operated Ca2+ entry (SOCE) in human prostate cancer (PCa) cells, and constitutes the principal source of Ca2+ influx used by the cell to trigger apoptosis. The downregulation of Orai1, and consequently SOCE, protects the cells from diverse apoptosis-inducing pathways, such as those induced by thapsigargin (Tg), tumor necrosis factor α, and cisplatin/oxaliplatin. The transfection of functional Orai1 mutants, such as R91W, a selectivity mutant, and L273S, a coiled-coil mutant, into the cells significantly decreased both SOCE and the rate of Tg-induced apoptosis. This suggests that the functional coupling of STIM1 to Orai1, as well as Orai1 Ca2+-selectivity as a channel, is required for its pro-apoptotic effects. We have also shown that the apoptosis resistance of androgen-independent PCa cells is associated with the downregulation of Orai1 expression as well as SOCE. Orai1 rescue, following Orai1 transfection of steroid-deprived cells, re-established the store-operated channel current and restored the normal rate of apoptosis. Thus, Orai1 has a pivotal role in the triggering of apoptosis, irrespective of apoptosis-inducing stimuli, and in the establishment of an apoptosis-resistant phenotype in PCa cells.  相似文献   

11.
Genistein对大鼠垂体前叶细胞增殖的抑制作用   总被引:2,自引:0,他引:2  
Zhang QH  Hu YZ  Zhou SS  Wang FZ 《生理学报》2001,53(1):51-54
应用细胞培养、^3H-TdR掺入、流式细胞和电镜技术,观察酪氨酸蛋白激酶(PTK)抑制剂genistein对正常大鼠垂体前叶细胞和垂体瘤细胞株AtT-20增殖的影响,并探讨其可能的机制。结果显示:genistein作用48h后可明显抑制正常大鼠垂体前叶细胞和垂体瘤细胞株AtT-20增殖。流式细胞仪检测发现,50和100μmol/L genistein可将AtT-20细胞阻断于G0/G1期及G2/M期,并出现凋亡峰,凋亡率分别灰19.9%和36.4%。电镜照片显示有凋亡细胞。结果表明,PTK抑制剂可以明显抑制正常大鼠垂体前叶细胞和垂体瘤细胞株AtT-20的殖,并诱导细胞凋亡,说明PTK活性对细胞增殖和分化有重要作用。  相似文献   

12.
A significant proportion of prostate cancer patients treated with curative intent go on to develop advanced disease. At a fundamental biological level, very little is known about what makes the disease aggressive and metastatic. Observational pathology reports and experimental data suggest that epithelial-mesenchymal transition is involved in prostate cancer invasiveness. Here, we investigated vimentin expression of prostate cancer cells, and explored the potential mechanism of vimentin promoting prostate cancer cells invasion. Vimentin expression was not detected in well differentiated tumors or in moderately differentiated tumors, but the majority of poorly differentiated cancers (5/11 with negative bone scan, 11/14 bone with positive scan) and bone metastases (8/8) had high vimentin expression in tumor cells. Downregulation of vimentin expression in PC-3 cells by transfection with antisense-vimentin led to a significant decrease in tumor cells motility and invasive activity. Furthermore, the expression of E-cadherin was inversely associated with expression of vimentin. Our results suggest that vimentin affects prostate cancer cells motility and invasiveness.  相似文献   

13.
Regular use of aspirin after diagnosis is associated with longer survival among patients with mutated‐PIK3CA colorectal cancer, but not among patients with wild‐type PIK3CA cancer. In this study, we showed that clinically achievable concentrations of aspirin and ABT‐737 in combination could induce a synergistic growth arrest in several human PIK3CA wild‐type cancer cells. In addition, our results also demonstrated that long‐term combination treatment with aspirin and ABT‐737 could synergistically induce apoptosis both in A549 and H1299 cells. In the meanwhile, short‐term aspirin plus ABT‐737 combination treatment induced a greater autophagic response than did either drug alone and the combination‐induced autophagy switched from a cytoprotective signal to a death‐promoting signal. Furthermore, we showed that p38 acted as a switch between two different types of cell death (autophagy and apoptosis) induced by aspirin plus ABT‐737. Moreover, the increased anti‐cancer efficacy of aspirin combined with ABT‐737 was further validated in a human lung cancer A549 xenograft model. We hope that this synergy may contribute to failure of aspirin cancer therapy and ultimately lead to efficacious regimens for cancer therapy.  相似文献   

14.
The proapoptotic protein, prostate apoptosis response-4 (Par-4), acts as a tumor suppressor in prostate cancer cells. The serine/threonine kinase casein kinase 2 (CK2) has a well-reported role in prostate cancer resistance to apoptotic agents or anticancer drugs. However, the mechanistic understanding on how CK2 supports survival is far from complete. In this work, we demonstrate both in rat and humans that (i) Par-4 is a new substrate of the survival kinase CK2 and (ii) phosphorylation by CK2 impairs Par-4 proapoptotic functions. We also unravel different levels of CK2-dependent regulation of Par-4 between species. In rats, the phosphorylation by CK2 at the major site, S124, prevents caspase-mediated Par-4 cleavage (D123) and consequently impairs the proapoptotic function of Par-4. In humans, CK2 strongly impairs the apoptotic properties of Par-4, independently of the caspase-mediated cleavage of Par-4 (D131), by triggering the phosphorylation at residue S231. Furthermore, we show that human Par-4 residue S231 is highly phosphorylated in prostate cancer cells as compared with their normal counterparts. Finally, the sensitivity of prostate cancer cells to apoptosis by CK2 knockdown is significantly reversed by parallel knockdown of Par-4. Thus, Par-4 seems a critical target of CK2 that could be exploited for the development of new anticancer drugs.  相似文献   

15.
中药鸦胆子是一种常用的抗肿瘤中草药,鸦胆子苦醇是来源于鸦胆子的主要成分。该研究探讨了鸦胆子苦醇(brusatol)对人前列腺癌DU145细胞的生长抑制及其作用机制。采用四甲基偶氮唑盐(MTT)法检测鸦胆子苦醇对不同细胞株的生长抑制情况,以及不同浓度的鸦胆子苦醇对DU145细胞的增殖抑制率;应用Hoechst 33258染色法观察鸦胆子苦醇处理DU145细胞后所发生的形态学变化;分别采用PI单染及AnnexinV-FITC双染法流式细胞术分析细胞周期分布个凋亡率的变化;以Western blot测定鸦胆子苦醇对MAPK信号通路相关蛋白表达的影响。结果表明:鸦胆子苦醇对人前列腺癌DU145细胞的抑制作用更为显著,并且可以时间和剂量依赖性地抑制人前列腺癌DU145细胞的生长,其半数有效抑制浓度IC50为(0.27±0.04)μmol·L-1;鸦胆子处理DU145细胞后,Hoechst 33258染色可见到明显的凋亡特征;细胞周期图中可见明显的亚二倍体峰,且随着作用时间的延长凋亡比例增加,FCM检测鸦胆子苦醇作用24 h后凋亡图中,可见凋亡的发生;Western blot检测表明鸦胆子苦醇处理后可使磷酸化的p38和JNK表达增加,使磷酸化的ERK表达降低。鸦胆子苦醇能显著抑制DU145细胞增殖,诱导DU145细胞凋亡。磷酸化的P38和JNK的表达增加,但磷酸化的ERK表达下降,这表明MAPK途径的活化可能是鸦胆子苦醇对DU145细胞生长抑制的作用机制之一。因此,鸦胆子苦醇是潜在的抗前列腺癌药物,有必要进一步在动物水平阐明其抗前列腺癌活性。  相似文献   

16.
A constitutive and dynamic interaction between tumor cells and their surrounding stroma is a prerequisite for tumor invasion and metastasis. Fibroblasts and myofibroblasts (collectively called cancer associated fibroblasts, CAFs) often represent the major cellular components of tumor stroma. Tumor cells secret different growth factors which induce CAFs proliferation and differentiation, and, consequently, CAFs secrete different chemokines, cytokines or growth factors which induce tumor cell invasion and metastasis. In this study we showed here that CAFs from breast cancer surgical specimens significantly induced the invasion of breast cancer cells in vitro. Most interestingly, the novel multiple tyrosine kinase inhibitor Dovitinib significantly blocked the CAFs-induced invasion of breast cancer cells by, at least in part, inhibition of the expression and secretion of CCL2, CCL5 and VEGF in CAFs. Inhibition of PI3K/Akt/mTOR signaling could be responsible for the effects of Dovitinib, since Dovitinib antagonized the promoted phosphorylated Akt after treatment with PDGF, FGF or breast cancer cell-conditioned media. Treatment with Dovitinib in combination with PI3K/Akt/mTOR signaling inhibitors Ly294002 or RAD001 resulted in additive inhibition of cell invasion. This is the first in vitro study to show that the multiple tyrosine kinase inhibitor has therapeutic activities against breast cancer metastasis by targeting both tumor cells and CAFs.  相似文献   

17.
Survivin, a member of inhibitor of apoptosis family protein, has become an attractive therapeutic target in cancer due to its selective expression in tumor cells and its important roles for tumor cell viability. Here, we show that vector-based small interfering RNAs (siRNAs) silenced survivin expression in prostate cancer cells, resulting in significantly reduced cell proliferation and enhanced apoptosis, and increased the sensitivity of prostate cancer cells (PC-3) to the apoptosis-inducing agent, platinol. Furthermore, PC-3 cells transfected with the siRNA-expressing vector showed lower tumor formation in nude mice xenografts in vivo. These results demonstrated that inhibition of survivin expression by siRNA attenuated the malignant phenotypes of prostate cancer cells, and may provide a novel approach for gene therapy of androgen-independent prostate cancer.  相似文献   

18.
19.
To clarify the mechanism of circGOLPH3 regulation on prostate cancer cells, we performed an overexpression and interference circGOLPH3 assay in prostate cancer cells PC-3 and then evaluated cellular viability, proliferation, cell cycle, and apoptosis of prostate cancer cells by MTT, CCK8, Edu stain, TUNEL stain, and flow cytometry. Binding proteins of CircGOLPH3 were identified by RNA pull-down, mass spectrometry, and RNA-binding protein immunoprecipitation (RIP) assays. The expressions of CircGOLPH3 and CBX7 were measured by qRT-PCR. The results showed that after overexpression of circGOLPH3, the proliferative capacity and the viability of PC-3cells were significantly improved, whereas apoptosis was inhibited. CircGOLPH3 could bind to the CBX7 protein that was highly expressed in the PC-3 cell. Additionally, a functional test on CBX7 showed that the CBX7 overexpression notably improved the proliferative capacity and the viability of PC-3 cells and decreased cellular apoptosis, which was consistent with the effects of circGOLPH3. The validated the present study that circGOLPH3 and its binding protein CBX7 can promote prostate cancer cell proliferation and inhibit apoptosis.  相似文献   

20.
The present research focuses on the influence of CCCTC‐binding factor (CTCF) on prostate cancer (PC) via the regulation of the FoxO signalling pathway. A bioinformatics analysis was conducted to screen out target genes for CTCF in LNCaP cells and to enrich the relevant pathways in LNCaP cells. It was found that the FoxO pathway was enriched according to the ChIP‐seq results of CTCF. The expression of CTCF, pFoxO1a, FoxO1a, pFoxO3a and FoxO3a was tested by RT‐qPCR and Western blot. Inhibition of CTCF could lead to the up‐regulation of the FoxO signalling pathway. The rates of cell proliferation, cell invasion and apoptosis were examined by MTT assay, cell invasion assay and flow cytometry under different interference conditions. Down‐regulation of CTCF could suppress cell proliferation, cell invasion and facilitate cell apoptosis. Lastly, the effect of CTCF on tumour growth was determined in nude mice. Inhibition of CTCF regulated the FoxO signalling pathway, which retarded tumour growth in vivo. In conclusion, CTCF regulates the FoxO signalling pathway to affect the progress of PC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号