首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Galactoglycerolipids, in which galactose is bound at the glycerol sn-3 position in O-glycosidic linkage to diacylglycerol, are abundant in plants and photosynthetic bacteria, where they constitute the bulk of the polar lipids of the photosynthetic membranes. Galactoglycerolipid biosynthesis in plants is highly compartmentalized involving enzymes at the endoplasmic reticulum and the two chloroplast envelopes. This peculiar organization requires extensive trafficking of lipid precursors. It is now increasingly apparent that there are three different sets of lipid galactosyltransferases capable of galactoglycerolipid biosynthesis in the model plant Arabidopsis. Two enzymes, MGD1 and DGD1, provide the bulk of galactoglycerolipids in the chloroplast and in photosynthetic tissues in general. Under phosphate-limited growth conditions and in non-photosynthetic tissues MGD2/3 and DGD2 are highly active. Moreover, galactoglycerolipids produced by this second pathway are often found in extraplastidic membranes. Although these galactosyltransferases use UDP-Gal as the galactose donor, a third pathway involves a processive enzyme, which transfers galactose from one galactolipid to another.  相似文献   

2.
Lipid biosynthesis in plant cells is associated with various organelles, and maintenance of cell lipid homeostasis requires nimble regulation and coordination. In plants, environmental cues such as phosphate limitation require readjustment of the lipid biosynthetic machinery to substitute phospholipids by non-phosphorous glycolipids. Biosynthesis of the galactoglycerolipids predominant in plants proceeds by a constitutive and an alternative pathway that is known to be induced in response to phosphate deprivation. Plant lipid galactosyltransferases involved in both pathways are associated with the plastid envelope membranes and are encoded by nuclear genes. To identify mechanisms governing the activity of the alternative galactoglycerolipid pathway, a genetic suppressor screen was conducted in the background of the digalactolipid-deficient dgd1 mutant of Arabidopsis. A suppressor line that partially restored digalactoglycerolipid content in the dgd1 background carries a point mutation in a mitochondrial protein, which was tentatively designated DGD1 SUPPRESSOR 1 (DGS1). Presumed orthologs of this protein are present in plants, algae and fungi, but its molecular function is not yet known. In the dgd1 dgs1 double mutant, expression of nuclear genes encoding enzymes of the alternative galactoglycerolipid pathway is increased and hydrogen peroxide levels are elevated. This increase in hydrogen peroxide is proposed to be the reason for activation of the alternative pathway in the dgd1 dgs1 double mutant. Accordingly, hydrogen peroxide and treatments producing reactive oxygen also activate the alternative pathway in the wild-type. These results likely implicate the production of reactive oxygen in the regulation of the alternative galactoglycerolipid pathway in plants.  相似文献   

3.
4.
Plastoglobules are lipoprotein particles inside chloroplasts. Their numbers have been shown to increase during the upregulation of plastid lipid metabolism in response to oxidative stress and during senescence. In this study, we used state-of-the-art high-pressure freezing/freeze-substitution methods combined with electron tomography as well as freeze-etch electron microscopy to characterize the structure and spatial relationship of plastoglobules to thylakoid membranes in developing, mature, and senescing chloroplasts. We demonstrate that plastoglobules are attached to thylakoids through a half-lipid bilayer that surrounds the globule contents and is continuous with the stroma-side leaflet of the thylakoid membrane. During oxidative stress and senescence, plastoglobules form linkage groups that are attached to each other and remain continuous with the thylakoid membrane by extensions of the half-lipid bilayer. Using three-dimensional tomography combined with immunolabeling techniques, we show that the plastoglobules contain the enzyme tocopherol cyclase (VTE1) and that this enzyme extends across the surface monolayer into the interior of the plastoglobules. These findings demonstrate that plastoglobules function as both lipid biosynthesis and storage subcompartments of thylakoid membranes. The permanent structural coupling between plastoglobules and thylakoid membranes suggests that the lipid molecules contained in the plastoglobule cores (carotenoids, plastoquinone, and tocopherol [vitamin E]) are in a dynamic equilibrium with those located in the thylakoid membranes.  相似文献   

5.
Xu C  Fan J  Cornish AJ  Benning C 《The Plant cell》2008,20(8):2190-2204
The development of chloroplasts in Arabidopsis thaliana requires extensive lipid trafficking between the endoplasmic reticulum (ER) and the plastid. The biosynthetic enzymes for the final steps of chloroplast lipid assembly are associated with the plastid envelope membranes. For example, during biosynthesis of the galactoglycerolipids predominant in photosynthetic membranes, galactosyltransferases associated with these membranes transfer galactosyl residues from UDP-Gal to diacylglycerol. In Arabidopsis, diacylglycerol can be derived from the ER or the plastid. Here, we describe a mutant of Arabidopsis, trigalactosyldiacylglycerol4 (tgd4), in which ER-derived diacylglycerol is not available for galactoglycerolipid biosynthesis. This mutant accumulates diagnostic oligogalactoglycerolipids, hence its name, and triacylglycerol in its tissues. The TGD4 gene encodes a protein that appears to be associated with the ER membranes. Mutant ER microsomes show a decreased transfer of lipids to isolated plastids consistent with in vivo labeling data, indicating a disruption of ER-to-plastid lipid transfer. The complex lipid phenotype of the mutant is similar to that of the tgd1,2,3 mutants disrupted in components of a lipid transporter of the inner plastid envelope membrane. However, unlike the TGD1,2,3 complex, which is proposed to transfer phosphatidic acid through the inner envelope membrane, TGD4 appears to be part of the machinery mediating lipid transfer between the ER and the outer plastid envelope membrane. The extent of direct ER-to-plastid envelope contact sites is not altered in the tgd4 mutant. However, this does not preclude a possible function of TGD4 in those contact sites as a conduit for lipid transfer between the ER and the plastid.  相似文献   

6.
Lipid synthesis and metabolism in the plastid envelope   总被引:7,自引:0,他引:7  
Plastid envelope membranes play a major role in the biosynthesis of glycerolipids. In addition, plastids are characterized by the occurrence of plastid-specific membrane glycolipids (galactolipids, a sulfolipid). Plant lipid metabolism therefore has unique features, when compared to that of other eukaryotic organisms, such as animals and yeast. However, the glycerolipid biosynthetic pathway in chloroplasts is almost identical to that found in cyanobacteria, and reflects the prokaryotic origin of the chloroplast. Fatty acids generated in the plastid stroma are substrates for a whole set of enzymes involved in the synthesis of polar lipids of plastid membranes such as galactolipids, the sulfolipid, the phosphatidylglycerol. In addition, fatty acids are exported outside the plastid where they are used for extraplastidial polar lipid synthesis (phosphatidylcholine, phosphatidylethanolamine, etc.). Various desaturation steps leading to the formation of polyunsaturated fatty acids occur in various cell compartments, especially in chloroplasts, using fatty acids esterified to polar lipids as substrates. Furthermore, plant glycerolipids can be metabolized by a series of very active envelope enzymes, such as the galactolipid:galactolipid galactosyltransferase and the acyl-galactolipid forming enzyme. The physiological significance of these enzymes is however largely unknown. One of the most active pathways involved in lipid metabolism and present in envelope membranes is the oxylipin pathway: polyunsaturated fatty acids that are released from polar lipids under various conditions (injury, pathogen attack) are converted to oxylipin. Thus, the plastid envelope membranes are also involved in the formation of signalling molecules.  相似文献   

7.
Regulated covalent modifications of lipid A are implicated in virulence of pathogenic Gram-negative bacteria. The Salmonella typhimurium PhoP/PhoQ-activated gene pagP is required both for biosynthesis of hepta-acylated lipid A species containing palmitate and for resistance to cationic anti-microbial peptides. Palmitoylated lipid A can also function as an endotoxin antagonist. We now show that pagP and its Escherichia coli homolog (crcA) encode an unusual enzyme of lipid A biosynthesis localized in the outer membrane. PagP transfers a palmitate residue from the sn-1 position of a phospholipid to the N-linked hydroxymyristate on the proximal unit of lipid A (or its precursors). PagP bearing a C-terminal His(6)-tag accumulated in outer membranes during overproduction, was purified with full activity and was shown by cross-linking to behave as a homodimer. PagP is the first example of an outer membrane enzyme involved in lipid A biosynthesis. Additional pagP homologs are encoded in the genomes of YERSINIA: and BORDETELLA: species. PagP may provide an adaptive response toward both Mg(2+) limitation and host innate immune defenses.  相似文献   

8.
C Alban  J Joyard    R Douce 《The Biochemical journal》1989,259(3):775-783
The availability of methods to fractionate non-green plastids and to prepare their limiting envelope membranes [Alban, Joyard & Douce (1988) Plant Physiol. 88, 709-717] allowed a detailed analysis of the biosynthesis of lysophosphatidic acid, phosphatidic acid, diacylglycerol and monogalactosyl-diacylglycerol (MGDG) in two different types of non-green starch-containing plastids: plastids isolated from cauliflower buds and amyloplasts isolated from sycamore cells. An enzyme [acyl-ACP (acyl carrier protein):sn-glycerol 3-phosphate acyltransferase) recovered in the soluble fraction of non-green plastids transfers oleic acid from oleoyl-ACP to the sn-1 position of sn-glycerol 3-phosphate to form lysophosphatidic acid. Then a membrane-bound enzyme (acyl-ACP:monoacyl-sn-glycerol 3-phosphate acyltransferase), localized in the envelope membrane, catalyses the acylation of the available sn-2 position of 1-oleoyl-sn-glycerol 3-phosphate by palmitic acid from palmitoyl-ACP. Therefore both the soluble phase and the envelope membranes are necessary for acylation of sn-glycerol 3-phosphate. The major difference between cauliflower (Brassica oleracea) and sycamore (Acer pseudoplatanus) membranes is the very low level of phosphatidate phosphatase activity in sycamore envelope membrane. Therefore, very little diacylglycerol is available for MGDG synthesis in sycamore, compared with cauliflower. These findings are consistent with the similarities and differences described in lipid metabolism of mature chloroplasts from 'C18:3' and 'C16:3' plants (those with MGDG containing C18:3 and C16:3 fatty acids). Sycamore contains only C18 fatty acids in MGDG, and the envelope membranes from sycamore amyloplasts have a low phosphatidate phosphatase activity and therefore the enzymes of the Kornberg-Pricer pathway have a low efficiency of incorporation of sn-glycerol 3-phosphate into MGDG. By contrast, cauliflower contains MGDG with C16:3 fatty acid, and the incorporation of sn-glycerol 3-phosphate into MGDG by the enzymes associated with envelope membranes is not limited by the phosphatidate phosphatase. These results demonstrate that: (1) non-green plastids employ the same biosynthetic pathway as that previously established for chloroplasts (the formation of glycerolipids is a general property of all plastids, chloroplasts as well as non-green plastids), (2) the envelope membranes are the major structure responsible for the biosynthesis of phosphatidic acid, diacylglycerol and MGDG, and (3) the enzymes of the envelope Kornberg-Pricer pathway have the same properties in non-green starch-containing plastids as in mature chloroplasts from C16:3 and C18:3 plants.  相似文献   

9.
In situ location of phytoene desaturase, a key enzyme in the carotenoid biosynthesis pathway, has been investigated in chloroplasts from higher plants. For this purpose, an antiserum has been raised against the phytoene desaturase from the cyanobacterium Synechococcus PCC 7942 overexpressed in E. coli . The specifity of this antiserum was demonstrated by inhibition of the enzymatic desaturation reaction in vitro. The antiserum was further purified and immunoabsorbed with E. coli proteins. The resulting IgG-fraction was tested by western blotting against membrane proteins from chloroplasts of tobacco ( Nicotiana tabacum L. cv. Samsun) and spinach ( Spinacia oleracea L. cv. Atlanta). Apparent molecular masses of immunoreactive proteins were 62 and 64 kDa. A western blot of different membrane fractions of spinach chloroplasts (inner and outer envelopes, and thylakoids) indicated a localization of the phytoene desaturase in thylakoids. A post embedding immunogold microscopy procedure was employed. In these experiments the main labelling (79%) was associated with thylakoid membranes of tobacco chloroplasts. Of the counted colloidal gold particles, 16% were found in the stroma. Only 5% were detected in the envelope membranes. These results give clear evidence that at least the majority of phytoene desaturase molecules is localized within thylakoid membranes of higher plant chloroplasts and that the presence of the enzyme in the envelope is of minor significance.  相似文献   

10.
6-Sulfo-alpha-D-quinovopyranosyl phosphate was reacted with different nucleoside monophosphate morpholidates to form ADP-, CDP-, GDP- and UDP-sulfoquinovose. Analytical and preparative HPLC of these nucleotides was performed on reversed-phase columns using volatile buffer systems as eluant. The isolated compounds were characterized by NMR spectroscopy (except the CDP derivative) and used for an investigation of sulfolipid biosynthesis by chloroplasts. For this purpose intact spinach chloroplasts were biosynthetically preloaded with radioactive diacylglycerol to provide a sulfoquinovosyl acceptor. When sulfosugar nucleotides were added to such prelabelled intact organelles, the background levels of sulfolipid biosynthesis did not rise. On the other hand, after osmotic shock of prelabelled chloroplasts sulfolipid labelling was significantly increased by the addition of UDP- or GDP-sulfoquinovose. The same stimulation was observed with isolated envelope membranes, and UDP-sulfoquinovose proved to be twice as active as the GDP derivative. From these results it was concluded that the final step in sulfolipid biosynthesis is catalyzed by a UDP-sulfoquinovose: 1,2-diacylglycerol 3-O-alpha-D-sulfoquinovosyltransferase. This chloroplast enzyme cannot use exogenously supplied sulfosugar nucleotides, which as membrane-impermeable compounds are expected to be formed in vivo within chloroplasts.  相似文献   

11.
Because the envelope phosphatidate phosphatase plays a pivotal role in chloroplast glycerolipid metabolism, we have analyzed whether diacylglycerol could be a regulatory factor of the enzyme. Using isolated envelope membranes in which the level of diacylglycerol was modified by thermolysin treatment of intact chloroplasts to destroy the galactolipid:galactolipid galactosyltransferase, we have demonstrated that phosphatidate phosphatase activity was reduced when the membrane was enriched in diacylglycerol. All 1,2-diacylglycerol molecular species assayed were demonstrated to inhibit the enzyme to about the same extent. Kinetic studies with envelope from thermolysin-treated chloroplasts were performed in the absence and presence of diacylglycerol, and diacylglycerol was shown to be a powerful competitive inhibitor of the reaction. Finally, using isolated intact spinach chloroplasts, we have demonstrated that in situ phosphatidate phosphatase activity can be modulated by the level of diacylglycerol present in the membrane. The relevance of phosphatidate phosphatase inhibition by diacylglycerol in the regulation of chloroplast glycerolipid biosynthesis is discussed.  相似文献   

12.
A system has been developed for the import in vitro of precursor proteins into Euglena chloroplasts, which have three envelope membranes. Preparation of functional chloroplasts with intact envelope membranes has been optimized. Import of the precursor (50 kDa) for the tetrapyrrole biosynthesis enzyme porphobilinogen deaminase (PBGD), and processing to the mature size (40 kDa), occurred at 25 degrees C in the light and the presence of ATP, with an estimated efficiency of 62%. Pretreatment of the chloroplasts with proteases abolished this import, suggesting the involvement of specific protein receptors. The presequence of PBGD was found to be cleaved by Escherichia coli leader peptidase to an intermediate form (46 kDa). A construct in which the first 30 residues of the presequence (presumed to be the region removed by leader peptidase) had been deleted was no longer imported. Neither prePBGD nor the truncated precursor were imported into pea chloroplasts, although both bound to the pea chloroplast envelope. Conversely, a chimeric construct, in which the mature PBGD protein was fused downstream of the transit peptide for pea ferredoxin-NADP reductase, was efficiently imported into pea chloroplasts and processed to the mature size. However, this was not imported into Euglena chloroplasts, although again it bound to them. These results provide preliminary evidence for the possibility of two functional domains within the Euglena PBGD presequence. The implications of these findings with respect to the evolution of Euglena chloroplasts are discussed.  相似文献   

13.
Using fluorescence spectroscopy, we have demonstrated that isolated envelope membranes from mature spinach chloroplasts catalyze the phototransformation of endogenous protochlorophyllide into chlorophyllide in presence of NADPH, but not in presence of NADH. Protochlorophyllide reductase was characterized further using monospecific antibodies (anti-protochlorophyllide reductase) raised against the purified enzyme from oat. In mature spinach chloroplasts, protochlorophyllide reductase is present only in envelope membranes. We have demonstrated that the envelope protochlorophyllide reductase, a 37,000-dalton polypeptide, is only a minor envelope component and is present on the outer surface of the outer envelope membrane. This conclusion is supported by several lines of evidence: (a) the envelope polypeptide that was immunodecorated with anti-protochlorophyllide reductase can be distinguished from the major 37,000-dalton envelope polypeptide E37 (which was identified by monospecific antibodies) only after two-dimensional polyacrylamide gel electrophoresis; (b) the envelope protochlorophyllide reductase was hydrolyzed when isolated intact chloroplasts were incubated in presence of thermolysin; and (c) isolated intact chloroplasts strongly agglutinate when incubated in presence of antibodies raised against protochlorophyllide reductase. These results demonstrate that major differences exist between chloroplasts and etioplasts with respect to protochlorophyllide reductase levels and localization. The presence on the chloroplast envelope membrane of both the substrate (protochlorophyllide) and the enzyme (protochlorophyllide reductase) necessary for chlorophyllide synthesis could have major implications for the understanding of chlorophyll biosynthesis in mature chloroplasts.  相似文献   

14.
Phosphatidylcholine is apparently essential for mammalian life, since there are no known inherited diseases in the biosynthesis of this lipid. One of its critical roles appears to be in the structure of the eucaryotic membranes. Why phosphatidylcholine is required and why other phospholipids will not substitute are unknown. The major pathway for the biosynthesis of phosphatidylcholine occurs via the CDP-choline pathway. Choline kinase, the initial enzyme in the sequence, has been purified to homogeneity from kidney and liver and also catalyzes the phosphorylation of ethanolamine. Most evidence suggests that the next enzyme in the pathway, CTP:phosphocholine cytidylyltransferase, catalyzes the rate-limiting and regulated step in phosphatidylcholine biosynthesis. This enzyme has also been completely purified from liver. Cytidylyltransferase appears to exist in the cytosol as an inactive reservoir of enzyme and as a membrane-bound form (largely associated with the endoplasmic reticulum), which is activated by the phospholipid environment. There is evidence that the activity of this enzyme and the rate of phosphatidylcholine biosynthesis are regulated by the reversible translocation of the cytidylyltransferase between membranes and cytosol. Three major mechanisms appear to govern the distribution and cellular activity of this enzyme. (i) The enzyme is phosphorylated by cAMP-dependent protein kinase, which results in release of the enzyme into the cytosol. Reactivation of cytidylyltransferase by binding to membranes can occur by the action of protein phosphatase 1 or 2A. (ii) Fatty acids added to cells in culture or in vitro causes the enzyme to bind to membranes, where it is activated. Removal of the fatty acids dissociates the enzyme from the membrane. (iii) Perhaps most importantly, the concentration of phosphatidylcholine in the endoplasmic reticulum feedback regulates the distribution of cytidylyltransferase. A decrease in the level of phosphatidylcholine causes the enzyme to be activated by binding to the membrane, whereas an increase in phosphatidylcholine mediates the release of enzyme into the cytosol. The third enzyme in the CDP-choline pathway, CDP-choline:1,2-diacylglycerol choline-phosphotransferase, has been cloned from yeast but never purified from any source. In liver an alternative pathway for phosphatidylcholine biosynthesis is the methylation of phosphatidylethanolamine by phosphatidylethanolamine N-methyltransferase. This enzyme is membrane bound and has been purified to homogeneity. It catalyzes all three methylation reactions involved in the conversion of phosphatidylethanolamine to phosphatidylcholine.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
Dengue virus causes ∼50–100 million infections per year and thus is considered one of the most aggressive arthropod-borne human pathogen worldwide. During its replication, dengue virus induces dramatic alterations in the intracellular membranes of infected cells. This phenomenon is observed both in human and vector-derived cells. Using high-resolution mass spectrometry of mosquito cells, we show that this membrane remodeling is directly linked to a unique lipid repertoire induced by dengue virus infection. Specifically, 15% of the metabolites detected were significantly different between DENV infected and uninfected cells while 85% of the metabolites detected were significantly different in isolated replication complex membranes. Furthermore, we demonstrate that intracellular lipid redistribution induced by the inhibition of fatty acid synthase, the rate-limiting enzyme in lipid biosynthesis, is sufficient for cell survival but is inhibitory to dengue virus replication. Lipids that have the capacity to destabilize and change the curvature of membranes as well as lipids that change the permeability of membranes are enriched in dengue virus infected cells. Several sphingolipids and other bioactive signaling molecules that are involved in controlling membrane fusion, fission, and trafficking as well as molecules that influence cytoskeletal reorganization are also up regulated during dengue infection. These observations shed light on the emerging role of lipids in shaping the membrane and protein environments during viral infections and suggest membrane-organizing principles that may influence virus-induced intracellular membrane architecture.  相似文献   

16.
In the previous paper (Block, M. A., Dorne, A.-J., Joyard, J., and Douce, R. (1983) J. Biol. Chem. 258, 13273-13280), we have described a method for the separation of membrane fractions enriched in outer and inner envelope membranes from spinach chloroplasts. The two envelope membranes have a different weight ratio of acyl lipid to protein (2.5-3 for the outer envelope membrane and 0.8-1 for the inner envelope membrane). The two membranes also differ in their polar lipid composition. However, in order to prevent the functioning of the galactolipid:galactolipid galactosyltransferase during the course of envelope membrane separation, we have analyzed the polar lipid composition of each envelope membrane after thermolysin treatment of the intact chloroplasts. The outer envelope membrane is characterized by the presence of high amounts of phosphatidylcholine and digalactosyldiacylglycerol whereas the inner envelope membrane has a polar lipid composition almost identical with that of the thykaloids. No phosphatidylethanolamine or cardiolipin could be detected in either envelope membranes, thus demonstrating that the envelope membranes, and especially the outer membrane, do not resemble extrachloroplastic membranes. No striking differences were found in the fatty acid composition of the polar lipids from either the outer or the inner envelope membrane. The two envelope membranes also differ in their carotenoid composition. Among the different enzymatic activities associated with the chloroplast envelope, we have shown that the Mg2+-dependent ATPase, the UDP-Gal:diacylglycerol galactosyltransferase, the phosphatidic acid phosphatase, and the acyl-CoA thioesterase are associated with the inner envelope from spinach chloroplasts whereas the acyl-CoA synthetase is located on the outer envelope membrane.  相似文献   

17.
Plant protoporphyrinogen oxidase is of particular interest since it is the last enzyme of the common branch for chlorophyll and heme biosynthetic pathways. In addition, it is the target enzyme for diphenyl ether-type herbicides, such as acifluorfen. Two distinct methods were used to investigate the localization of this enzyme within Percoll-purified spinach chloroplasts. We first assayed the enzymatic activity by spectrofluorimetry and we analyzed the specific binding of the herbicide acifluorfen, using highly purified chloroplast fractions. The results obtained give clear evidence that chloroplast protoporphyrinogen oxidase activity is membrane-bound and is associated with both chloroplast membranes, i.e. envelope and thylakoids. Protoporphyrinogen oxidase specific activity was 7-8 times higher in envelope membranes than in thylakoids, in good agreement with the number of [3H]acifluorfen binding sites in each membrane system: 21 and 3 pmol/mg protein, respectively, in envelope membranes and thylakoids. On a total activity basis, 25% of protoporphyrinogen oxidase activity were associated with envelope membranes. The presence of protoporphyrinogen oxidase in chloroplast envelope membranes provides further evidence for a role of this membrane system in chlorophyll biosynthesis. In contrast, the physiological significance of the enzyme associated with thylakoids is still unknown, but it is possible that thylakoid protoporphyrinogen oxidase could be involved in heme biosynthesis.  相似文献   

18.
Lipopolysaccharide (LPS) is the major surface molecule of Gram-negative bacteria and consists of three distinct structural domains: O-antigen, core, and lipid A. The lipid A (endotoxin) domain of LPS is a unique, glucosamine-based phospholipid that serves as the hydrophobic anchor of LPS and is the bioactive component of the molecule that is associated with Gram-negative septic shock. The structural genes encoding the enzymes required for the biosynthesis of Escherchia coli lipid A have been identified and characterized. Lipid A is often viewed as a constitutively synthesized structural molecule. However, determination of the exact chemical structures of lipid A from diverse Gram-negative bacteria shows that the molecule can be further modified in response to environmental stimuli. These modifications have been implicated in virulence of pathogenic Gram-negative bacteria and represent one of the molecular mechanisms of microbial surface remodeling used by bacteria to help evade the innate immune response. The intent of this review is to discuss the enzymatic machinery involved in the biosynthesis of lipid A, transport of the molecule, and finally, those enzymes involved in the modification of its structure in response to environmental stimuli.  相似文献   

19.
Subfractions isolated from intact purified spinach chloroplasts are able to prenylate the aromatic moiety of α-tocopherol and plastoquinone-9 precursors. The biosynthesis of α-tocopherol and plastoquinone-9 is a compartmentalized process. The chloroplast envelope membranes are the only site of the enzymatic prenylation in α-tocopherol synthesis whereas the thylakoid membrane is also involved in the prenylation and methylation sequence of plastoquinone-9 biosynthesis. A very active kinase which forms phytyl-PP is localized in the stroma. Phytol but not geranylgeraniol is the polyprenol precursor of the side chain of α-tocopherol in spinach chloroplasts.  相似文献   

20.
A role for lipid trafficking in chloroplast biogenesis   总被引:2,自引:0,他引:2  
Chloroplasts are the defining plant organelle carrying out photosynthesis. Photosynthetic complexes are embedded into the thylakoid membrane which forms an intricate system of membrane lamellae and cisternae. The chloroplast boundary consists of two envelope membranes controlling the exchange of metabolites between the plastid and the extraplastidic compartments of the cell. The plastid internal matrix (stroma) is the primary location for fatty acid biosynthesis in plants. Fatty acids can be assembled into glycerolipids at the envelope membranes of plastids or they can be exported and assembled into lipids at the endoplasmic reticulum (ER) to provide building blocks for extraplastidic membranes. Some of these glycerolipids, assembled at the ER, return to the plastid where they are remodeled into the plastid typical glycerolipids. As a result of this cooperation of different subcellular membrane systems, a rich complement of lipid trafficking phenomena contributes to the biogenesis of chloroplasts. Considerable progress has been made in recent years towards a better mechanistic understanding of lipid transport across plastid envelopes. Lipid transporters of bacteria and plants have been discovered and their study begins to provide detailed mechanistic insights into lipid trafficking phenomena relevant to chloroplast biogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号