首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Multiple myeloma (MM) is the paradigmatic proteasome inhibitor (PI) responsive cancer, but many patients fail to respond. An attractive target to enhance sensitivity is (macro)autophagy, recently found essential to bone marrow plasma cells, the normal counterpart of MM. Here, integrating proteomics with hypothesis-driven strategies, we identified the autophagic cargo receptor and adapter protein, SQSTM1/p62 as an essential component of an autophagic reserve that not only synergizes with the proteasome to maintain proteostasis, but also mediates a plastic adaptive response to PIs, and faithfully reports on inherent PI sensitivity. Lentiviral engineering revealed that SQSTM1 is essential for MM cell survival and affords specific PI protection. Under basal conditions, SQSTM1-dependent autophagy alleviates the degradative burden on the proteasome by constitutively disposing of substantial amounts of ubiquitinated proteins. Indeed, its inhibition or stimulation greatly sensitized to, or protected from, PI-induced protein aggregation and cell death. Moreover, under proteasome stress, myeloma cells selectively enhanced SQSTM1 de novo expression and reset its vast endogenous interactome, diverting SQSTM1 from signaling partners to maximize its association with ubiquitinated proteins. Saturation of such autophagic reserve, as indicated by intracellular accumulation of undigested SQSTM1-positive aggregates, specifically discriminated patient-derived myelomas inherently susceptible to PIs from primarily resistant ones. These aggregates correlated with accumulation of the endoplasmic reticulum, which comparative proteomics identified as the main cell compartment targeted by autophagy in MM. Altogether, the data integrate autophagy into our previously established proteasome load-versus-capacity model, and reveal SQSTM1 aggregation as a faithful marker of defective proteostasis, defining a novel prognostic and therapeutic framework for MM.  相似文献   

2.
3.
Multiple myeloma (MM) remains an incurable plasma cell cancer characterized by abnormal secretion of monoclonal immunoglobulins. The molecular mechanism that regulates the drug sensitivity of MM cells is being intensively studied. Here, we report an unexpected finding that the protein encoded by neural precursor cell-expressed developmentally downregulated gene 4L (NEDD4L), which is a HECT E3 ligase, binds the 19S proteasome, limiting its proteolytic function and enhancing autophagy. Suppression of NEDD4L expression reduced bortezomib (Bor) sensitivity in vitro and in vivo, mainly through autophagy inhibition mediated by low NEDD4L expression, which was rescued by an autophagy activator. Clinically, elevated expression of NEDD4L is associated with a considerably increased probability of responding to Bor, a prolonged response duration, and improved overall prognosis, supporting both the use of NEDD4L as a biomarker to identify patients most likely to benefit from Bor and the regulation of NEDD4L as a new approach in myeloma therapy.Subject terms: Myeloma, Protein quality control  相似文献   

4.
L-type amino acid transporter 1 (LAT1), an isoform of amino acid transport system L, transports branched or aromatic amino acids essential for fundamental cellular activities such as cellular growth, proliferation and maintenance. This amino acid transporter recently has received attention because of its preferential and up-regulated expression in a variety of human tumors in contrast to its limited distribution and low-level expression in normal tissues. In this study, we explored the feasibility of using LAT1 inhibitor as a new therapeutic agent for human malignant melanomas (MM) using canine spontaneous MM as a model for human MM. A comparative study of LAT expression was performed in 48 normal tissues, 25 MM tissues and five cell lines established from MM. The study observed LAT1 mRNA levels from MM tissues and cell lines that were significantly (< 0.01) higher than in normal tissues. Additionally, MM with distant metastasis showed a higher expression than those without distant metastasis. Functional analysis of LAT1 was performed on one of the five cell lines, CMeC-1. [3H]l-Leucine uptake and cellular growth activities in CMeC-1 were inhibited in a dose-dependent manner by selective LAT1 inhibitors (2-amino-2-norbornane-carboxylic acid, BCH and melphalan, LPM). Inhibitory growth activities of various conventional anti-cancer drugs, including carboplatin, cyclophosphamide, dacarbazine, doxorubicin, mitoxantrone, nimustine, vinblastine and vincristine, were significantly (< 0.05) enhanced by combination use with BCH or LPM. These findings suggest that LAT1 could be a new therapeutic target for MM.  相似文献   

5.
6.
7.
Multiple myeloma (MM) is a clonal plasma cell malignancy that accounts for 10–15% of newly diagnosed hematological cancers. Although significant advances have been made in the treatment of MM the disease still remains incurable. The oncolytic potential of reovirus has previously been demonstrated by others and us and is currently in phase III clinical trials for solid tumors. In addition a phase I clinical trial has recently been initiated for MM. Despite the clinical activity, the mechanism(s) of cell death caused by reovirus in MM is yet not well elucidated. A comprehensive understanding of reovirus-mediated histology-specific cell death mechanisms is imperative if this therapeutic is to become a standard of care for patients. Previously we have shown that reovirus-mediated cell death of breast and prostate cancer is orchestrated via apoptosis. The present study demonstrates for the first time that in addition to inducing apoptosis reovirus also upregulates autophagy during oncolysis of MM.  相似文献   

8.
The proteasome inhibitor Bortezomib has been approved for the treatment of relapsed/refractory multiple myeloma (MM), thanks to its ability to induce MM cell apoptosis. Moreover, Bortezomib has antiangiogenic properties. We report that endothelial cells (EC) exposed to Bortezomib undergo death to an extent that depends strictly on their activation state. Indeed, while quiescent EC are resistant to Bortezomib, the drug results maximally toxic in EC switched toward angiogenesis with FGF, and exerts a moderate effect on subconfluent HUVEC. Moreover, EC activation state deeply influences the death pathway elicited by Bortezomib: after treatment, angiogenesis-triggered EC display typical features of apoptosis. Conversely, death of subconfluent EC is preceded by ROS generation and signs typical of autophagy, including intense cytoplasmic vacuolization with evidence of autophagosomes at electron microscopy, and conversion of the cytosolic MAP LC3 I form toward the autophagosome-associated LC3 II form. Treatment with the specific autophagy inhibitor 3-MA prevents both LC3 I/LC3 II conversion and HUVEC cell death. Finally, early removal of Bortezomib is accompanied by the recovery of cell shape and viability. These findings strongly suggest that Bortezomib induces either apoptosis or autophagy in EC; interfering with the autophagic response may potentiate the antiangiogenic effect of the drug.  相似文献   

9.
为探讨自噬相关基因(ARGs)在MM发生发展中的作用机制并建立相关的预后模型。基于MMRF与HADb数据库,通过R语言确定多发性骨髓瘤中自噬相关基因的差异表达,GO和KEGG分析自噬相关基因与多发性骨髓瘤发生发展的关系,使用COX回归算法建立多基因预后模型,Kaplan-Meier方法绘制生存曲线,ROC曲线评价预后模型的可靠性。最终从764例多发性骨髓瘤患者骨髓样本及4例正常骨髓样本中共发现104个基因的表达在多发性骨髓瘤样本中具有显著差异,其中上调基因46个,下调基因58个。GO富集主要集中在巨自噬、自噬调节、细胞对外部刺激的反应等本体学注释。KEGG富集主要集中在自噬、细胞凋亡、NOD样受体信号通路、PI3K-Akt信号通路。单因素COX分析发现33个自噬相关基因与多发性骨髓瘤患者整体生存明显相关。多因素COX回归筛选出13个预后相关自噬相关基因(NKX2-3、NCKAP1、BIRC5、PEX3、HGS、RUBCN、PARP1、ARSA、DNAJB9、HSP90AB1、EEF2、FKBP1B和CD46)建立多发性骨髓瘤自噬相关基因预后模型。Kaplan-Meier生存曲线分析显示...  相似文献   

10.

Objective

To determine whether the Unfolded Protein Response (UPR) sensors (PERK, ATF6 and IRE-1) can be targeted to promote death of Multiple Myeloma (MM) cells.

Methods

We have knocked-down separately each UPR stress sensor in human MM cell lines using RNA interference and followed MM cell death by monitoring the membrane, mitochondrial and nuclear alterations. Involvement of caspases in MM cell death consecutive to UPR sensor knock-down was analyzed by western blotting, measurement of their enzymatic activity using fluorigenic substrates and susceptibility to a pan-caspase inhibitor. Activation of the autophagic process was measured directly by detection of autophagosomes (electronic microscopy), monodansylcadaverine staining, production of the cleaved form of the microtubule-associated protein 1A/1B light chain 3 (LC3) and indirectly by analyzing the impact of pharmacological inhibitors of autophagy such as 3MA and bafilomycin A1.

Results

We show that extinction of a single UPR stress sensor (PERK) induces a non-apoptotic form of cell death in MM cells that requires autophagy for its execution. We also show that this cytotoxic autophagic process represses the apoptosis program by reducing the cytosolic release of the apoptogenic factors Smac/DIABLO and cytochrome c.

Interpretation

Altogether our findings suggest that autophagy can contribute to execution of death in mammalian cells that are exposed to mild ER stress. They also suggest that the autophagic process can regulate the intrinsic apoptotic pathway by inhibiting production of death effectors by the mitochondria, thus preventing formation of a functional apoptosome. Altogether these findings give credit to the idea that UPR sensors can be envisaged as therapeutic targets for the treatment of MM.  相似文献   

11.
《Autophagy》2013,9(1):118-120
The last stage of the adenovirus replication cycle, lysis, is considered not very efficient and remains poorly understood. Pathogen infection induces autophagy in eukaryotic cells. In the case of viruses, autophagy is a double-edged sword that can either facilitate or impede replication. On one hand, autophagy reduces the replication capability of the herpesviruses. On the other hand, the RNA virus poliovirus uses autophagosomes to form replication complexes. Recently we characterized the autophagy induced by the oncolytic adenovirus Delta-24-RGD in brain tumor stem cells. Late in the adenoviral infectious cycle, we observed remarkable up-regulation of the Atg12-Atg5 complex and prominent autophagy. In addition, adenovirus-induced autophagy results in disruption of the cytoplasmic structure and the continuity of the cellular membrane. We speculate that adenoviruses induce autophagy to facilitate the release of viral progeny at the end of the infectious cycle. The substitution of “autophagy” for “lysis” is not just semantic. Because autophagy is a genetically programmed process and not a passive phenomenon, it immediately suggests interactions between adenovirus proteins and autophagy regulators. Understanding the mechanism underlying adenovirus-mediated autophagy should propel the development of novel vectors with enhanced capability to release viral progeny and, as a result, more potent oncolytic effect.

Addendum to: Jiang H, Gomez-Manzano C, Aoki H, Alonso MM, Kondo S, McCormick F, Xu J, Kondo Y, Bekele BN, Colman H, Lang FF, Fueyo J. Examination of the therapeutic potential of Delta-24-RGD in brain tumor stem cells: Role of autophagic cell death. J Natl Cancer Inst 2007; 99:1410-4.  相似文献   

12.
Macroautophagy (hereafter autophagy) is the process by which cytosolic material destined for degradation is enclosed inside a double-membrane cisterna known as the autophagosome and processed for secretion and/or recycling. This process requires a large collection of proteins that converge on certain sites of the ER membrane to generate the autophagosome membrane. Recently, it was shown that actin accumulates around autophagosome precursors and could play a role in this process, but the mechanism and role of actin polymerization in autophagy were unknown. Here, we discuss our recent finding that the nucleation-promoting factor (NPF) WHAMM recruits and activates the Arp2/3 complex for actin assembly at sites of autophagosome formation on the ER. Using high-resolution, live-cell imaging, we showed that WHAMM forms dynamic puncta on the ER that comigrate with several autophagy markers, and propels the spiral movement of these puncta by an Arp2/3 complex-dependent actin comet tail mechanism. In starved cells, WHAMM accumulates at the interface between neighboring autophagosomes, whose number and size increases with WHAMM expression. Conversely, knocking down WHAMM, inhibiting the Arp2/3 complex or interfering with actin polymerization reduces the size and number of autophagosomes. These findings establish a link between Arp2/3 complex-mediated actin assembly and autophagy.  相似文献   

13.
Increased levels of the nuclear export protein, exportin 1 (XPO1), were demonstrated in multiple myeloma (MM) patients. Targeting XPO1 with selinexor (the selective inhibitor of nuclear export; SINE compound KPT-330) demonstrates broad antitumor activity also in patient cells resistant to bortezomib; hence, it is a promising target in MM patients. Hypoxia is known to mediate tumor progression and drug resistance (including bortezomib resistance) in MM cells. In this study, we tested the effects of selinexor alone or in combination with bortezomib in normoxia and hypoxia on MM cell survival and apoptosis in vitro and in vivo. In vitro, selinexor alone decreased survival and increased apoptosis, resensitizing MM cells to bortezomib. In vivo, we examined the effects of selinexor alone on tumor initiation and tumor progression, as well as selinexor in combination with bortezomib, on tumor growth in a bortezomib-resistant MM xenograft mouse model. Selinexor, used as a single agent, delayed tumor initiation and tumor progression, prolonging mice survival. In bortezomib-resistant xenografts, selinexor overcame drug resistance, significantly decreasing tumor burden and extending mice survival when combined with bortezomib.  相似文献   

14.
Combined quantum mechanics/molecular mechanics (QM/MM) methods have been widely used in multi-scale modelling and simulations of physical, chemical and biological processes in complex environments. In this review, we provide an overview of the recently developed QM/MM algorithms, with emphasis on our works, towards the ultimate goal of establishing an open boundary between the QM and MM subsystems. The open boundary is characterised by on-the-fly exchanges of partial charges and atoms between the QM and MM subsystems, allowing us to focus on the small QM subsystem of primary interest in dynamics simulations. An open-boundary scheme has the promise to the utilisations of small QM subsystems, high-levels of QM theory and long simulation times, which can potentially lead to new insights.  相似文献   

15.
Pemetrexed and platinum (PP) combination chemotherapy is the current standard first-line therapy for treatment of malignant mesothelioma (MM). However, a useful predictive biomarker for PP therapy is yet to be found. Here, we performed targeted exome sequencing to profile somatic mutations and copy number variations in 12 MM patients treated with PP therapy. We identified 187 somatic mutations in 12 patients (65 synonymous, 102 missense, 2 nonsense, 5 splice site, and 13 small coding insertions/deletions). We identified somatic mutations in 23 genes including BAP1, TP53, NRAS, and EGFR. Interestingly, rare NRAS p.Q61K and EGFR exon 19 deletions were observed in 2 patients. We also found somatic chromosomal copy number deletions in CDKN2A and CDKN2B genes. Genetic alteration related to response after PP therapy was not found. Somatic mutation profiling in MM patients receiving PP therapy revealed genetic alterations in potential therapeutic targets such as NRAS and EGFR. No alterations in genes with potential predictive role for PP therapy were found.  相似文献   

16.
Lithium is used for several decades to treat manic-depressive illness (bipolar affective disorder). Recently, it was found that lithium induces autophagy, thereby promoting the clearance of mutant huntingtin and α-synucleins in experimental systems. We show here for the first time that lithium significantly reduces the amount of pathological prion protein (PrPSc) in prion-infected neuronal and non-neuronal cultured cells by inducing autophagy. Treatment of prion-infected cells with 3-methyladenine, a potent inhibitor of autophagy, counteracted the anti-prion effect of lithium, demonstrating that induction of autophagy mediates degradation of PrPSc. Co-treatment with lithium and rapamycin, a drug widely used to induce autophagy, had an additive effect on PrPSc clearance compared to treatment with either drug alone. In addition, we provide evidence that the ability to reduce PrPSc and to induce autophagy is common for diverse lithium compounds, not only for the drug lithium chloride, usually administered in clinical therapy. Furthermore, we show here that besides reduction of PrPSc-aggregates, lithium-induced autophagy also slightly reduces the levels of cellular prion protein. Limiting the substrate available for conversion of cellular prion protein into PrPSc may provide an additional mechanism for reduction of PrPSc by lithium-induced autophagy.  相似文献   

17.
The canonical Wnt/β‐catenin signalling pathway and autophagy play critical roles in cancer progression. However, the role of Wnt‐mediated autophagy in cancer radioresistance remains unclear. In this study, we found that irradiation activated the Wnt/β‐catenin and autophagic signalling pathways in squamous cell carcinoma of the head and neck (SCCHN). Wnt3a is a classical ligand that activated the Wnt/β‐catenin signalling pathway, induced autophagy and decreased the sensitivity of SCCHN to irradiation both in vitro and in vivo. Further mechanistic analysis revealed that Wnt3a promoted SCCHN radioresistance via protective autophagy. Finally, expression of the Wnt3a protein was elevated in both SCCHN tissues and patients' serum. Patients showing high expression of Wnt3a displayed a worse prognosis. Taken together, our study indicates that both the canonical Wnt and autophagic signalling pathways are valuable targets for sensitizing SCCHN to irradiation.  相似文献   

18.
The effect of methylmercury (MM) and MM plus sodium selenite (SE) on the activity of various GSH-dependent enzymes was studied in the liver and kidney of mice. Ten groups of mice were fed diets containing graded proportions of MM, alone or with graded quantities of SE. GST, GSH-Px, and GSSG-RED were assayed in the cytosolic fraction of liver and kidney homogenates. After treatment with MM, instead of the expected decrease in enzyme activities, an increase was observed in the kidney and a small decrease in the liver with no dose-response relation in either organ. In protected groups, a general pattern of induction was observed in both organs, but again there was little evidence of dose-response relationships. Detailed analysis of the results suggests that the effects observed were not directly caused by MM or SE but are the resultant of complex interactions presumably related to contemporaneous mechanisms of damage and repair.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号