首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The epidermal growth factor receptor (EGFR) signaling pathway regulates cell proliferation, differentiation, and survival, and is frequently dysregulated in esophageal and gastric cancers. Few studies have comprehensively examined the association between germline genetic variants in the EGFR pathway and risk of esophageal and gastric cancers. Based on a genome-wide association study in a Han Chinese population, we examined 3443 SNPs in 127 genes in the EGFR pathway for 1942 esophageal squamous cell carcinomas (ESCCs), 1758 gastric cancers (GCs), and 2111 controls. SNP-level analyses were conducted using logistic regression models. We applied the resampling-based adaptive rank truncated product approach to determine the gene- and pathway-level associations. The EGFR pathway was significantly associated with GC risk (P = 2.16×10−3). Gene-level analyses found 10 genes to be associated with GC, including FYN, MAPK8, MAP2K4, GNAI3, MAP2K1, TLN1, PRLR, PLCG2, RPS6KB2, and PIK3R3 (P<0.05). For ESCC, we did not observe a significant pathway-level association (P = 0.72), but gene-level analyses suggested associations between GNAI3, CHRNE, PAK4, WASL, and ITCH, and ESCC (P<0.05). Our data suggest an association between specific genes in the EGFR signaling pathway and risk of GC and ESCC. Further studies are warranted to validate these associations and to investigate underlying mechanisms.  相似文献   

2.
Increased activation of the epidermal growth factor receptor (EGFR) is frequently observed in tumors, and inhibition of the signaling pathways originated in the EGFR normally renders tumor cells more sensitive to apoptotic stimuli. However, we show that inhibition of EGFR signaling in non-transformed breast epithelial cells by EGF deprivation or gefitinib, an inhibitor of EGFR tyrosine kinase, causes the upregulation of the long isoform of caspase-8 inhibitor FLICE-inhibitory protein (FLIPL) and makes these cells more resistant to the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). We demonstrate that the extracellular signal-regulated kinase (ERK)1/2 pathway plays a pivotal role in the regulation of FLIPL levels and sensitivity to TRAIL-induced apoptosis by EGF. Upregulation of FLIPL upon EGF deprivation correlates with a decrease in c-Myc levels and c-Myc knockdown by siRNA induces FLIPL expression. FLIPL upregulation and resistance to TRAIL in EGF-deprived cells are reversed following activation of an estrogen activatable form of c-Myc (c-Myc-ER). Finally, constitutive activation of the ERK1/2 pathway in HER2/ERBB2-transformed cells prevents EGF deprivation-induced FLIPL upregulation and TRAIL resistance. Collectively, our results suggest that a regulated ERK1/2 pathway is crucial to control FLIPL levels and sensitivity to TRAIL in non-transformed cells, and this mechanism may explain the increased sensitivity of tumor cells to TRAIL, in which the ERK1/2 pathway is frequently deregulated.  相似文献   

3.
The sensitivity of only a few tumors to anti-epidermal growth factor receptor EGFR tyrosine kinase inhibitors (TKIs) can be explained by the presence of EGFR tyrosine kinase (TK) domain mutations. In addition, such mutations were rarely found in tumor types other than lung, such as pancreatic and head and neck cancer. In this study we sought to elucidate mechanisms of resistance to EGFR-targeted therapies in tumors that do not harbor TK sensitizing mutations in order to identify markers capable of guiding the decision to incorporate these drugs into chemotherapeutic regimens. Here we show that EGFR activity was markedly decreased during the evolution of resistance to the EGFR tyrosine kinase inhibitor (TKI) erlotinib, with a concomitant increase of mitogen-inducible gene 6 (Mig6), a negative regulator of EGFR through the upregulation of the PI3K-AKT pathway. EGFR activity, which was more accurately predicted by the ratio of Mig6/EGFR, highly correlated with erlotinib sensitivity in panels of cancer cell lines of different tissue origins. Blinded testing and analysis in a prospectively followed cohort of lung cancer patients treated with gefitinib alone demonstrated higher response rates and a marked increased in progression free survival for patients with a low Mig6/EGFR ratio (approximately 100 days, P = 0.01).  相似文献   

4.
5.

Background

Epidermal growth factor receptor (EGFR) inhibitors have shown only modest clinical activity when used as single agents to treat cancers. They decrease tumor cell expression of hypoxia-inducible factor 1-α (HIF-1α) and vascular endothelial growth factor (VEGF). Hypothesizing that this might normalize tumor vasculature, we examined the effects of the EGFR inhibitor erlotinib on tumor vascular function, tumor microenvironment (TME) and chemotherapy and radiotherapy sensitivity.

Methodology/Principal Findings

Erlotinib treatment of human tumor cells in vitro and mice bearing xenografts in vivo led to decreased HIF-1α and VEGF expression. Treatment altered xenograft vessel morphology assessed by confocal microscopy (following tomato lectin injection) and decreased vessel permeability (measured by Evan''s blue extravasation), suggesting vascular normalization. Erlotinib increased tumor blood flow measured by Power Doppler ultrasound and decreased hypoxia measured by EF5 immunohistochemistry and tumor O2 saturation measured by optical spectroscopy. Predicting that these changes would improve drug delivery and increase response to chemotherapy and radiation, we performed tumor regrowth studies in nude mice with xenografts treated with erlotinib and either radiotherapy or the chemotherapeutic agent cisplatin. Erlotinib therapy followed by cisplatin led to synergistic inhibition of tumor growth compared with either treatment by itself (p<0.001). Treatment with erlotinib before cisplatin led to greater tumor growth inhibition than did treatment with cisplatin before erlotinib (p = 0.006). Erlotinib followed by radiation inhibited tumor regrowth to a greater degree than did radiation alone, although the interaction between erlotinib and radiation was not synergistic.

Conclusions/Significance

EGFR inhibitors have shown clinical benefit when used in combination with conventional cytotoxic therapy. Our studies show that targeting tumor cells with EGFR inhibitors may modulate the TME via vascular normalization to increase response to chemotherapy and radiotherapy. These studies suggest ways to assess the response of tumors to EGFR inhibition using non-invasive imaging of the TME.  相似文献   

6.
Programmed death-ligand-1 (PD-L1) is an immune suppressor that inhibits T cell based immunity. Anti-PD-L1/PD-1 immunotherapy benefits those patients receiving platinum-based combinational chemotherapy. However, the underlying mechanism is still largely unknown. In this study, we found that carboplatin could induce PD-L1 expression in NSCLC H292, A549 and H1299 cells in a dose-dependent manner. mRNA sequencing and the subsequent validation assays found that carboplatin significantly induced PVR expression, which is considered as an immuno-adhesion molecule. Mechanistically, PVR knockdown significantly abrogated carboplatin-induced PD-L1 expression. Functionally, knockdown of PVR significantly reversed the CD3+ T cells proliferation inhibition caused by carboplatin increased PD-L1. Moreover, the carboplatin-induced PVR and subsequent up-regulation of PD-L1 might be mediated via the EGFR, PI3K/AKT, and ERK signaling pathways. Immunohistochemical staining results showed that the PD-L1 expression was positively associated with PVR expression in clinical NSCLC samples. Our study reveals a novel regulatory mechanism of PD-L1 expression, provides evidence that carboplatin inhibits tumor immune response by up-regulating PD-L1 expression and explains the rationale for combining platinum-based chemotherapy with PD-L1/PD-1 inhibitors.  相似文献   

7.
BACKGROUND: We previously reported that the addition of erlotinib to gemcitabine and oxaliplatin (GEMOX) resulted in greater antitumor activity and might be a treatment option for patients with biliary tract cancers (BTCs). Molecular subgroup analysis of treatment outcomes in patients who had specimens available for analysis was undertaken. METHODS: Epidermal growth factor receptor (EGFR), KRAS, and PIK3CA mutations were evaluated using peptide nucleic acid–locked nucleic acid polymerase chain reaction clamp reactions. Survival and response rates (RRs) were analyzed according to the mutational status. Sixty-four patients (48.1%) were available for mutational analysis in the chemotherapy alone group and 61 (45.1%) in the chemotherapy plus erlotinib group. RESULTS: 1.6% (2/116) harbored an EGFR mutation (2 patients; exon 20), 9.6% (12/121) harbored a KRAS mutation (12 patients; exon 2), and 9.6% (12/118) harbored a PIK3CA mutation (10 patients, exon 9 and 2 patients, exon 20). The addition of erlotinib to GEMOX in patients with KRAS wild-type disease (n = 109) resulted in significant improvements in overall response compared with GEMOX alone (30.2% vs 12.5%, P = .024). In 95 patients with both wild-type KRAS and PIK3CA, there was evidence of a benefit associated with the addition of erlotinib to GEMOX with respect to RR as compared with GEMOX alone (P = .04). CONCLUSION: This study demonstrates that KRAS mutational status might be considered a predictive biomarker for the response to erlotinib in BTCs. Additionally, the mutation status of PIK3CA may be a determinant for adding erlotinib to chemotherapy in KRAS wild-type BTCs.  相似文献   

8.
Elevated expression and activity of the epidermal growth factor receptor (EGFR)/protein kinase B (Akt) signaling pathway is associated with development, progression and treatment resistance of head and neck cancer (HNC). Several studies have demonstrated that microRNA-7 (miR-7) regulates EGFR expression and Akt activity in a range of cancer cell types via its specific interaction with the EGFR mRNA 3′-untranslated region (3′-UTR). In the present study, we found that miR-7 regulated EGFR expression and Akt activity in HNC cell lines, and that this was associated with reduced growth in vitro and in vivo of cells (HN5) that were sensitive to the EGFR tyrosine kinase inhibitor (TKI) erlotinib (Tarceva). miR-7 acted synergistically with erlotinib to inhibit growth of erlotinib-resistant FaDu cells, an effect associated with increased inhibition of Akt activity. Microarray analysis of HN5 and FaDu cell lines transfected with miR-7 identified a common set of downregulated miR-7 target genes, providing insight into the tumor suppressor function of miR-7. Furthermore, we identified several target miR-7 mRNAs with a putative role in the sensitization of FaDu cells to erlotinib. Together, these data support the coordinate regulation of Akt signaling by miR-7 in HNC cells and suggest the therapeutic potential of miR-7 alone or in combination with EGFR TKIs in this disease.  相似文献   

9.
Tissue kallikrein (TK) is well known to take most of its biological functions through bradykinin receptors. In the present study, we found a novel signaling pathway mediated by TK through epidermal growth factor receptor (EGFR) in human SH-SY5Y cells. We discovered that TK facilitated the activation of EGFR, extracellular signal-regulated kinase (ERK) 1/2 and p38 cascade. Interestingly, not p38 but ERK1/2 phosphorylation was severely compromised in cells depleted of EGFR. Nevertheless, impairment of signaling of ERK1/2 seemed not to be restricted to EGFR phosphorylation. We also observed that TK stimulation could induce SH-SY5Y cell proliferation, which was reduced by EGFR down-regulation or ERK1/2 inhibitor. Overall, our findings provided convincing evidence that TK could mediate cell proliferation via EGFR and ERK1/2 pathway in vitro.  相似文献   

10.
11.
12.
Esophageal squamous cell carcinoma (ESCC) is a common cancer with poor prognosis. In order to identify useful biomarkers for accurately classifying prognostic risks for ESCC patients, we examined the expression of six proteins by immunohistochemistry (IHC) in 590 paraffin-embedded ESCC samples. The candidate proteins include p53, EGFR, c-KIT, TIMP1 and PI3K-p110α reported to be altered in ESCC tissues as well as another important component of PI3K, PI3K-p85α. Of the six proteins tested, p53, EGFR, c-KIT, TIMP1 and PI3K-p85α were detected with high expression in 43.0%, 36.6%, 55.9%, 70.7% and 57.1% of tumors, respectively. Significant associations were found between high expression of PI3K-p85α, EGFR and p53 and poor prognosis (P = 0.00111; 0.00001; 0.00426). Applying these three proteins as an IHC panel could divide patients into different subgroups (P<0.000001). Multivariate cox regression analysis indicated that the three-protein panel was an independent prognostic factor with very high statistical significance (HR = 2.090, 95% CI: 1.621–2.696, P = 0.00000001). The data suggest that the three-protein panel of PI3K-p85α, EGFR and p53 is an important candidate biomarker for the prognosis of patients with ESCC.  相似文献   

13.
By using cDNA microarray analysis, we identified cornulin (CRNN) gene was frequently downregulated in esophageal squamous cell carcinoma (ESCC). In the present study, we investigated the role of CRNN in ESCC development. The results showed that CRNN was frequently downregulated in primary ESCCs in both mRNA level (26/56, 46.4%) and protein level (137/249, 55%), which was significantly associated with lymph node metastases (P=0.027), advanced clinical stage (P=0.039), and overall survival rate (P<0.001). Multivariate analysis indicated that the CRNN downregulation was an independent prognostic factor for ESCC. Functional studies with both in vitro and in vivo assays demonstrated that CRNN had strong tumor suppressive ability in ESCC cells. The tumor-suppressive mechanism of CRNN was associated with its role in cell cycle arrest at G1/S checkpoint by upregulating expressions of P21WAF1/CIP1 and Rb. Silencing CRNN expression by RNA interference could effectively inhibit its tumor suppressive effect. In conclusion, our findings demonstrate that CRNN is a tumor suppressor gene that plays a critical tumor suppressive role in ESCC.  相似文献   

14.
Use of immune checkpoint inhibitors (ICIs) with chemotherapy to enhance responses in oesophageal adenocarcinoma (OAC) is an attractive approach. We identified subpopulations of OAC cells expressing inhibitory immune checkpoint (IC) ligands (PD-L1, PD-L2 and CD160) and receptors (PD-1, TIGIT, TIM-3, LAG-3 and A2aR) in vitro and in ex vivo biopsies. Combination chemotherapy regimens FLOT and CROSS promote a more immune-resistant phenotype through upregulation of IC ligands and receptors on OAC cells in vitro. Importantly, this study investigated if OAC cells, enriched for ICs exhibited a more stem-like and senescent-like phentoype. FLOT preferentially upregulates PD-L1 on a stem-like OAC cell phenotype, defined by ALDH activity. Expression of senescence-associated β-galactosidase is induced in a subpopulation of OAC cells following FLOT and CROSS chemotherapy treatment, along with enhanced expression of TIM-3 and A2aR ICs. Blockade of PD-1 signalling in OAC cells induced apoptosis and enhanced FLOT and CROSS chemotherapy toxicity in vitro. Upregulation of ICs on OAC cells following chemotherapy may represent potential mechanisms of chemo-immune resistance. Combination ICIs may be required to enhance the efficacy of chemotherapy and immunotherapy in OAC patients.  相似文献   

15.
Metallothionein (MT1M) belongs to a family of cysteine-rich cytosolic protein and has been reported to be a tumor suppressor gene in multiple cancers. However, its role in esophageal carcinoma carcinogenesis remains unclear. In this study, MT1M expression was correlated with tumor type, stage, drinking and smoking history, as well as patient survival. We also studied the regulation and biological function of MT1M in esophageal squamous cell carcinoma (ESCC). We have found that MT1M is significantly downregulated in ESCC tissues compared with adjacent non-cancer tissues. Furthermore, restoration of expression by treatment with the demethylation agent A + T showed that MT1M downregulation might be closely related to hypermethylation in its promoter region. Over-expression of MT1M in ESCC cells significantly altered cell morphology, induced apoptosis, and reduced colony formation, cell viability, migration and epithelial-mesenchymal transition. Moreover, based on reactive oxygen species (ROS) levels, a superoxide dismutase 1 (SOD1) activity assay and protein analysis, we verified that the tumor-suppressive function of MT1M was at least partially caused by its upregulation of ROS levels, downregulation of SOD1 activity and phosphorylation of the SOD1 downstream pathway PI3K/AKT. In conclusion, our results demonstrated that MT1M was a novel tumor-suppressor in ESCC and may be disrupted by promoter CpG methylation during esophageal carcinogenesis.  相似文献   

16.
In mammalian cells repair of radiation-induced DNA damage appears to be also controlled by the epidermal growth factor receptor (EGFR) with a special impact on DNA double-strand break (DSB) repair. Aim of this study was to demonstrate this interaction between EGFR signalling and DNA DSB repair and to identify the underlying downstream pathways. We especially wanted to know in how far non-homologous end-joining (NHEJ) as the most important DSB repair pathway is involved in this interaction. Overall DSB repair was determined by counting γH2AX foci remaining 24 after irradiation, while NHEJ activity was monitored by using a specially designed repair construct stably integrated into the genome. The overall DSB repair capacity was clearly enhanced when EGFR was activated by its natural ligand EGF and, vice versa, was reduced when EGFR was blocked either by the specific antibody Cetuximab or the tyrosine kinase inhibitor erlotinib, whereby reduction was clearly stronger for erlotinib. There was also a difference in the pathways affected. While erlotinib lead to a block of both, MAPK as well as AKT signalling, Cetuximab only affected MAPK. As demonstrated by specific inhibitors (PD98059, AKTIII) EGFR interacts with DSB repair mostly via MAPK pathway. Also for NHEJ activity, there was a substantial increase, when EGFR was activated by EGF as determined for two different reporter cell lines (A549.EJ and H1299.EJ) and, vice versa, a reduction was seen when EGFR signalling was blocked by Cetuximab or erlotinib. There was, however, no difference for the two inhibitors used. This regulation of NHEJ by EGFR was only blocked when ERK was affected by siRNA but not when AKT was knocked down. These data indicate that EGFR modulates DSB repair by regulating NHEJ via MAPK signalling.  相似文献   

17.
Osimertinib, as the third-generation EGFR tyrosine kinase inhibitors (EGFR-TKIs), is a first-line molecularly targeted drug for non-small cell lung cancer (NSCLC). However, the emergence of therapeutic resistance to osimertinib markedly impairs its efficiency and efficacy, leading to the failure of clinical applications. Novel molecular targets and drugs are urgently needed for reversing osimertinib resistance in NSCLC. Protease-activated receptor 2 (PAR2) that belongs to a subfamily of G protein-coupled receptors can stimulate the transactivation of EGFR to regulate multiple cellular signalling, actively participating in tumour progression. This study firstly discovered that PAR2 expression was notably enhanced when NSCLC cells became resistant to osimertinib. A PAR2 inhibitor facilitated osimertinib to attenuate EGFR transactivation, ERK phosphorylation, EMT and PD-L1 expression which were associated to osimertinib resistance. The combination of the PAR2 inhibitor and osimertinib also notably blocked cell viability, migration, 3D sphere formation and in vivo tumour growth whereas osimertinib itself lost such inhibitory effects in osimertinib-resistant NSCLC cells. Importantly, this reversal effect of PAR2 blockade was uncovered to depend on ERK-mediated EMT and PD-L1, since inhibition of β-arrestin or ERK, which could be modulated by PAR2, sensitized osimertinib to prevent EMT, PD-L1 expression and consequently overcame osimertinib resistance. Thus, this study demonstrated that PAR2 antagonism could limit ERK-mediated EMT and immune checkpoints, consequently attenuating EGFR transactivation and reactivate osimertinib. It suggested that PAR2 may be a novel drug target for osimertinib resistance, and PAR2 inhibition may be a promising strategy candidate for reversing EGFR-TKI resistance in NSCLC.  相似文献   

18.
BackgroundEpidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) and anaplastic lymphoma kinase (ALK) inhibitors have dramatically changed the strategy of medical treatment of lung cancer. Patients should be screened for the presence of the EGFR mutation or echinoderm microtubule-associated protein-like 4 (EML4)-ALK fusion gene prior to chemotherapy to predict their clinical response. The succinate dehydrogenase inhibition (SDI) test and collagen gel droplet embedded culture drug sensitivity test (CD-DST) are established in vitro drug sensitivity tests, which may predict the sensitivity of patients to cytotoxic anticancer drugs. We applied in vitro drug sensitivity tests for cyclopedic prediction of clinical responses to different molecular targeting drugs.MethodsThe growth inhibitory effects of erlotinib and crizotinib were confirmed for lung cancer cell lines using SDI and CD-DST. The sensitivity of 35 cases of surgically resected lung cancer to erlotinib was examined using SDI or CD-DST, and compared with EGFR mutation status.ResultsHCC827 (Exon19: E746-A750 del) and H3122 (EML4-ALK) cells were inhibited by lower concentrations of erlotinib and crizotinib, respectively than A549, H460, and H1975 (L858R+T790M) cells were. The viability of the surgically resected lung cancer was 60.0 ± 9.8 and 86.8 ± 13.9% in EGFR-mutants vs. wild types in the SDI (p = 0.0003). The cell viability was 33.5 ± 21.2 and 79.0 ± 18.6% in EGFR mutants vs. wild-type cases (p = 0.026) in CD-DST.ConclusionsIn vitro drug sensitivity evaluated by either SDI or CD-DST correlated with EGFR gene status. Therefore, SDI and CD-DST may be useful predictors of potential clinical responses to the molecular anticancer drugs, cyclopedically.  相似文献   

19.
Esophageal carcinoma, with a increasing incidence, is one of the most aggressive carcinomas in gastrointestinal tract. Epidemiologic studies demonstrate an association of oral pathogens with multiple diseases, including rheumatoid arthritis, cardiovascular diseases, diabetes, and gastrointestinal malignancies. Nevertheless, a causal relationship between oral pathogens and esophageal squamous cell carcinoma (ESCC) has not been elucidated. Here, we found that Porphyromonas was significantly enriched in the saliva of patients with ESCC, compared with that in normal human. In vitro studies showed that Porphyromonas gingivalis (P. gingivalis) promoted the proliferation and motility of ESCC cells, as evidenced by up regulated expression of key molecules implicated in NF-κB signaling pathway. These findings, for the first time, demonstrated a role of oral pathogens in inducing ESCC tumorigenesis and metastasis, which might involve regulation of NF-κB signaling pathway.  相似文献   

20.
The effects of blocking the epidermal growth factor receptor (EGFR) in acute kidney injury (AKI) are controversial. Here we investigated the renoprotective effect of erlotinib, a selective tyrosine kinase inhibitor that can block EGFR activity, on cisplatin (CP)-induced AKI. Groups of animals were given either erlotinib or vehicle from one day before up to Day 3 following induction of CP- nephrotoxicity (CP-N). In addition, we analyzed the effects of erlotinib on signaling pathways involved in CP-N by using human renal proximal tubular cells (HK-2). Compared to controls, rats treated with erlotinib exhibited significant improvement of renal function and attenuation of tubulointerstitial injury, and reduced the number of apoptotic and proliferating cells. Erlotinib-treated rats had a significant reduction of renal cortical mRNA for profibrogenic genes. The Bax/Bcl-2 mRNA and protein ratios were significantly reduced by erlotinib treatment. In vitro, we observed that erlotinib significantly reduced the phosphorylation of MEK1 and Akt, processes that were induced by CP in HK-2. Taken together, these data indicate that erlotinib has renoprotective properties that are likely mediated through decreases in the apoptosis and proliferation of tubular cells, effects that reflect inhibition of downstream signaling pathways of EGFR. These results suggest that erlotinib may be useful for preventing AKI in patients receiving CP chemotherapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号