首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In a previous communication we reported that glucose deprivation from KHRB medium resulted in a marked stimulation of Ca2+ uptake by brain tissue, suggesting a relationship between glucose and Ca2+ homeostasis in brain tissue [17]. Experiments were carried out to investigate the significance of glucose in Ca2+ transport in brain cells. The replacement of glucose with either D-methylglucoside or 2-deoxyglucose, non-metabolizable analogues of glucose, resulted in stimulation of Ca2+ uptake just as by glucose deprivation. These data show that glucose metabolism rather than glucose transfer was necessary to stimulate Ca2+ uptake in brain tissue. Inhibition of glucose metabolism with either NaF, NaCN, or iodoacetate resulted in stimulation of Ca2+ uptake similar to that produced by glucose deprivation. These results lend further support for the concept that glucose metabolism is essential for Ca2+ homeostasis in brain. Anoxia promotes glucose metabolism through glycolytic pathway to keep up with the demand for ATP by cellular processes (the Pasteur effect). Incubation of brain slices under nitrogen gas did not alter Ca2+ uptake by brain tissue, as did glucose deprivation and the inhibitors of glucose metabolism. We conclude that glucose metabolism resulting in the synthesis of ATP is essential for Ca2+ homeostasis in brain. Verapamil and nifedipine which block voltage-gated Ca2+ channels, did not alter Ca2+ uptake stimulated by glucose deprivation, indicating that glucose deprivation-enhanced Ca2+ uptake was not mediated by Ca2+ channels. Tetrodotoxin which specifically blocks Na+ channels, abolished Ca2+ uptake enhanced by glucose deprivation, but had no effect on Ca2+ uptake in presence of glucose (controls). These results suggest that stimulation of Ca2+ uptake by glucose deprivation may be related to Na+ transfer via Na-Ca exchange in brain.  相似文献   

2.
The large inner membrane electrochemical driving force and restricted volume of the matrix confer unique constraints on mitochondrial ion transport. Cation uptake along with anion and water movement induces swelling if not compensated by other processes. For mitochondrial Ca2+ uptake, these include activation of countertransporters (Na+/Ca2+ exchanger and Na+/H+ exchanger) coupled to the proton gradient, ultimately maintained by the proton pumps of the respiratory chain, and Ca2+ binding to matrix buffers. Inorganic phosphate (Pi) is known to affect both the Ca2+ uptake rate and the buffering reaction, but the role of anion transport in determining mitochondrial Ca2+ dynamics is poorly understood. Here we simultaneously monitor extra- and intra-mitochondrial Ca2+ and mitochondrial membrane potential (ΔΨm) to examine the effects of anion transport on mitochondrial Ca2+ flux and buffering in Pi-depleted guinea pig cardiac mitochondria. Mitochondrial Ca2+ uptake proceeded slowly in the absence of Pi but matrix free Ca2+ ([Ca2+]mito) still rose to ∼50 μm. Pi (0.001–1 mm) accelerated Ca2+ uptake but decreased [Ca2+]mito by almost 50% while restoring ΔΨm. Pi-dependent effects on Ca2+ were blocked by inhibiting the phosphate carrier. Mitochondrial Ca2+ uptake rate was also increased by vanadate (Vi), acetate, ATP, or a non-hydrolyzable ATP analog (AMP-PNP), with differential effects on matrix Ca2+ buffering and ΔΨm recovery. Interestingly, ATP or AMP-PNP prevented the effects of Pi on Ca2+ uptake. The results show that anion transport imposes an upper limit on mitochondrial Ca2+ uptake and modifies the [Ca2+]mito response in a complex manner.  相似文献   

3.
Europium luminescence from europium bound to sarcoplasmic reticulum (Ca2+ Mg2+)-ATPase indicates that there are two high affinity calcium binding sites. Furthermore, the two calcium ions at the binding sites are highly coordinated by the protein as the number of H2O molecules surrounding the Ca2+ ions are 3 and 0.5. In the presence of ATP, calcium ions are occluded even further down to 2 and zero H2O molecules, respectively. The Ca2+ - Ca2+ intersite distance is estimated to be 8–9 Å and the average distance from the Ca2+ sites to CrATP is about 18 Å.Digestion of the (Ca2+ + Mg2+)-ATPase at the T2 site (Arg 198) causes uncoupling of Ca2+-transport from ATPase activity while calcium occlusion due to E1-P formation remains unchanged. Further tryptic digestion beyond T2 and in the presence of ATP diminishes Ca2+ occlusion to zero while 50% of the ATPase hydrolytic activity remains. Tryptic digestion beyond T2 and in the absence of ATP diminishes ATPase hydrolytic activity to 50% of normal while Ca2+ occlusion remains intact. These data are consistent with a mechanism in which the functional enzyme must be in the dimeric form for occlusion and calcium uptake to occur, but each monomer can hydrolyze ATP.  相似文献   

4.
Alloxan at millimolar concentrations slightly inhibited the velocity of Ca2+ uptake by isolated rat liver mitochondria irrespective of the free Ca2+ concentration between 1 and 10 µM and was an effective concentration-dependent stimulator of mitochondrial Ca2+ efflux. Ninhydrin also slightly inhibited the velocity of mitochondrial Ca2+ uptake but only at free Ca2+ concentrations above 5 µM. However, ninhydrin was a strong stimulator of mitochondrial Ca2+ efflux even at micromolar concentrations, 10–50 times more potent than alloxan. The mitochondrial membrane potential was reduced 10–20% at most by alloxan and ninhydrin. Alloxan and ninhydrin also stimulated Ca2+ efflux from isolated permeabilized liver cells. When isolated intact liver cells had been pre-incubated with alloxan or ninhydrin before permeabilization of the cells the ability of spermine to induce mitochondrial Ca2+ uptake was abolished. Glucose provided the typical protection against the effects of alloxan on mitochondrial Ca2+ transport only in experiments with intact cells but not in experiments with permeabilized cells or isolated mitochondria. Therefore glucose protection is apparently due to inhibition of alloxan uptake into the cell. Glucose provided no protection against effects of ninhydrin under any of the experimental conditions. Thus both alloxan and ninhydrin are potent stimulators of Ca2+ efflux by isolated mitochondria but very weak inhibitors of the velocity of mitochondrial Ca2+ uptake. The direct effects of ninhydrin on mitochondrial Ca2+ efflux may contribute to the cytotoxic action of this agent whereas the direct effects of alloxan on mitochondrial Ca2+ transport require concentrations which are too high to be of relevance for the induction of the typical pancreatic B-cell toxic effects of alloxan. However, the effects on mitochondrial Ca2+ transport during incubation of intact cells which may result from the generation of cytotoxic intermediates during alloxan xenobiotic metabolism may well contribute to the pancreatic B-cell toxic effect of alloxan. Mol Cell Biochem 118: 141–151, 1992)  相似文献   

5.
钙离子对盐胁迫小麦幼苗氮代谢的影响   总被引:3,自引:0,他引:3  
为探讨增强小麦抗盐能力的调控途径,以普通小麦豫麦34为材料,研究了Ca2+对盐胁迫下小麦幼苗氮代谢及生长的影响.采用全营养液培养小麦幼苗至第一片叶完全展开,更换无钙营养液,并开始不同处理.处理分别为低盐胁迫(150 mmol · L-1 NaCl)、低盐胁迫+4 mmol · L-1 Ca2+、高盐胁迫(300 mmol · L-1 NaCl)、高盐胁迫+4mmol · L-1 Ca2+,以无NaCl胁迫的小麦为对照.5 d后取样,测定了氮同化酶活性、代谢物含量、积累量及幼苗生长状况.结果表明,Ca2+明显缓解了低盐胁迫对小麦幼苗的生长抑制,表现在鲜重、叶绿素及可溶性蛋白含量的增加,而对高盐胁迫下小麦幼苗的生长无明显改善效果;Ca2+改善了低盐胁迫下小麦幼苗的氮营养状况,表现在氮积累量的增加,这一效应主要是通过硝酸还原酶(NR)、谷氨酰胺合成酶(GS)以及异柠檬酸脱氢酶(NADP-ICDH)活性的增强而实现的.Ca2+未能改善高盐胁迫下小麦幼苗氮营养状况的主要限制因子在于NADP-ICDH活性未明显增加.  相似文献   

6.
The effects of hyperthermia, alone and in conjunction with microwave exposure, on brain energetics were studied in anesthetized male Sprague-Dawley rats. The effect of temperature on adenosine triphosphate concentration [ATP] and creatine phosphate concentration [CP] was determined in the brains of rats that were maintained at 35.6, 37.0, 39.0, and 41.0 degrees C. At 37, 39, and 41 degrees C brain [ATP] and [CP] were down 6.0, 10.8, and 29.2%, and 19.6, 28.7, and 44%, respectively, from the 35.6 degrees C control concentrations. Exposure of the brain to 591-MHz radiation at 13.8 mW/cm2 for 0.5, 1.0, 3.0, and 5.0 min caused further decreases (below those observed for 30 degrees C hyperthermia only) of 16.0, 29.8, 22.5, and 12.3% in brain [ATP], and of 15.6, 25.1, 21.4, and 25.9% in brain [CP] after 0.5, 1.0, 3.0, and 5.0 min, respectively. Recording of brain reduced nicotinamide adenine dinucleotide (NADH) fluorescence before, during, and after microwave exposure showed an increase in NADH fluorescence during microwave exposure that returned to preexposure levels within 1 min postexposure. Continuous recording of brain temperatures during microwave exposures showed that brain temperature varied between -0.1 and +0.05 degrees C. Since the microwave exposures did not induce tissue hyperthermia, it is concluded that direct microwave interaction at the subcellular level is responsible for the observed decrease in [ATP] and [CP].  相似文献   

7.
8.
The effect of nuclear Ca2+ uptake inhibitors on the Ca2+-activated DNA fragmentation in rat liver nuclei was investigated. The addition of Ca2+ (40 M) into the reaction mixture containing liver nuclei in the presence of 2.0 mM ATP caused a remarkable increase in nuclear DNA fragmentation. This Ca2+-activated DNA fragmentation was not seen in the absence of ATP, because nuclear Ca2+ uptake is not initiated without ATP addition. Moreover, the presence of various reagents (10 M arachidonic acid, 2.0 mM NAD+, 10 M zinc sulfate and 0.2 mM N-ethylmaleimide), which could inhibit Ca2+-ATPase activity and Ca2+ uptake in the nuclei, produced a significant inhibition of the Ca2+-activated DNA fragmentation in the nuclei. The results show that the Ca2+-activated DNA fragmentation is involved in the uptake of Ca2+ by the nuclei, suggesting a role of Ca2+ transport system in the regulation of liver nuclear functions.  相似文献   

9.
Cannell and Allen (1984. Biophys. J. 45:913–925) introduced the use of a multi-compartment model to estimate the time course of spread of calcium ions (Ca2+) within a half sarcomere of a frog skeletal muscle fiber activated by an action potential. Under the assumption that the sites of sarcoplasmic reticulum (SR) Ca2+ release are located radially around each myofibril at the Z line, their model calculated the spread of released Ca2+ both along and into the half sarcomere. During diffusion, Ca2+ was assumed to react with metal-binding sites on parvalbumin (a diffusible Ca2+- and Mg2+-binding protein) as well as with fixed sites on troponin. We have developed a similar model, but with several modifications that reflect current knowledge of the myoplasmic environment and SR Ca2+ release. We use a myoplasmic diffusion constant for free Ca2+ that is twofold smaller and an SR Ca2+ release function in response to an action potential that is threefold briefer than used previously. Additionally, our model includes the effects of Ca2+ and Mg2+ binding by adenosine 5′-triphosphate (ATP) and the diffusion of Ca2+-bound ATP (CaATP). Under the assumption that the total myoplasmic concentration of ATP is 8 mM and that the amplitude of SR Ca2+ release is sufficient to drive the peak change in free [Ca2+] (Δ[Ca2+]) to 18 μM (the approximate spatially averaged value that is observed experimentally), our model calculates that (a) the spatially averaged peak increase in [CaATP] is 64 μM; (b) the peak saturation of troponin with Ca2+ is high along the entire thin filament; and (c) the half-width of Δ[Ca2+] is consistent with that observed experimentally. Without ATP, the calculated half-width of spatially averaged Δ[Ca2+] is abnormally brief, and troponin saturation away from the release sites is markedly reduced. We conclude that Ca2+ binding by ATP and diffusion of CaATP make important contributions to the determination of the amplitude and the time course of Δ[Ca2+].  相似文献   

10.
Rat liver mitochondria are able to temporarily lower the steady-state concentration of external Ca2+ after having accumulated a pulse of added Ca2+. This has been attributed to inhibition of a putative -modulated efflux pathway [Bernardi, P. (1984)Biochim. Biophys. Acta 766, 277–282]. On the other hand, the rebounding could be due to stimulation of the uniporter by Ca2+ [Kröner, H. (1987)Biol. Chem. Hoppe-Seyler 369, 149–155]. By measuring unidirectional Ca2+ fluxes, it was found that the uniporter was stimulated during the rebounding peak both under Bernardi's and Kröner's conditions, while no effects on the efflux could be demonstrated. The rate of unidirectional efflux of Ca2+ was not affected by inhibition of the uniporter. It appears likely that the rebounding is due to stimulation of the uniporter rather than inhibition of efflux.  相似文献   

11.
The regulation of cytosolic Ca2+ has been investigated in growing root-hair cells of Sinapis alba L. with special emphasis on the role of the plasmamembrane Ca2+-ATPase. For this purpose, erythrosin B was used to inhibit the Ca2+-ATPase, and the Ca2+ ionophore A23187 was applied to manipulate cytosolic free [Ca2+] which was then measured with Ca2+-selective microelectrodes. (i) At 0.01 M, A23187 had no effect on the membrane potential but enhanced the Ca2+ permeability of the plasma membrane. Higher concentrations of this ionophore strongly depolarized the cells, also in the presence of cyanide. (ii) Unexpectedly, A23187 first caused a decrease in cytosolic Ca2+ by 0.2 to 0.3 pCa units and a cytosolic acidification by about 0.5 pH units, (iii) The depletion of cytosolic free Ca2+ spontaneously reversed and became an increase, a process which strongly depended on the external Ca2+ concentration, (iv) Upon removal of A23187, the cytosolic free [Ca2+] returned to its steady-state level, a process which was inhibited by erythrosin B. We suggest that the first reaction to the intruding Ca2+ is an activation of Ca2+ transporters (e.g. ATPases at the endoplasmic reticulum and the plasma membrane) which rapidly remove Ca2+ from the cytosol. The two observations that after the addition of A23187, (i) Ca2+ gradients as steep as-600 mV could be maintained and (ii) the cytosolic pH rapidly and immediately decreased without recovery indicate that the Ca2+-exporting plasma-membrane ATPase is physiologically connected to the electrochemical pH gradient, and probably works as an nH+/Ca2+-ATPase. Based on the finding that the Ca2+-ATPase inhibitor erythrosin B had no effect on cytosolic Ca2+, but caused a strong Ca2+ increase after the addion of A23187 we conclude that these cells, at least in the short term, have enough metabolic energy to balance the loss in transport activity caused by inhibition of the primary Ca2+-pump. We further conclude that this ATPase is a major Ca2+ regulator in stress situations where the cytosolic Ca2+ has been shifted from its steady-state level, as may be the case during processes of signal transduction.Abbreviations and Symbols EB erythrosin B - Em membrane potential - pCa negative logarithm of the Ca2+ concentration This work was supported by the Deutche Forschungsgemeinschaft (H.F.) and the Alexander-von-Humboldt-Foundation (A.T.).  相似文献   

12.
The effect of various inhibitors of DNA topoisomerase II, which has been shown to induce apoptotic cell death, on Ca2+ transport in isolated rat liver nuclei was investigated. Ca2+ uptake and release were determined with a Ca2+ electrode. The presence of aurintricarboxylic acid (ATA; 10-6 to 10-4 M), etoposide (10-4 M), genistein (10-5 and 10-4 M) or amsacrine (10-4 M) in the reaction mixture caused a significant increase in Ca2+ release from the nuclei. Also, these compounds (10-4 M) significantly inhibited Ca2+ uptake by the nuclei. However, the presence of ATA (10-5 and 10-4 M) in the enzyme reaction mixture did not significantly inhibit Ca2+-ATPase activity, which is involved in the nuclear Ca2+ uptake, in the liver nuclei, while etoposide (10-4 M), genistein (10-4 M) and amsacrine (10-4 M) appreciably decreased the enzyme activity. Meanwhile, addition of Ca2+ clearly activated DNA fragmentation in the liver nuclei. The Ca2+ activated DNA fragmentation was significantly prevented by the presence of etoposide, genistein and amsacrine with the concentrations of 10-5 and 10-4 M in the reaction mixture, although ATA (10-5 and 10-4 M) had no effect. The present study demonstrates that some apoptosis inducible compounds used can influence on Ca2+ transport system in isolated rat liver nuclei, suggesting a decrease of nuclear Ca2+ level involved in nuclear functions. (Mol Cell Biochem 166: 183-189, 1997)  相似文献   

13.
The influence of silicon treatment on the levels of calcium and magnesium in blood serum and tissues was studied in rats. The concentrations of both elements were estimated in samples of sera and tissues of rats receiving per os a soluble, inorganic silicon compound—sodium metasilicate nonahydrate (Na2SiO3·9H2O (REACHIM, USSR)), dissolved in the animals' drinking water. A decrease of magnesium concentration in serum was observed with accompanying elevation of registered calcemia. Moreover, a reduction of tissue calcium levels was found with a simultaneous increase of magnesium tissue pool. The results provide evidence for silicon involvement in mineral metabolism. It could result in a modification of pathological processes concerning bone tissue.  相似文献   

14.
The effects of norepinephrine on ketogenesis in isolated hepatocytes have been reported as ranging from stimulation to inhibition. The present work was planned with the aim of clarifying these discrepancies. The experimental system was the once-through perfused liver from fasted and fed rats. Fatty acids with chain lengths varying from 8-18 were infused. The effects of norepinephrine depended on the metabolic state of the rat and on the nature of the fatty acid. Norepinephrine clearly inhibited ketogenesis from long-chain fatty acids (stearate > palmitate > oleate), but had little effect on ketogenesis from medium-chain fatty acids (octanoate and laureate). With palmitate the decrease in oxygen uptake was restricted to the substrate stimulated portion; with stearate, the decrease exceeded the substrate stimulated portion; with oleate, oxygen uptake was transiently inhibited. Withdrawal of Ca2+ attenuated the inhibitory effects. 14CO2 production from [1-14C]oleate was inhibited. Net uptake of the fatty acids was not affected by norepinephrine. In livers from fed rats, oxygen uptake and ketogenesis from stearate were only transiently inhibited. The conclusions are: (a) in the fasted state norepinephrine reduces ketogenesis and respiration by means of a Ca2+-dependent mechanism; (b) the degree of inhibition varies with the chain length and the degree of saturation of the fatty acids; (c) norepinephrine favours esterification of the activated long-chain fatty acids in detriment to oxidation; (d) in the fed state the stimulatory action of norepinephrine on glycogen catabolism induces conditions which are able to reverse inhibition of ketogenesis and oxygen uptake.  相似文献   

15.
Using Ehrlich ascites tumour cells, the short-term effects of the therapeutic glucocorticoid Methylprednisolone (MP) on the cellular energy metabolism were studied. ATP-consuming processes involved in the rapid MP effects were identified indirectly from the effects of MP on cellular oxygen consumption related to the inhibition of respiration by selective inhibitors of Ca2+-ATPase and protein synthesis. The effects of MP on plasma membrane permeability for Ca2+ ions and phospholipid turnover were studied directly by using confocal laser scanning microscopy and tracerkinetic measurements, respectively. MP inhibited cellular oxygen consumption, suppressed the inhibitory effect of lanthanum but not that of cycloheximide on oxygen consumption, blocked the [Ca2+]i rise in response to calcium ionophore A 23187, and decreased phospholipid turnover. MP acted instantly in a dose-dependent manner.The observed effects of MP are discussed in relation to the hypothesis that the drug has direct membrane effect affecting plasma membrane permeability and function.  相似文献   

16.
目的:探讨长期异相睡眠剥夺对大鼠能量代谢及血清甲状腺素水平的影响。方法:采用小平台水环境法建立长期异相睡眠剥夺大鼠模型;检测其能量代谢变化;放射免疫法检测血清中甲状腺素水平。结果:睡眠剥夺后大鼠摄食量由(75.06±25.37)g/(d.kg)增加到(122.30±20.43)g/(d.kg),体重由(360.89±43.01)g减轻到(295.97±37.95)g,体温由(37.62±1.12)℃先升高到(39.00±0.87)℃后又降低至(37.72±0.84)℃,基础代谢率由(1.69±0.36)mlO2/(g.h)增加到(2.40±0.09)mlO2/(g.h)与对照组相比差异显著(P〈0.05);血清中游离三碘甲状腺原氨酸(FT3)水平由(3.38±0.88)pmol/L降低到(2.38±0.83)pmol/L,游离甲状腺素(FT4)由(14.62±3.62)pmol/L降低到(8.26±2.80)pmol/L与对照组相比差异显著(P〈0.05)。结论:长期异相睡眠剥夺可以显著影响大鼠的能量代谢和血清甲状腺素水平。  相似文献   

17.
The effects of Ca-antagonists on the thrombin-induced mobilization of radiolabeled arachidonate preincorporated into rat platelets as well as the subsequent formation of labeled cyclooxygenase and lipoxygenase products were analyzed in the presence of either Call or Ca2+-substitutes, Sr2+ and Ba2+. Results indicate that following thrombin stimulation (0.2 U/ml) in the presence of Ca2+, nitrendipine (Nit), Cd2+ or Mn2+ reduced the release of arachidonate and the biosynthesis of thromboxane 132- Inhibition of arachidonic acid release and metabolism were also obtained by both Nit and Cd2+ in the presence of Sr2+ and Bat+. Results from studies with a semi-purified phospholipase A2 fraction prepared from rat platelets indicated that the activity was almost unaffected by Nit or Cd2+. From these findings, we concluded that inhibition of platelet-induced release and metabolism of arachidonic acid by the Ca-antagonists tested require intact platelets. These data support the hypothesis of an interaction of these agents at an unknown surface membrane level.Abbreviations AA Arachidonic Acid - 5-HT 5-hydroxy-tryptamine - HETE 12-hydroxyeicosatetraenoic acid - HHT 12-hydroxy-heptadecanoic acid - HHT Nitrendipine - TXB2 Thromboxane B2  相似文献   

18.
19.
Citrus aurantium extracts, which contain large amounts of p-synephrine, are widely used for weight loss purposes and as appetite suppressants. In the liver, C. aurantium (bitter orange) extracts affect hemodynamics, carbohydrate metabolism, and oxygen uptake. The purpose of the present work was to quantify the action of p-synephrine and also to obtain indications about its mechanism of action, a task that would be difficult to accomplish with C. aurantium extracts due to their rather complex composition. The experimental system was the isolated perfused rat liver. p-Synephrine significantly stimulated glycogenolysis, glycolysis, gluconeogenesis, and oxygen uptake. The compound also increased the portal perfusion pressure and the redox state of the cytosolic NAD+/NADH couple. A Ca2+-dependency for both the hemodynamic and the metabolic effects of p-synephrine was found. p-Synephrine stimulated both cAMP overflow and the initial Ca2+ release from the cellular stores previously labeled with 45Ca2+. The metabolic and hemodynamic actions of p-synephrine were strongly inhibited by α-adrenergic antagonists and moderately affected by β-adrenergic antagonists. The results allow to conclude that p-synephrine presents important metabolic and hemodynamic effects in the liver. These effects can be considered as both catabolic (glycogenolysis) and anabolic (gluconeogenesis), they are mediated by both α- and β-adrenergic signaling, require the simultaneous participation of both Ca2+ and cAMP, and could be contributing to the overall stimulation of metabolism that usually occurs during weight loss periods.  相似文献   

20.
Hackl EV  Blagoi YP 《Biopolymers》2005,77(6):315-324
The work examines the structural transitions of DNA under the action of Cu2+ and Ca2+ ions in aqueous solution at temperatures of 29 and 45 degrees C by ir spectroscopy. Upon binding to the divalent ions studied, DNA transits into the compact state both at 29 and 45 degrees C. In the compact state DNA remains in B-form limits. The compaction process is of high positive cooperativity. As temperature increases the divalent metal ion concentration required to induce DNA compaction decreases in the case of Cu(2+)-induced compaction and increases in the case of Ca(2+)-induced compaction. It is suggested that the mechanism of the temperature effect on DNA compaction in the presence of Cu2+ ions possessing higher affinity for DNA bases differs from that of the temperature influence on Ca(2+)-induced DNA compaction. In the case of copper ions the determining factor is the increase of binding constants of the Cu2+ ions interacting with the denatured parts formed on DNA while in the case of calcium ions it is the decreased screening action of counterions upon the increase of their hydration with temperature. The efficiency of divalent metal ions studied in inducing DNA compaction depends on hydration of counterions. DNA compaction occurs in a narrow interval of Cu2+ concentrations. As the Cu2+ ion concentration increases, DNA compaction is replaced with Cu(2+)-induced DNA aggregation. At elevated temperatures Cu(2+)-induced DNA compaction could acquire a phase transition character.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号