首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The involvement of membrane protein in dystrophic chicken fragmented sarcoplasmic reticulum alterations has been examined. A purified preparation of the (Ca2+ + Mg2+)-ATPase protein from dystrophic fragmented sarcoplasmic reticulum was found to have a reduced calcium-sensitive ATPase activity and phosphoenzyme level, in agreement with alterations found in dystrophic chicken fragmented sarcoplasmic reticulum. An amino acid analysis of the ATPase preparations showed no difference in the normal and dystrophic (Ca2+ + Mg2+)-ATPase. The (Ca2+ + Mg2+)-ATPase was investigated further by isoelectric focusing and proteolytic digestion of the fragmented sarcoplasmic reticulum. Neither of these methods indicated any alteration in the composition of the dystrophic (Ca2+ + Mg2+)-ATPase. We have concluded that the alterations observed in dystrophic fragmented sarcoplasmic reticulum are not due to increased amounts of non-(Ca2+ + Mg2+)-ATPase protein, and that the normal and dystrophic (Ca2+ + Mg2+)-ATPase protein are not detectably different.  相似文献   

2.
The distribution of calsequestrin in rat atrial and ventricular myocardial cells was determined by indirect immunocolloidal gold labeling of ultrathin frozen sections. The results presented show that calsequestrin is confined to the sarcoplasmic reticulum where it is localized in the lumen of the peripheral and the interior junctional sarcoplasmic reticulum as well as in the lumen of the corbular sarcoplasmic reticulum, but absent from the lumen of the network sarcoplasmic reticulum. Comparison of these results with our previous studies on the distribution of the Ca2+ + Mg2+-dependent ATPase of the cardiac sarcoplasmic reticulum show directly that the Ca2+ + Mg2+-dependent ATPase and calsequestrin are confined to distinct regions within the continuous sarcoplasmic reticulum membrane. Assuming that calsequestrin provides the major site of Ca2+ sequestration in the lumen of the sarcoplasmic reticulum, the results presented support the idea that both junctional (interior and peripheral) and specialized nonjunctional (corbular) regions of the sarcoplasmic reticulum are involved in Ca2+ storage and possibly release. Furthermore, the structural differences between the junctional and the corbular sarcoplasmic reticulum support the possibility that Ca2+ storage and/or release from the lumen of the junctional and the corbular sarcoplasmic reticulum are regulated by different physiological signals.  相似文献   

3.
Localization of calsequestrin in chicken ventricular muscle cells was determined by indirect immunofluorescence and immuno-Protein A-colloidal gold labeling of cryostat and ultracryotomy sections, respectively. Calsequestrin was localized in the lumen of peripheral junctional sarcoplasmic reticulum, as well as in the lumen of membrane-bound structures present in the central region of the I-band, while being absent from the lumen of the sarcoplasmic reticulum in the A-band region of the cardiac muscle cells. Since chicken ventricular muscle cells lack transverse tubules, the presence of calsequestrin in membrane bound structures in the central region of the I-band suggests that these cells contain nonjunctional regions of sarcoplasmic reticulum that are involved in Ca2+ storage and possibly Ca2+ release. It is likely that the calsequestrin containing structures present throughout the I-band region of the muscle cells correspond to specialized regions of the free sarcoplasmic reticulum in the I-band called corbular sarcoplasmic reticulum. It will be of interest to determine whether Ca2+ storage and possibly Ca2+ release from junctional and nonjunctional regions of the sarcoplasmic reticulum in chicken ventricular muscle cells are regulated by the same or different physiological signals.  相似文献   

4.
Compared to that of genetically-related normal chickens, pectoralis muscle from the dystrophic chicken contained increased calmodulin measured by radioimmunoassay. Determined by the dot blot procedure, expression of the calmodulin gene was enhanced in muscle from affected animals. The bioactivity of the gene product was normal. Together with previous studies reporting increased cell Ca2+ content in dystrophic muscle, the current findings of increased sarcoplasmic calmodulin suggest the latter is a cellular response to defective Ca2+ transport at the level of cell efflux or intracellular organelle (sarcoplasmic reticulum) uptake.  相似文献   

5.
Vesicular fragments of sarcoplasmic reticulum were isolated from pectoralis muscle of normal and dystrophic chicken. Purification of both preparations was equally satisfactory, as shown by a prominent ATPase band in electrophoresis gels. Measurements of ATPase phosphorylation, Ca2+ transport and Pi cleavage by rapid quench methods revealed a lower specific activity of the dystrophic vesicles with respect to all of these functions. On the other hand, Ca2+-independent ATPase activity was found to be increased in dystrophic vesicles. It is suggested that a fraction of ATPase units of dystrophic sarcoplasmic reticulum is not activated by Ca2+, owing to an altered protein assembly within the membrane bilayer. In fact, when the membrane structure is perturbed by detergents normal and dystropic preparations acquire an equally high Ca2+-dependent ATPase.  相似文献   

6.
Ca2+-uptake activities of the sarcoplasmic reticulum (SR) were determined with a Ca2+-sensitive electrode in homogenates from fast- and slow-twitch muscles from both normal and dystrophic mice (C57BL/6J strain) of different ages. Immunochemical quantification of tissue Ca2+-ATPase content allowed determination of the specific Ca2+-transport activity of the enzyme. In 3-week-old mice of the dystrophic strain specific Ca2+ transport was already significantly lower than in the normal strain. It progressively decreased with maturation and reached only 40-50% and 30-50% of the normal values in fast- and slow-twitch muscles of adult dystrophic animals, respectively. Tissue contents of calsequestrin were reduced in both types of muscle leading to an increased Ca2+-ATPase to calsequestrin protein ratio. Equal amounts of the Ca2+-ATPase protein (detected by Coomassie blue staining of polyacrylamide gels) were present in SR vesicles isolated by Ca2+-oxalate loading from adult normal and dystrophic fast-twitch muscles. However, the specific ATP-hydrolysing activity of the enzyme was approximately 50% lower in dystrophic than in normal SR. The reduced ATP-hydrolysing activity was correlated with decreased Ca2+-transport activity, phosphoprotein formation and fluorescein isothiocyanate labeling as determined in total microsomal and heavy SR fractions. Although the Ca2+ and ATP affinities of the enzyme were unaltered, its ATPase activity was reduced at all levels of ATP in the dystrophic SR. Taken together, these findings point to a markedly impaired function of the SR and an increase in the population of inactive SR Ca2+-ATPase molecules in murine muscular dystrophy.  相似文献   

7.
Two new lines of chickens with near identical genotypes (greater than 90% isogeneity), one demonstrating avian dystrophy, were used for isolation of sarcopalsmic reticulum vesicles. Vesicles from line 433 (dystrophic) displayed reduced Ca2+-ATPase activity, phosphoenzyme formation and steady-state calcium transport capabilities in comparison with vesicles from line 03 (normal). Lipid analyses show that dystrophic vesicles have greater amounts of cholesterol and lesser amounts of phosphatidylcholine. The results support the use of isogenic chickens in further studies of avian dystrophy. However, the results also suggest that current sarcoplasmic reticulum vesicle purification procedures dependent on differential calcium accumulation may not fully achieve the intended purpose.  相似文献   

8.
The nature of the protein components and their location in the sarcoplasmic reticulum membrane were studied using sarcoplasmic reticulum vesicles isolated from rat skeletal muscle and purified by a density gradient centrifugation system. On the basis of analysis by means of sodium dodecyl sulfate gel electrophoresis, the protein components appear to be similar if not identical with those reported by others for rabbit sarcoplasmic reticulum, and the relative amount of each component is also similar to that found with rabbit sarcoplasmic reticulum. Evidence is presented that radioiodine-labeled diazotized diiodosulfanilic acid is a nonpermeant labeling agent of the protein components of sarcoplasmic reticulum vesicles; this agent minimally disturbs the functional activities of these membranes. By means of this labeling agent and perturbing agents, it is concluded that the protein components with molecular weights greater than 120,000 and the (Ca2+ + Mg2+)-adenosine triphosphatase partially or totally reside on or at the external surface of the sarcoplasmic reticulum vesicles. In the case of the adenosine triphosphatase, highly controlled trypsin treatment cleaves the molecule into two products, a 65,000 molecular weight fragment and a 56,000 molecular weight fragment. The evidence indicates that the 65,000 molecular weight component of the (Ca2+ + Mg2+)-adenosine triphosphatase is located in a more exposed fashion on the external surface of the vesicles than the 56,000 molecular weight compoenet and that some adenosine triphosphatase molecules have a more exposed position on the external surface of the vesicle than others. The protein components designated by MacLennan (MacLennan, D. H. (1975) Can. J. Biochem. 53, 251-261) as "calsequestrin" and "high affinity Ca2+ binding protein" are shown not to be on the external surface of the rat sarcoplasmic reticulum vesicle but rather to reside either within the core of the membrane or on the inside surface of the vesicle. The results of this study are in agreement with the model for the organization of the protein components of the sarcoplasmic reticulum membrene recently proposed by MacLennan (MacLennan, D. H. (1975) Can. J. Biochem. 53, 251-261).  相似文献   

9.
Two lines of genetically involved and control chickens were compared with regard to the onset of muscle dystrophy during the early stages of growth ex ovo. Definite structural and functional involvement of pectoralis muscle developed within the first 4-5 weeks. In parallel experiments, microsomal membranes were obtained weekly from pectoralis muscle during the first 14 weeks ex ovo. The microsomes were studied with respect to ultrastructural features, protein composition, Ca2+ uptake and ATPase activity. Microsomal preparations obtained from all newborn chickens contain two types of vesicles: one type reveals an asymmetric distribution and 'high density' of particles on freeze-fracture faces which is characteristic of sarcoplasmic reticulum (SR) membrane; the other type reveals a symmetric distribution and 'low density' of particles. The yield of 'low density' microsomes from muscle of normal birds is very much reduced as the chicks grow from 1 to 4-5 weeks ex ovo. On the contrary, it remains high in chicks developing muscle dystrophy. Ca2+ uptake and coupled ATPase activity are found to be of nearly identical specific activity in control and genetically involved newborn chicks. The specific activity of the control birds, however, increases as the chicks grow from 1 to 4-5 weeks of age, while the specific activity of the dystrophic birds remains low. Such a difference appears to be related to the relative representation of sarcoplasmic reticulum and 'low density' vesicles in the microsomal preparations. It is concluded that failure to obtain a normal differentiation of muscle cell membranes is a basic defect noted in the early growth of genetically involved chickens. This defect appears along with the earliest signs of the dystrophic process.  相似文献   

10.
Treatment of cardiac or skeletal muscle sarcoplasmic reticulum vesicles with 0.1 M sodium carbonate selectively extracts both the Ca2+-binding protein calsequestrin and the two "intrinsic glycoproteins," while leaving the Ca2+-dependent ATPase membrane bound. Phenyl-Sepharose chromatography in the presence of ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) and high salt (0.5 M NaCl) readily fractionates these solubilized proteins into a Ca2+-elutable fraction, which contains purified calsequestrin, and a low ionic strength elutable fraction, which contains one of the two intrinsic glycoproteins. Elution of calsequestrin from phenyl-Sepharose occurs near 1 mM Ca2+. Copurifying with calsequestrin are an homologous set of high molecular weight proteins, which like calsequestrin stain blue with Stains-All. These proteins are present in trace amounts and do not correspond to any sarcoplasmic reticulum proteins previously identified. Elution of calsequestrin from phenyl-Sepharose is consistent with the Ca2+-binding protein losing its hydrophobic character in the presence of millimolar Ca2+. This behavior is converse to that observed for several calmodulin-like proteins, which are eluted from hydrophobic gels in the presence of EGTA. The high yield and purity of calsequestrin prepared by this method makes possible a unique system for studying what may be a distinct class of Ca2+-binding proteins.  相似文献   

11.
The distribution of calsequestrin and calreticulin in smooth muscle and non-muscle tissues was investigated. Immunoblots of endoplasmic reticulum proteins probed with anti-calreticulin and anti-calsequestrin antibodies revealed that only calreticulin is present in the rat liver endoplasmic reticulum. Membrane fractions isolated from uterine smooth muscle, which are enriched in sarcoplasmic reticulum, contain a protein band which is immunoreactive with anti-calreticulin but not with anti-calsequestrin antibodies. The presence of calreticulin in these membrane fractions was further confirmed by 45Ca2+ overlay and "Stains-All" techniques. Calreticulin was also localized to smooth muscle sarcoplasmic reticulum by the indirect immunofluorescence staining of smooth muscle cells with anti-calreticulin antibodies. Furthermore, both liver and uterine smooth muscle were found to contain high levels of mRNA encoding calreticulin, whereas no mRNA encoding calsequestrin was detected. We have employed an ammonium sulfate precipitation followed by Mono Q fast protein liquid chromatography, as a method by which calsequestrin and calreticulin can be isolated from whole tissue homogenates, and by which they can be clearly resolved from one another, even where present in the same tissue. Calreticulin was isolated from rabbit and bovine liver, rabbit brain, rabbit and porcine uterus, and bovine pancreas and was identified by its amino-terminal amino acid sequence. Calsequestrin cannot be detected in preparations from whole liver tissue, and only very small amounts of calsequestrin are detectable in ammonium sulfate extracts of uterine smooth muscle. We conclude that calreticulin, and not calsequestrin, is a major Ca2+ binding protein in liver endoplasmic reticulum and in uterine smooth muscle sarcoplasmic reticulum. Calsequestrin and calreticulin may perform parallel functions in the lumen of the sarcoplasmic and endoplasmic reticulum.  相似文献   

12.
Duchenne muscular dystrophy represents one of the most common hereditary diseases. Abnormal ion handling is believed to render dystrophin-deficient muscle fibres more susceptible to necrosis. Although a reduced Ca(2+) buffering capacity has been shown to exist in the dystrophic sarcoplasmic reticulum, surprisingly no changes in the abundance of the main luminal Ca(2+) reservoir protein calsequestrin have been observed in microsomal preparations. To address this unexpected finding and eliminate potential technical artefacts of subcellular fractionation protocols, we employed a comparative subproteomics approach with total mouse skeletal muscle extracts. Immunoblotting, mass spectrometry and labelling of the entire muscle protein complement with the cationic carbocyanine dye 'Stains-All' was performed in order to evaluate the fate of major Ca(2+)-binding proteins in dystrophin-deficient skeletal muscle fibres. In contrast to a relatively comparable expression pattern of the main protein population in normal vs. dystrophic fibres, our analysis showed that the expression of key Ca(2+)-binding proteins of the luminal sarcoplasmic reticulum is drastically reduced. This included the main terminal cisternae constituent, calsequestrin, and the previously implicated Ca(2+)-shuttle element, sarcalumenin. In contrast, the 'Stains-All'-positive protein spot, representing the cytosolic Ca(2+)-binding component, calmodulin, was not changed in dystrophin-deficient fibres. The reduced 2D 'Stains-All' pattern of luminal Ca(2+)-binding proteins in mdx preparations supports the calcium hypothesis of muscular dystrophy. The previously described impaired Ca(2+) buffering capacity of the dystrophic sarcoplasmic reticulum is probably caused by a reduction in luminal Ca(2+)-binding proteins, including calsequestrin.  相似文献   

13.
A skeletal muscle membrane fraction enriched in sarcoplasmic reticulum (SR) contained Ca2+-ATPase activity which was stimulated in vitro in normal chickens (line 412) by 6 nM purified bovine calmodulin (33% increase over control, P less than 0.001). In contrast, striated muscle from chickens (line 413) affected with an inherited form of muscular dystrophy, but otherwise genetically similar to line 412, contained SR-enriched Ca2+-ATPase activity which was resistant to stimulation in vitro by calmodulin. Basal levels of Ca2+-ATPase activity (no added calmodulin) were comparable in muscles of unaffected and affected animals, and the Ca2+ optima of the enzymes in normal and dystrophic muscle were identical. Purified SR vesicles, obtained by calcium phosphate loading and sucrose density gradient centrifugation, showed the same resistance of dystrophic Ca2+-ATPase to exogenous calmodulin as the SR-enriched muscle membrane fraction. Dystrophic muscle had increased Ca2+ content compared to that of normal animals (P less than 0.04) and has been previously shown to contain increased levels of immuno- and bioactive calmodulin and of calmodulin mRNA. The calmodulin resistance of the Ca2+-ATPase in dystrophic muscle reflects a defect in regulation of cell Ca2+ metabolism associated with elevated cellular Ca2+ and calmodulin concentrations.  相似文献   

14.
We have investigated some characteristics of the sarcoplasmic reticulum (Ca2+ + Mg2+)-dependent ATPase (Ca2+-ATPase) mRNA from smooth muscle using specific cDNA probes isolated from a rat heart cDNA library. RNA blot analysis has shown that the Ca2+-ATPase mRNA expressed in smooth muscle is identical in size to the cardiac mRNA but differs from that of fast skeletal muscle. S1 nuclease mapping has moreover shown that the cardiac and smooth muscle isoforms possess different 3'-end sequences. These results indicate that a distinct sarcoplasmic reticulum Ca2+-ATPase mRNA is present in smooth muscle.  相似文献   

15.
To further define the possible involvement of sarcoplasmic reticulum calcium accumulation and release in the skeletal muscle disorder malignant hyperthermia (MH), we have examined various properties of sarcoplasmic reticulum fractions isolated from normal and MH-susceptible pig muscle. A sarcoplasmic reticulum preparation enriched in vesicles derived from the terminal cisternae, was further fractionated on discontinuous sucrose density gradients (Meissner, G. (1984) J. Biol. Chem. 259, 2365-2374). The resultant MH-susceptible and normal sarcoplasmic reticulum fractions, designated F0-F4, did not differ in yield, cholesterol and phospholipid content, or nitrendipine binding capacity. Calcium accumulation (0.27 mumol Ca/mg per min at 22 degrees C), Ca2+-ATPase activity (0.98 mumol Pi/mg per min at 22 degrees C), and calsequestrin content were also similar for MH-susceptible and normal sarcoplasmic reticulum fraction F3. To examine sarcoplasmic reticulum calcium release, fraction F3 vesicles were passively loaded with 45Ca (approx. 40 nmol Ca/mg), and rapidly diluted into a medium of defined Ca2+ concentration. Upon dilution into 1 microM Ca2+, the extent of Ca2+-dependent calcium release measured after 5 s was significantly greater for MH-susceptible than for normal sarcoplasmic reticulum, 65.9 +/- 2.8% vs. 47.7 +/- 3.9% of the loaded calcium, respectively. The C1/2 for Ca2+ stimulation of this calcium release (5 s value) from MH-susceptible sarcoplasmic reticulum also appeared to be shifted towards a higher Ca2+-sensitivity when compared to normal sarcoplasmic reticulum. Dantrolene had no effect on calcium release from fraction F3, however, halothane (0.1-0.5 mM) increased the extent of calcium release (5 s) similarly in both MH-susceptible and normal sarcoplasmic reticulum. Furthermore, Mg2+ was less effective at inhibiting, while ATP and caffeine were more effective in stimulating, this Ca2+-dependent release of calcium from MH-susceptible, when compared to normal sarcoplasmic reticulum. Our results demonstrate that while sarcoplasmic reticulum calcium-accumulation appears unaffected in MH, aspect(s) of the sarcoplasmic reticulum Ca2+-induced calcium release mechanism are altered. Although the role of the Ca2+-induced calcium release mechanism of sarcoplasmic reticulum in situ is not yet clear, our results suggest that an abnormality in the regulation of sarcoplasmic reticulum calcium release may play an important role in the MH syndrome.  相似文献   

16.
《The Journal of cell biology》1983,97(5):1573-1581
The ultrastructural localization of calsequestrin in rat skeletal muscle (gracilis) was determined by indirect immunoferritin labeling of ultrathin frozen sections. Calsequestrin was found in the lumen of transversely and longitudinally oriented terminal cisternae but was absent from most of the longitudinal sarcotubules and the fenestrated sarcoplasmic reticulum. Calsequestrin was occasionally observed in vesicular structures found in the central region of the I band. Since calsequestrin is believed to provide the major site of Ca2+ sequestration in the sarcoplasmic reticulum, the present results support the view that Ca2+, transported to the lumen of the sarcoplasmic reticulum, is preferentially sequestered in the terminal cisternae, but they also suggest that additional Ca2+ sequestration may occur near the center of the I band.  相似文献   

17.
A Chu  P Volpe  B Costello  S Fleischer 《Biochemistry》1986,25(25):8315-8324
Junctional terminal cisternae are a recently isolated sarcoplasmic reticulum fraction containing two types of membranes, the junctional face membrane with morphologically intact "feet" structures and the calcium pump membrane [Saito, A., Seiler, S., Chu, A., & Fleischer, S. (1984) J. Cell Biol. 99, 875-885]. In this study, the Ca2+ fluxes of junctional terminal cisternae are characterized and compared with three other well-defined fractions derived from the sarcotubular system of fast-twitch skeletal muscle, including light and heavy sarcoplasmic reticulum, corresponding to longitudinal and terminal cisternae regions of the sarcoplasmic reticulum, and isolated triads. Functionally, junctional terminal cisternae have low net energized Ca2+ transport measured in the presence or absence of a Ca2+-trapping anion, as compared to light and heavy sarcoplasmic reticulum and triads. Ca2+ transport and Ca2+ pumping efficiency can be restored to values similar to those of light sarcoplasmic reticulum with ruthenium red or high [Mg2+]. In contrast to junctional terminal cisternae, heavy sarcoplasmic reticulum and triads have higher Ca2+ transport and are stimulated less by ruthenium red. Heavy sarcoplasmic reticulum appears to be derived from the nonjunctional portion of the terminal cisternae. Our studies indicate that the decreased Ca2+ transport is referable to the enhanced permeability to Ca2+, reflecting the predominant localization of Ca2+ release channels in junctional terminal cisternae. This conclusion is based on the following observations: The Ca2+, -Mg2+ -dependent ATPase activity of junctional terminal cisternae in the presence of a Ca2+ ionophore is comparable to that of light sarcoplasmic reticulum when normalized for the calcium pump protein content; i.e., the enhanced Ca2+ transport cannot be explained by a faster turnover of the pump. Ruthenium red or elevated [Mg2+] enhances energized Ca2+ transport and Ca2+ pumping efficiency in junctional terminal cisternae so that values approaching those of light sarcoplasmic reticulum are obtained. Rapid Ca2+ efflux in junctional terminal cisternae can be directly measured and is blocked by ruthenium red or high [Mg2+]. Ryanodine at pharmacologically significant concentrations blocks the ruthenium red stimulation of Ca2+ loading. Ryanodine binding in junctional terminal cisternae, which appears to titrate Ca2+ release channels, is 2 orders of magnitude lower than the concentration of the calcium pump protein. By contrast, light sarcoplasmic reticulum has a high Ca2+ loading rate and slow Ca2+ efflux that are not modulated by ruthenium red, ryanodine, or Mg2+.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
Polyadenylated RNA prepared from neonatal rat muscle was translated in a rabbit reticulocyte cell-free system. Two sarcoplasmic reticulum proteins, the Ca2+ + Mg2+-dependent adenosine triphosphatase (ATPase) and calsequestrin, were isolated from the translation mixture by immunoprecipitation, followed by electrophoresis in sodium dodecyl sulfate-polyacrylamide gels. The [35S]methionine-labeled translation products were characterized by molecular weight, peptide mapping, and NH2-terminal sequence analysis. The ATPase synthesized in the cell-free system was found to have the same molecular weight (Mr = 100,000) and [35S]-methionine-labeled peptide map as the mature ATPase. The methionine residue present at the NH2 terminus of the mature ATPase was donated by initiator methionyl-tRNArMet and it became acetylated during translation. These results suggest that the ATPase was synthesized without an NH2-terminal signal sequence. Calsequestrin (Mr - 63,000) was synthesized as a higher molecular weight precursor (Mr = 66,000) that contained an additional [35S]methionine-labeled peptide when compared to mature calsequestrin. The NH2-terminal sequence of the precursor was different from the mature protein. The precursor was processed to a polypeptide with a molecular weight identical with mature calsequestrin when microsomal membranes prepared from canine pancreas were included during translation. These results show that calsequestrin is synthesized with an NH2-terminal signal sequence that is removed during translation. These data add to the evidence that the ATPase and calsequestrin follow distinctly different biosynthetic pathways, even though, ultimately, they are both located in the same membrane.  相似文献   

19.
Ca2+ efflux from the sarcoplasmic reticulum decreases when store Ca2+ concentration falls, particularly in skinned fibers and isolated vesicles where luminal Ca2+ can be reduced to very low levels. However ryanodine receptor activity in many single channel studies is higher when the luminal free Ca2+ concentration is reduced. We investigated the hypothesis that prolonged exposure to low luminal Ca2+ causes conformational changes in calsequestrin and deregulation of ryanodine receptors, allowing channel activity to increase. Lowering of luminal Ca2+ from 1 mM to 100 microM for several minutes resulted in conformational changes with dissociation of 65-75% of calsequestrin from the junctional face membrane. The calsequestrin remaining associated no longer regulated channels. In the absence of this regulation, ryanodine receptors were more active when luminal Ca2+ was lowered from 1 mM to 100 microM. In contrast, when ryanodine receptors were calsequestrin regulated, lowering luminal Ca2+ either did not alter or decreased activity. Ryanodine receptors are regulated by calsequestrin under physiological conditions where calsequestrin is polymerized. Since depolymerization occurs slowly, calsequestrin can regulate the ryanodine receptor and prevent excess Ca2+ release when the store is transiently depleted, for example, during high frequency activity or early stages of muscle fatigue.  相似文献   

20.
The ultrastructural localization of the Ca2+ + Mg2+-dependent ATPase of sarcoplasmic reticulum in rat gracilis muscle was determined by indirect immunoferritin labeling of ultrathin frozen sections. Simultaneous visualization of ferritin particles and of adsorption- stained cellular membranes showed that the Ca2+ + Mg2+-ATPase was concentrated in the longitudinal sarcoplasmic reticulum and in the nonjunctional regions of the terminal cisternae membrane but was virtually absent from mitochondria, plasma membranes, transverse tubules, and junctional sarcoplasmic reticulum. Ferritin particles were found preponderantly on the cytoplasmic surface of the membrane, in agreement with published data showing an asymmetry of the Ca2+ + Mg2+- ATPase within the sarcoplasmic reticulum membrane. Comparison of the density of ferritin particles in fast and slow myofibers suggested that the density of the Ca2+ + Mg2+-ATPase in the sarcoplasmic reticulum membrane in a fast myofiber is approximately two times higher than in a slow myofiber.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号