首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Sex-allocation models predict that the evolution of self-fertilization should result in a reduced allocation to male function and pollinator attraction in plants. The evolution of sex allocation may be constrained by both functional and genetic factors, however. We studied sex allocation and genetic variation for floral sex ratio and other reproductive traits in a Costa Rica population of the monoecious, highly selfing annual Begonia semiovata. Data on biomass of floral structures, flower sex ratios, and fruit set in the source population were used to calculate the average proportion of reproductive allocation invested in male function. Genetic variation and genetic correlations for floral sex ratio and for floral traits related to male and female function were estimated from the greenhouse-grown progeny of field-collected maternal families. The proportion of reproductive biomass invested in male function was low (0.34 at flowering, and 0.07 for total reproductive allocation). Significant among-family variation was detected in the size (mass) of individual male and female flowers, in the proportion of male flowers produced, and in the proportion of total flower mass invested in male flowers. Significant among-family variation was also found in flower number per inflorescence, petal length of male and female flowers, and petal number of female flowers. Except for female petal length, we found no difference in the mean value of these characters between selfed and outcrossed progeny, indicating that, with the possible exception of female petal length, the among-family variation detected was not the result of variation among families in the level of inbreeding. Significant positive phenotypic and broad-sense genetic correlations were detected between the mass of individual male and female flowers, between male and female petal length, and between number of male and number of female flowers per inflorescence. The ratio of stamen-to-pistil mass (0.33) was low compared to published data for autogamous species with hermaphroditic flowers, suggesting that highly efficient selfing mechanisms may evolve in monoecious species. Our results indicate that the study population harbors substantial genetic variation for reproductive characters. The positive genetic correlation between investment in male and female flowers may reflect selection for maximum pollination efficiency, because in this self-pollinating species, each female flower requires a neighboring male flower to provide pollen.  相似文献   

2.
The reproductive ecology of wind-pollinated gynomonoecious species, in which the individual plant produces both female (pistillate) and perfect flowers, has rarely been studied. We examined the floral phenology and reproductive traits in Rhoiptelea chiliantha , described as gynomonoecy, to understand the adaptive significance of this sexual system. This species is a rare tree native to south-western China and northern Vietnam. The flowers are characterized by an anemophilous pollination syndrome, but no insects were observed foraging on them. Perfect flowers have larger tepals but smaller stigmas than female flowers, indicating flower size dimorphism. Floral ratios of female to perfect flowers are stable in different individuals and populations. On individual plants, perfect flowers open first, followed by female flowers, with a 1-week interval. Perfect flowers are protogynous with a 3.7-day interval (neuter phase) between the female phase (1.5 days) and expanded male phase (8.2 days). Both female and perfect flowers exhibit pronounced synchrony in flowering at the levels of inflorescences and individuals. However, flowers on different individuals show asynchronicity in timing of initial blooming. Tracking the process from pollination to fruit maturation, we found that female flowers contributed almost exclusively to seed production, but perfect flowers were sterile (functionally males). Therefore, this plant is functionally monoecious. This finding resolved a puzzle on the occurrence of female flowers in this plant, because previous reports described female flowers as being sterile. As the sex phases were completely separate between individuals, the pattern of floral phenology may ensure that outcrossing strongly predominates.  © 2006 The Linnean Society of London, Botanical Journal of the Linnean Society , 2006, 152 , 145–151.  相似文献   

3.
Investigation of gender specialization in plants has led to several theories on the evolution of sexual dimorphism: reproductive compensation, based on enhanced reproductive efficiency with gender specialization (flowers should be larger on dioecious plants); Bateman's Principle, based on sex-specific selection (display for pollinator attraction in males and seed set in females); and intersexual floral mimicry, based on mimicry of a reward-providing gender by a non-reward providing gender (reduced dimorphism in dioecious plants due to increased spatial separation of male and female flowers). These theories were evaluated in Ecballium elaterium, which contains two subspecies, elaterium (monoecious) and dioicum (dioecious). Our results show that flowers of the dioecious subspecies are larger and allocate more to reproductive organs than do flowers of the monoecious subspecies. Both subspecies are sexually dimorphic (male flowers larger than female flowers). Variance in flower size among populations is greater in the dioecious subspecies. Finally, there is sufficient genetic variation to enable ongoing response to selection; genetic correlation constraints on independent response of female and male flowers may be stronger in the monoecious subspecies. Our findings provide support for aspects of all three theories, suggesting that the evolution of floral dimorphism is based on a complex interplay of factors.  相似文献   

4.
Mimicry between rewarding and non-rewarding flowers within individuals has been accepted as a strategy favored by selection to deceive pollinators. It has been proposed that this mechanism relies on the exploitation of pollinator's sensory biases, but field evidence is still scarce. In this study, we describe the mechanism of deceit pollination in the monoecious herb Begonia gracilis, a species with exposed rewarding structures (pollen) and intersexual mimicry. Specifically, we test the role of mimicry and exploitation of sensory biases on the reproductive success of male (pollination visitation) and female flowers (probability of setting fruits). We show that pollinators' perception of the amount of reward provided by male flowers is influenced by the independent variation in the sizes of the androecium and the perianth. Large rewarding structures and small perianths were preferred by pollinators, suggesting a central role of the relative size of the rewarding structure on pollinators' foraging decisions. Hence, rewarding male flowers cheat pollinators by exploiting their sensory biases, a strategy followed by non-rewarding female flowers. We suggest that intersexual mimicry operates through the functional resemblance of male flowers' deceit strategy. Artificial manipulation of the flowers supports our findings in natural conditions. Overall, we propose that the continuous and independent variation in the size of the perianth and the reproductive organs among male and female flowers could itself be adaptive.  相似文献   

5.
开花时间决定了植物雌雄功能的交配机会, 最终影响繁殖成功。交配环境假说认为雌雄异熟植物开花时间的差异能引起植物表型性别的变异, 改变种群内的交配环境, 影响植物对雌雄功能的最佳性分配。为了研究开花时间对雌雄异熟植物的雌雄性别时期及表型性别的影响, 本文以毛茛科雄性先熟植物露蕊乌头(Aconitum gymnandrum)为实验材料, 记录了雄性和雌性功能期, 分析了植株开花时间、花的雌雄功能期和表型性别的关系。结果表明: 在植物同一花序内, 较晚开放的花有更长的雄性期和更短的雌性期, 性分配在时间上偏雄。雌雄功能期在时间上的相对分配随植物开花时间的变化表现出相似的趋势: 较晚开的花或较晚开花的个体, 花的雄性功能期相对于雌性功能期更长, 在时间上更偏向雄性功能。而且, 开花时间的差异影响种群内花的性比和植物个体的表型性别动态。随着开花时间由早到晚的变化, 种群内早期以雄花为主,末期以雌花为主, 种群内性别环境由偏雄向偏雌变化, 因此植株个体的平均表型性别则从偏雌转向偏雄。本文结果支持交配环境假说, 雄性先熟的露蕊乌头开花早期, 种群内花的性别比偏雄, 种群表型性别环境偏雄, 因而植物个体平均表型性别偏雌, 性别分配(即时间分配)偏向雌性功能, 而晚开花个体的平均性别偏雄, 更偏向雄性功能的分配。  相似文献   

6.
Summary Amaranthus and several other wind-pollinated species of plants are used to test some of the theoretical models of relative reproductive effort towards the male and female sexes. Consistent with these models, in self-compatible, monoecious Amaranthus, Chenopodium, Digitaria, Setaria, and Lepidium, female effort represented over 90% of the total reproductive effort. Also consistent with predictions, Lolium, a self-incompatible wind-pollinated species, was found to have about equal male and female effort. A method is described here that should prove useful in quantifying male and female effort in both wind and insect-pollinated species of plants.  相似文献   

7.
Urtica dioica is a sub-dioecious plant species, i.e. males and females coexist with monoecious individuals. Under standard conditions, seed sex ratio (SSR, fraction of males) was found to vary significantly among seed samples collected from female plants originating from the same population (0.05–0.76). As a first step, we investigated the extent to which SSR and sex expression of male, female, and monoecious individuals is influenced by external factors. We performed experiments to analyse: (1) whether the environment of a parental plant affects the sex ratio (SR) of its offspring, (2) whether SSR can be affected by environmental conditions before flowering, and (3) whether sex expression of male, female and monoecious plants that have already flowered can be modified by environmental conditions or by application of phyto-hormones. Within the range of our experimental design, SSR was not influenced by external factors, and gender in male and female plants was stable. However, sex expression in monoecious plants was found to be labile: flower sex ratio (FSR, fraction of male flowers) differed considerably between clones from the same individual within treatments, and increased toward 100% maleness under benign conditions. These results provide strong evidence that monoecious individuals are inconstant males, which alter FSR according to environmental circumstances. In contrast, we consider sex expression in male and female individuals to be solely genetically based. The observed variation in SSR between maternal parents cannot be explained by sex-by-environment interactions.  相似文献   

8.
In protogynous plants, female flowers of early blooming plants are at a reproductive disadvantage because they cannot set fruit due to the lack of available pollen. To study this phenomenon, gender expression of the monoecious herb Sagittaria trifolia was investigated over the entire flowering season in two field and two cultivated populations in Hubei and Hunan Provinces, China. In racemes of S. trifolia, flowers open sequentially from bottom to top, with female flowers opening first followed by male flowers. This creates a temporal separation of sexes in the species. Under field conditions small plants are often male, with production of both male and female flowers increasing with plant size. Femaleness increased among sequential inflorescences since female flower production increased whereas male flower production did not. Seed production was greater in large inflorescences because they contain more female flowers, and the number of ovules increased in female flowers at basal positions within the raceme. A consistent pattern of high seed set was observed in flowers from both field and cultivated populations. About 1 % of unfertilized ovules resulted from no pollination and 2 % of the seeds produced were only partly developed due to resource limitation. In the first inflorescence of the six experimental populations, 6.7-40.0 % of individuals produced only male flowers, and female flowers of 1.9-6.5 % individuals were aborted. The occurrence of male flowers in early blooming inflorescences could be an adaptive strategy to conserve resources and enhance pollination of female flowers in protogynous S. trifolia.  相似文献   

9.
It has been proposed that relative allocation to female function increases with plant size in animalpollinated species.Previous investigations in several monoecious Sagittaria species seem to run contrary to the prediction of size-dependent sex allocation (SDS),throwing doubt on the generalization of SDS.Plant size,phenotypic gender,and flower production were measured in experimental populations of an aquatic,insect-pollinated herb Sagittaria trifolia (Alismataceae) under highly different densities.The comparison of ramets produced clonally can reduce confounding effects from genetic and environmental factors.In the high-density population,48% of ramets were male without female flowers,but in the low-density population all ramets were monoecious.We observed allometric growth in reproductive allocation with ramet size,as evident in biomass of reproductive structures and number of flowers.However,within both populations female and male flower production were isometric with ramet size,in contrast to an allometric growth in femaleness as predicted by SDS.Phenotypic gender was not related to ramet size in either population.The results indicated that large plants may increase both female and male function even in animal-pollinated plants,pointing towards further studies to test the hypothesis of size-dependent sex allocation using different allocation currencies.  相似文献   

10.
We studied the reproductive biology of the endangered species Calocedrus macrolepis. We examined flower phenology and morphology, spatial distribution of male and female cones, pollen viability, variation in pollen density around the crown, and the pollination process. Calocedrus macrolepis is monoecious with unisexual flowers on the same branches. Pollen‐shed from male cones occurred from early September to mid‐February, whereas the female cones were receptive from mid‐September to mid‐March. The inconsistency of flowering periods between male and female cones within populations and among individuals extended the pollination period. There was a layered distribution pattern of male and female cones in the crown, with more male cones in the lower layer and more female cones in the upper layer. This resulted in different selfing and outcrossing rates at various locations. The pollen of C. macrolepis lack airbags, and consequently, it was dispersed within only 10 m of the mother tree. The short pollen dispersal distance could restrict gene flow among different geographical populations. Calocedrus macrolepis is endangered because of its high degree of selfing and inbreeding resulting from its monoecious characteristics and the short distance of pollen spread. These factors may result in a population decline.  相似文献   

11.
Size and sex allocation in monoecious woody plants   总被引:2,自引:0,他引:2  
John F. Fox 《Oecologia》1993,94(1):110-113
The female size advantage hypothesis predicts that the allocation ratio of female: male reproductive effort should increase with plant size (total reproductive effort). A male height advantage hypothesis has also been proposed, based on the supposed greater advantage of height to male reproductive success in wind-pollinated plants. These ideas were tested with data for wind-pollinated, monoecious trees and shrubs which exhibit a suitably large range of sizes. Number of male inflorescences increased faster with size than did number of female inflorescences in 2 of 9 species; in the remaining 7 species there was no significant difference. The male:female ratio of inflorescence numbers increased with height in 4 of 7 species and did not change significantly in the remaining 3 species, as shown by regression. Height and size are highly correlated and so their effects could not be distinguished. The fact that many conifers place the female cones uppermost in the crown suggests that size and not height favors increased allocation to male function, as does well-established theory connecting the existence of male versus female size advantage to pollen and seed dispersal chacteristics. Regression analysis of the relation between male and female reproductive effort should be done by reduced major axis regression; ordinary least squares regression underestimates slopes; in this study opposite conclusions could be drawn from ordinary least squares and reduced major axis regressions.  相似文献   

12.
Abstract It has been proposed that relative allocation to female function increases with plant size in animal‐pollinated species. Previous investigations in several monoecious Sagittaria species seem to run contrary to the prediction of size‐dependent sex allocation (SDS), throwing doubt on the generalization of SDS. Plant size, phenotypic gender, and flower production were measured in experimental populations of an aquatic, insect‐pollinated herb Sagittaria trifolia (Alismataceae) under highly different densities. The comparison of ramets produced clonally can reduce confounding effects from genetic and environmental factors. In the high‐density population, 48% of ramets were male without female flowers, but in the low‐density population all ramets were monoecious. We observed allometric growth in reproductive allocation with ramet size, as evident in biomass of reproductive structures and number of flowers. However, within both populations female and male flower production were isometric with ramet size, in contrast to an allometric growth in femaleness as predicted by SDS. Phenotypic gender was not related to ramet size in either population. The results indicated that large plants may increase both female and male function even in animal‐pollinated plants, pointing towards further studies to test the hypothesis of size‐dependent sex allocation using different allocation currencies.  相似文献   

13.
Understanding the fitness of plants with inflorescences requires examining variation in sex allocation among flowers within inflorescences. We examined whether differences in the duration of the male and female phases of flowering lead to variation in sex allocation and reproductive success among flowers within inflorescences. In 2002 and 2003, we quantified floral longevity, floral sex allocation, and reproductive success between the first and the second flowers within inflorescences in a protandrous species, Aquilegia buergeriana var. oxysepala. Floral longevity was greater in the first flowers than in the second ones in both years. The male phase lasted longer, and the initial number of pollen grains and the number of pollen grains removed were greater in the first flowers than in the second ones in both years. Within first flowers, the number of pollen grains removed was greater in flowers that had longer male phases, thus duration of the male phase may positively affect male reproductive success in the first flowers. The female phase lasted longer and the number of ovules was greater in the first flowers than in the second only in 2002. However, seed production per flower and female phase duration in both years were not significantly related. The variation in the number of pollen grains among flowers in this species may be caused by the variation in male phase duration.  相似文献   

14.
In animal-pollinated plants, autonomous selfing provides reproductive assurance under conditions of infrequent pollinator visits or a lack of mates, but few data are available for wind-pollinated species or species with combined insect and wind-pollination, for which it is often assumed that pollen availability does not limit reproduction. In this study, the capacity of autonomous selfing was investigated in the temperate forest herb Paris quadrifolia, and an emasculation experiment was performed under natural field conditions to investigate the contribution of autonomous selfing to total seed set across a continuous gradient of densities of flowering conspecifics. In the absence of wind or pollinators, autonomous selfing was observed through anthers approaching stigmas at the end of flowering and the capacity for autonomous pollination was about 0.34. Under natural conditions, considerable outcross pollination was observed, but the proportion of ovules successfully fertilized significantly decreased with decreasing density of conspecifics when flowers were emasculated, but not when flowers were left intact. These results indicate that autonomous selfing resulted in reproductive assurance (RA = 0.16) and thus support the hypothesis that autonomous selfing can also provide reproductive assurance in wind-pollinated species.  相似文献   

15.
Varied nutrient sources can influence the plasticity of reproductive strategies in monoecious species differently. We examined the plasticity of sexual and clonal reproductive components in distinct nutrient sources in a monoecious species, Sagittaria graminea Michx. The results showed that for aboveground reproductive components, in rich-phosphorus and low-nitrogen conditions, the species produced more male flowers, whereas female flowers did not significantly increase in number compared to low-phosphorus and low-nitrogen conditions (control). In rich-nitrogen and low-phosphorus conditions, the species produced more flowers, particularly female, and more seeds, compared to the control conditions. In the rich-nitrogen and rich-phosphorus conditions, plants increased male flowers, female flowers, total flower number, synchronously, as well as seed production. For the belowground reproductive components, in the rich-phosphorus conditions, the plants produced bigger corms than in the rich-nitrogen and control conditions, which further enhanced their competitiveness against companion species. In rich-nitrogen conditions, the plants produced more medium and small corms, and relatively more and longer stolons, which were useful in expansion and invasion of more space. Furthermore, the species displayed trade-off relationships between the aboveground and belowground reproductive components in unbalanced nutrient conditions (add-N or add-P). However, in low nutrient levels (control) or in nutrient abundant (add-N + P) conditions, there were no significant trade-off relationships between the aboveground and belowground reproductive components, based on quantities.  相似文献   

16.
Relative allocation of resources to growth vs. reproduction has long been known to be an important determinant of reproductive success. The importance of variation in allocation to different structures within reproductive allocation is somewhat less clear. This study was designed to elucidate the importance of allocation to vegetative vs. reproductive functions, and allocation within reproductive functions (sex allocation), to realized female success in an andromonoecious plant, Solanum carolinense. Allocation measurements were taken on plants in experimental arrays exposed to natural pollination conditions. These measurements included total flower number, the proportion of flowers that were male, flower size, and vegetative size. Flower number explained the majority of the variation among individuals in their success-that is, there was strong selection for increased flower production. There was also selection to decrease the proportion of flowers that were male, but neither flower size nor vegetative size (a measure of overall resource availability) were direct determinants of female success. After Bonferroni corrections for multiple comparisons, most phenotypic correlations among the traits measured were nonsignificant. Thus, in this andromonoecious species there is not a strong relationship between resource availability (vegetative size) and female success, and female success is instead determined by the relative production of the two different flower types.  相似文献   

17.
Floral sex allocation at the individual and first-order branch levels and the relation between these levels were examined in Betula platyphylla var. japonica, a wind-pollinated monoecious tree. Floral sex allocation at the individual level varied with resource availability in a pattern similar to that predicted by the Masaka and Takada model (Journal of Theoretical Biology 240: 114-125). Thus, individual trees with few reproductive resources produced only female or male inflorescences, whereas individuals with many resources rarely had a high male ratio (i.e., number of male inflorescences/total number of inflorescences). Furthermore, the number of male inflorescences tended to reach an upper limit, whereas the number of female inflorescences increased monotonically with increasing reproductive investment. The patterns of floral sex allocation at the first-order branch level were analogous to those at the individual level. Thus, each first-order branch of B. platyphylla var. japonica behaves like an individual, and the floral sex allocation of a given branch does not necessarily represent the individual tree. The effect of the individual-level floral sex ratio on branch-level floral sex allocation indicates that branch behavior is controlled by the individual.  相似文献   

18.
Sex expression was measured in several Canada yew (Taxus canadensis Marsh.) populations of the Apostle Islands of Wisconsin and southeastern Minnesota to determine the extent of variation within and among populations. Sex expression was recorded qualitatively (monoecious, male, or female) and quantitatively (by male to female strobilus ratios or standardized phenotypic gender). No discernible trends in differences in sex expression among populations or habitats were recorded. Trends in sex expression of individuals within populations were complex. Small yews tended to be male or, if monoecious, had female-biased strobilus ratios. Large yews were monoecious but had male-biased strobilus ratios. Phenotypic gender, recorded as relative maleness, however, was negatively, but weakly, correlated with plant size. Gender distribution in four of five populations was bimodal, suggesting that cosexual populations consist of male and female morphs. Strobilus ratios of individuals in Apostle Island populations showed significant annual variation, but gender for these same plants was significantly correlated from year to year. Annual adjustments in gender were most pronounced in small yews. The results indicate that relative investment in male and female reproductive structures by Canada yew individuals is responsive to environmental variation, but sex expression also has a proximate genetic component.  相似文献   

19.
Evidence is reported for size-dependent (allometric) gender allocation in the monoecious, wind-pollinated annual Ambrosia artemissifolia. Consistent with established theory, the pattern of allometry displayed adaptive plasticity, depending on the environmental cause of variation in plant size. Plant size gradients were generated in both field and greenhouse experiments using separate and combined gradients of shading, soil nutrient levels, and neighbor proximity. When plant size constraints involved light limitation from shading (e.g., because of close neighbor proximity), decreasing plant size was generally associated with decreasing maleness and increasing femaleness (based on relative male and female flower production, respectively). This is consistent with the "pollen-dispersal" hypothesis in which the consequences of relatively small plant size (among larger neighbors) imposes less severe limitation for female reproductive success than for male reproductive success (because success as an outcrossing donor of wind-dispersed pollen increases with increasing plant height, especially when neighbors are present). However, when size was constrained by soil nutrient limitation alone (i.e., without shading effects), the results had the converse allometric relationship; i.e., decreasing plant size was generally associated with increasing maleness and decreasing femaleness. This is consistent with the "size-advantage" and "time-limitation" hypotheses in which energetic and time limitations (respectively) associated with relatively small plant size impose a less severe limitation for male reproductive success than for female reproductive success.  相似文献   

20.
Gender expression, flowering phenology, reproductive performance and factors affecting fruit set (i.e., flowering synchrony, size and distance to the nearest pollen donor) were investigated in a cultivated population of a wind-pollinated self-compatible heterodichogamous Juglans regia (Juglandaceae). Four flowering morphs, (i.e., protandrous, protogynous, male and female) were observed. The sexual functions of the protandrous and protogynous morphs were almost synchronous; however, they were not reciprocal, and the separation of male and female flowering within most monoecious individuals was not complete. Thus, within-morph mating and geitonogamous pollination may be common. The ratio of protandrous versus protogynous morphs was biased towards the protandrous morph, but the fruit set did not differ between the morphs, suggesting that the fruit set of the protandrous morph could be partly compensated by within-morph pollination. The ratio of the female flower number or fruit number to the total male catkin length was higher in the protogynous morph than in the protandrous morph and did not vary with plant size, suggesting that gender variation was not size dependent and that the sexual function of protandrous morphs was more male biased. Fruit set depended on plant size only for protandrous morphs. The fruit set of individual plants decreased with increasing distance to the nearest pollen donor regardless of morph, possibly because of pollen limitation. The fruit set of individual plants increased with flowering synchrony, indicating that flowering synchrony could affect reproductive success.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号